Supporting Information to:

MTO/H₂O₂/Pyrazole-Mediated N-Oxidation of *meso*-Tetraarylporphyrins and -chlorins, and S-Oxidation of a *meso*-Tetraaryldithiaporphyrin and -chlorin

Subhadeep Banerjee[†], Matthias Zeller[‡], and Christian Brückner^{†,*}

†Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT 06269-3060(U.S.A.). ‡Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663 (U.S.A.).

Author to whom correspondence should be addressed:

Fax: (+1) 860 486-2981; Tel: (+1) 860 486-2743; e-mail: c.bruckner@uconn.edu

• Table of Contents:

Materials and l	Instruments	4	
Octaethylporphyrin-N-oxide (1)			
meso-Tetraphe	nylporphyrin- <i>N</i> -oxide (3a). General Procedure for the MTO/ H_2O_2 /Pyrazole- <i>N</i> -		
	Oxidation of Porphyrins.	5	
meso-Tetra(4-c	chlorophenyl)porphyrin- <i>N</i> -oxide (3b).	6	
meso-Tetra(4-t	<i>ert</i> -butylphenyl)porphyrin-N-oxide (3c)	6	
meso-Tetra(3,4,5-trimethoxyphenyl)porphyrin-N-oxide (3d)7			
meso-Tetra(2,3,4,5,6-pentafluorophenyl)porphyrin-N-oxide (3e)			
meso-Tetraphenyl-2,3-cis-dimethoxychlorin (4)			
meso-Tetraphenyl-2,3-cis-dimethoxychlorin-22-N-oxide (5)			
meso-Tetraphenyl-2-oxa-3-oxoporphyrin-22-N-oxide (7)			
meso-Tetraphenyl-21,23-dithiaporphyrin-21-S-oxide (9)10			
meso-Tetratoly	vl-21,23-dithia-7,8-diethoxychlorin-21-S-oxide (11A and 11B)	10	
Figure S1.	¹ H NMR (400 MHz, CD_2Cl_2 , 25 °C) of 3a	12	
Figure S2.	¹³ C NMR (100 MHz, CD_2Cl_2 , $D1 = 3 \text{ s}$, 25 °C) of 3a	13	
Figure S3.	¹ H NMR (400 MHz, CD_2Cl_2 , 25 °C) of 3b	14	
Figure S4.	¹³ C NMR (100 MHz, CD_2Cl_2 , $D1 = 1.5$ s, 25 °C) of 3b	14	
Figure S5.	¹ H NMR (400 MHz, CH_2Cl_2/CD_2Cl_2 , 25 °C) of 3c .	15	
Figure S6.	¹³ C NMR (100 MHz, CD_2Cl_2 , $D1 = 3 \text{ s}$, 25 °C) of 3c .	15	
Figure S7.	¹ H NMR (400 MHz, CH ₂ Cl ₂ /CD ₂ Cl ₂ , 25 °C) of 3d	16	
Figure S8.	¹³ C NMR (100 MHz, CH_2Cl_2/CD_2Cl_2 , D1 = 1.5 s, 25 °C) of 3d	16	
Figure S9.	¹ H NMR (400 MHz, CD_2Cl_2 , 25 °C) of 3e .	17	
Figure S10.	¹³ C NMR (100 MHz, CD_2Cl_2 , 25 °C, $D1 = 2$ s) of 3e .	17	

Figure S11.	¹ H NMR (400 MHz, CDCl ₃ , 25 °C) of 4 18
Figure S12.	¹³ C NMR (100 MHz, CDCl ₃ , 25 °C) of 4 18
Figure S13.	¹ H NMR (400 MHz, CD ₂ Cl ₂ , 25 °C) of 5
Figure S14.	¹³ C NMR (100 MHz, CD_2Cl_2 , $D1 = 1.5$ s, 25 °C) of 5
Figure S15.	¹ H NMR (400 MHz, CH ₂ Cl ₂ /CD ₂ Cl ₂ , 25 °C) of 7 20
Figure S16.	¹³ C NMR (100 MHz, CH_2Cl_2/CD_2Cl_2 , D1 = 1.5 s, 25 °C) of 7 20
Figure S17.	¹ H NMR (400 MHz, CD ₂ Cl ₂ , 25 °C) of 9 21
Figure S18.	¹³ C NMR (100 MHz, CH_2Cl_2/CD_2Cl_2 , D1 = 2.0 s, 25 °C) of 9 21
Figure S19.	¹ H NMR (400 MHz, CD ₂ Cl ₂ , 25 °C) comparison, low-field region, of 10
	(bottom spectrum) 11-isomer I , and isomer II (top spectra)
Figure S20.	UV-vis spectrum (CH ₂ Cl ₂) of 11-isomer I.
Figure S21.	UV-vis spectrum (CH ₂ Cl ₂) of 11-isomer II.
Figure S22.	IR Spectrum (diffuse reflectance, neat) of 3a 24
Figure S23.	IR Spectrum (diffuse reflectance, neat) of 3b
Figure S24.	IR Spectrum (diffuse reflectance, neat) of 3c 25
Figure S25.	IR Spectrum (diffuse reflectance, neat) of 3d
Figure S26.	IR Spectrum (diffuse reflectance, neat) of 3e 26
Figure S27.	IR Spectrum (diffuse reflectance, neat) of 726
Figure S28.	IR Spectrum (diffuse reflectance, neat) of 927
Figure S29.	ORTEP Representation of the crystal structure of 3d ·CH ₂ Cl ₂ 28
Table S1.	Crystal structure data of 3d ·CH ₂ Cl ₂

Materials and Instruments. All solvents and reagents were used as received. Known *meso*-tetraphenylporphyrin (**2a**), *meso*-tetra(4-chlorophenyl)porphyrin (**2b**), *meso*-tetra(4-t-butylphenyl)porphyrin (**2c**), *meso*-tetra(3,4,5-trimethoxyphenyl)porphyrin (**2d**) were prepared according to the Adler procedure.¹ *meso*-Tetra(pentafluorophenyl)porphyrin (**2e**),² *meso*-tetraphenyl-*cis*-2,3-dihydroxychlorin,³ *meso*-tetraphenyl-3-oxa-2oxo-porphyrin (**6**),⁴ *meso*-tetraphenyl-21,23-dithiaporphyrin (**8**),⁵ and *meso*-tetraphenyl-2,3-*cis*-dimethoxy-21,23-dithia-chlorin (**10**)⁶ were also prepared according to literature procedures. Analytical TLC plates: aluminum backed, silica gel 60, 250 μ m thickness; flash column silica gel: standard grade, 60 Å, 32-63 μ m.

Octaethylporphyrin-*N***-oxide** (1). Prepared in 57% yield according to the general procedure. Recovery of starting material: 30-40%. Spectroscopic data identical to those described previously.⁷

- 3. Brückner, C.; Rettig, S. J.; Dolphin, D. J. Org. Chem. 1998, 63, 2094-2098.
- 4. McCarthy, J. R.; Jenkins, H. A.; Brückner, C. Org. Lett. 2003, 5, 19-22.
- 5. Stilts, C. E.; Nelen, M. I.; Hilmey, D. G.; Davies, S. R.; Gollnick, S. O.; Oseroff, A. R.; Gibson, S. L.; Hilf, R.; Detty, M. R. *J. Med. Chem.* **2000**, *43*, 2403-2410.
- 6. Lara, K. K.; Rinaldo, C. K.; Brückner, C. *Tetrahedron* **2005**, *61*, 2529-2539.
- 7. Andrews, L. E.; Bonnett, R.; Ridge, R. J.; Appelman, E. H. J. Chem. Soc., Perkin Trans. *1* 1983, 103-107.

^{1.} Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. *Org. Chem.* **1967**, *32*, 476.

^{2.} Spellane, P. J.; Gouterman, M.; Antipas, A.; Kim, S.; Liu, Y. C. *Inorg. Chem.* **1980**, *19*, 386-391.

meso-Tetraphenylporphyrin-N-oxide (**3a**). General **Procedure** for the MTO/H₂O₂/Pyrazole-N-Oxidation of Porphyrins. In a 50 mL round bottom flask equipped with a stirring bar, TPP (2a) (200 mg, 3.25×10^{-4} mol) was dissolved in CH₂Cl₂ (20 ml). In a 20 ml scintillation vial with Teflon-lined cap, MTO (20 mg, 8.1×10^{-5} mol) suspended in CH₂Cl₂ (~1 mL) is mixed with a 30% aq H₂O₂ solution (750 μ L, ~6.5 × 10⁻³ mmol) by vigorous shaking. The yellow mixture was added at ambient temperature to the vigorously stirring porphyrin solution, followed immediately by pyrazole (44 mg, 6.4×10^{-4} mol). When the reaction had proceeded to the desired conversion (~50%, assessed by TLC), the excess H₂O₂ was quenched by addition of MnO₂ (~50 mg). After stirring for 2 min, the mixture was filtered through a glass frit (M), the organic layer was separated and dried over Na₂SO₄, and reduced by rotary evaporation. The residue was subjected to column (or preparative plate) chromatography (silica - $CH_2Cl_2/1\%$ MeOH), followed by recrystallization by solvent exchange (with pet. ether 30-60) on the rotary evaporator. Product **3a** can be isolated in 50-80% yields (100 - 160 mg). R_f (silica – CH_2Cl_2) = 0.19. ¹H NMR (400 MHz, CD₂Cl₂, δ): 9.00 (d, ³J = 4.7 Hz, 2H), 8.85 (d ³J = 4.7 Hz, 2H), 8.67 (s, 2H), 8.28 (m, 4H), 8.21 (d, ${}^{3}J = 6.3$ Hz, 4H), 7.83-7.73 (m, 12H), 7.55 (s, 2H), 1.07 (broad s, exchangeable with D₂O, 2H). ¹³C NMR (100 MHz, CD₂Cl₂, δ): 158.2, 142.8, 141.8, 141.5, 139.4, 139.0, 136.3, 136.0, 135.3, 130.2, 129.7, 128.8, 128.3, 127.7, 127.2, 123.1, 120.3, 120.1. UV-vis $(CH_2Cl_2) \ \lambda_{max} \ [nm] \ (log \ \epsilon) \ 416 \ (5.21), \ 544 \ (3.80), \ 593 \ (3.87), \ 686 \ (3.39). \ UV-vis \ (CH_2Cl_2 + 2\%) \ (2.5)$ TFA) λ_{max} [nm] (log ϵ) 438 (5.48), 594 (sh), 649 (4.48). MS (ESI+, 100% CH₃CN, 30 V cone voltage) m/z 630.7 (MH⁺). HR-MS (ESI+, 100% CH₃CN) calcd for C₄₄H₃₁N₄O (MH⁺) 631.2498, found 631.2440.

meso-Tetra(4-chlorophenyl)porphyrin-*N*-oxide (3b). Prepared from 2b (2.6 × 10⁴ mol) in 33-39% yields, according to the general procedure; reaction time 8 h; recovery of 20-30% starting material. R_f (silica – CH₂Cl₂) = 0.29. ¹H NMR (400 MHz, CD₂Cl₂, δ): 9.00 (br s, 2H), 8.85 (br s, 2H), 8.67 (s, 2H), 8.21 (d, ³*J* = 8.1 Hz, 4H), 8.14 (d, ³*J* = 8.1 Hz, 4H), 7.80 (d, ³*J* = 8.3 Hz, 4H), 7.76 (d, ³*J* = 8.3 Hz, 4H), 7.58 (s, 2H), 1.05 (broad s, exchangeable with D₂O, 2H); ¹³C NMR (100 MHz, CD₂Cl₂, δ): 157.2, 141.8, 141.1, 139.7, 139.5, 139.0, 137.4, 136.4, 136.0, 135.7, 134.9, 130.3, 129.9, 128.1, 127.6, 121.9, 120.5, 119.0. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ε) 417 (5.20), 543 (3.80), 595 (3.87), 683 (3.38). UV-vis (CH₂Cl₂ + 2% TFA) λ_{max} (nm) [log ε] 440 (5.51), 594 (3.66), 653 (4.55). MS (ESI+, 100% CH₃CN, 30 V cone voltage) *m/z* 768 (MH⁺). HR-MS (ESI+, 100% CH₃CN) calculated for C₄₄H₂₇Cl₄N₄O (MH⁺) 769.0918, found 769.0898.

meso-**Tetra**(4-*tert*-**butylphenyl)porphyrin**-*N*-**oxide** (**3c**). Prepared from **2c** (2.40 × 10⁴ mol) in 34% yields, according to the general procedure; reaction time 48 h; recovery of 20-30% starting material. R_f (silica – CH_2Cl_2) = 0.19. ¹H NMR (400 MHz, CH_2Cl_2/CD_2Cl_2 , δ): 9.02 (br s, 2H), 8.87 (d, ³*J* = 4 Hz, 2H), 8.69 (s, 2H), 8.19 (br s, 4H), 8.12 (d, ³*J* = 7.7 Hz, 4H), 7.82 (d, ³*J* = 8 Hz, 4H), 7.77 (d, ³*J* = 8 Hz, 4H), 7.52 (broad s, 2H), 1.61, 1.60 (overlapping s, 36H), 1.0 (broad s, exchangeable with D₂O, 2H). ¹³C NMR (100 MHz, CD_2Cl_2 , δ): 157.9, 151.9, 151.3, 139.7, 139.2, 136.3, 135.9, 135.2, 129.9, 129.6, 124.8, 124.3, 123.0, 120.1, 35.39, 35.37, 32.0, 31.9 (the compound possessed only marginal solubility for an optimally resolved ¹³C NMR over the time course of 15 h). UV-vis (CH_2Cl_2) λ_{max} [nm] (log ε) 419 (5.35), 546 (3.90), 595 (4.07), 680 (3.59). UV-vis ($CH_2Cl_2 + 2\%$ TFA) λ_{max} (nm) [log ε] 445 (5.64), 665 (4.76). MS (ESI+, 100% CH_3CN , 30 V cone voltage) *m*/*z* 855 (MH⁺). HR-MS (ESI+, 100% CH_3CN) calculated for $C_{69}H_{63}N_4O$ (MH⁺) 855.5005, found 855.4944. *meso*-**Tetra**(**3**,**4**,**5**-trimethoxyphenyl)porphyrin-*N*-oxide (**3d**). Prepared from **2d** (2.00 × 10⁻⁴ mol) in 33-48% yields, according to the general procedure; reaction time 48 h; isolated by preparative plate chromatography; recovery of 30-40% starting material. R_f (silica – CH₂Cl₂/3% MeOH) = 0.18. ¹H NMR (400 MHz, CH₂Cl₂/CD₂Cl₂, δ): 9.13 (d, ³*J* = 6.4 Hz, 2H), 8.97 (d, ³*J* = 6.4 Hz, 2H), 8.79 (s, 2H), 7.68 (s, 2H), 7.56 (s, 4H), 7.46 (s, 4H), 4.08 (s, 12H), 4.00 (s, 12H), 3.99 (s, 12H), 0.9 (broad s, exchangeable with D₂O, 2H). ¹³C NMR (100 MHz, CH₂Cl₂/CD₂Cl₂, δ): 157.8, 152.2, 151.7, 141.6, 139.1, 138.8, 138.5, 138.3, 137.7, 136.5, 135.6, 129.8, 129.4, 122.4, 119.9, 119.7, 114.4, 113.3, 61.0, 56.6, 56.5. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ε) 426 (5.19), 546 (3.86), 595 (3.91), 688 (3.45). UV-vis (CH₂Cl₂ + 2% TFA) λ_{max} [nm] (log ε) 464 (5.22), 668 (3.58). MS (ESI+, 100% CH₃CN, 30 V cone voltage) *m*/*z* 991 (MH⁺). HR-MS (ESI+, 100% CH₃CN) calculated for C₅₆H₅₅N₄O₁₃ (MH⁺) 991.3766, found 991.3747.

meso-Tetra(2,3,4,5,6-pentafluorophenyl)porphyrin-*N*-oxide (3e). Prepared from 2e (1.2 × 10⁴ mol) in 14% yield, according to the general procedure; reaction time 72 h; recovery of ~50% starting material. R_f (silica-CH₂Cl₂/hexanes-2:1) = 0.55. ¹H NMR (400 MHz, CD₂Cl₂, δ): 8.98 (d, 2H, ³*J* = 4 Hz), 8.93 (d, 2H, ³*J* = 4Hz), 8.76 (s, 2H), 7.85 (s, 2H), NH could not be distinguished; ¹³C NMR (100 MHz, CD₂Cl₂, δ): 158.5, 147.8, 145.3, 140.6, 138.9, 138.7, 136.5, 135.8, 129.7, 129.5, 120.0, 115.8, 114.2, 105.5, 103.1. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ε) 411 (5.12), 463 (4.24), 541 (3.77), 601 (3.30). UV-vis (CH₂Cl₂ + 2% TFA) λ_{max} [nm] (log ε) 408 (5.23), 467 (4.10), 532 (3.54), 567 (3.77). HR-MS (ESI+, 100% CH₃CN) calculated for C₄₄H₁₀F₂₀N₄O (MH⁺) 991.0614, found 991.0610.

meso-Tetraphenyl-2,3-*cis*-dimethoxychlorin (4). [meso-Tetraphenyl-cis-2,3-dihydroxychlorinato]Zn(II)⁸ (75 mg, 1.05×10^{-4} mol) was, under dry N₂, dissolved in dry THF (35 mL), and a four-fold molar excess of NaH (60% emulsion in oil) was added in portions. After stirring for 5 min at ambient temperature, CH₃I (16.4 µL, ~2.5 equiv) was added by syringe and the reaction was allowed to stir for 24 h. TLC showed that all starting material was converted to one major product of lesser polarity. The reaction mixture was carefully quenched by dropwise addition of H₂O. After all H₂-evolution had ceased, CHCl₃ (50 mL) and H₂O (50 mL) was added. The organic phase was isolated, and shaken with aq 4 M HCl (50 mL), followed by several washings with H₂O and, finally, dilute aq NaHCO₃. The organic phase was evaporated to dryness and the residue was chromatographed (silica - CH₂Cl₂) to provide 4 in 90% yield as purple powder. R_f (silica – CH₂Cl₂) = 0.29. ¹H-NMR (400 MHz, CDCl₃, δ): 8.66 (d, ³J = 4.8 Hz, 2H), 8.53 (s, 2H), 8.36 (d, ${}^{3}J = 4.8$ Hz, 2H), 8.18-8.12 (two overlapping br d, ${}^{3}J = 7.2$ Hz, 6H), 7.86 (d, ${}^{3}J = 6.0, 2H$), 7.63-7.76 (m, 12H), 6.06 (s, 2H), 3.02 (s, 6H), -1.88 (br s, exchangeable with D₂O, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 160.4, 153.2, 142.0, 141.9, 140.6, 135.7, 134.1, 134.0, 132.7, 131.6, 128.0, 127.7, 127.4, 127.2, 127.1, 126.8, 124.6, 122.7, 114.0, 81.8, 58.4. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ϵ) 414 (5.15), 517 (4.08), 544 (4.05), 593 (3.75), 644 (4.27). UV-vis (CH₂Cl₂/2% TFA) λ_{max} [nm] (log ϵ) 433 (5.09), 584 (3.97), 639 (4.23). MS (CI) *m*/*z* 676 (M⁺), 645 (M⁺- OCH₃), 629 (M⁺- OC₂H₇), 614 (M⁺- O₂C₂H₆), 601. HR-MS (ESI+, 100% CH₃CN) calculated for $C_{46}H_{37}N_4O_2$ (MH⁺) 677.2911, found 677.2903.

meso-**Tetraphenyl-2,3**-*cis*-dimethoxychlorin-22-*N*-oxide (5). Prepared from 4 (1.4×10^{-5} mol) in 41% yields, according to the general procedure using 1 equiv MTO; reaction time 2 h,

^{8.} Brückner, C.; Rettig, S. J.; Dolphin, D. J. Org. Chem. 1998, 63, 2094-2098.

isolation by preparative plate chromatography; recovery of ~40% starting material. R_f (silica – $CH_2Cl_2/3\%$ MeOH) = 0.30. ¹H NMR (400 MHz, CD_2Cl_2 , δ): 8.77 (br s, 2H), 8.31 (d, ${}^{3}J$ = 4.0 Hz, 2H), 8.21 (broad s, 4H), 8.12 (d, ${}^{3}J$ = 8 Hz, 2H), 7.88 (d, ${}^{3}J$ = 8 Hz, 2H), 7.8-7.62 (m, 12H), 7.43 (s, 2H), 6.00 (s, 2H), 3.00 (s, 6H); inner NH signals not traced. ¹³C NMR (100 MHz, CD_2Cl_2 , δ): 164.2, 142.6, 142.0, 141.3, 139.9, 136.6, 135.8, 134.7, 132.2, 130.1, 128.8, 127.9, 127.8, 127.7, 127.6, 127.57, 121.8, 118.5, 116.5, 82.4, 58.8. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ε) 410 (5.12), 555 (3.7), 593 (3.82), 648 (sh). UV-vis CH₂Cl₂ + 2% TFA) λ_{max} [nm] (log ε) 419 (5.02), 439 (5.02), 577 (3.9), 626 (4.94). MS (ESI+, 100% CH₃CN, 30 V cone voltage) *m/z* 693 (MH⁺). HR-MS (ESI+, 100% CH₃CN) calculated for C₄₆H₃₇N₄O₃ (MH⁺) 693.2866, found 693.2901.

meso-**Tetraphenyl-2-oxa-3-oxoporphyrin-22**-*N*-**oxide** (7). Prepared from **6** (3.1×10^{-5} mol) in 45% yields scale, according to the general procedure using 1 equiv of MTO; reaction time 2 h; isolation by preparative plate chromatography; recovery of 30% starting material. R_f (silica – CH₂Cl₂) = 0.29. ¹H NMR (400 MHz, CH₂Cl₂/CD₂Cl₂, δ): 8.86 (d ³*J* = 4.8 Hz, 1H), 8.76 (d, ³*J* = 4.8 Hz, 1H), 8.65 (d, ³*J* = 4.8 Hz, 1H), 8.46 (d, ³*J* = 4.8 Hz, 1H), 8.21-8.15 (m, 4H), 8.12-8.07 (m, 2H), 7.98-7.94 (m, 2H), 7.81-7.71 (m, 12H), 7.41-7.36 (m, 2H), 2.6 (broad s, exchangeable with D₂O, 1H), 2.2 (broad s, exchangeable with D₂O, 1H). ¹³C NMR (100 MHz, CH₂Cl₂/CD₂Cl₂, δ): 167.7, 156.0, 142.1, 141.8, 140.8, 140.4, 140.2, 140.0, 138.9, 138.7, 137.9, 136.8, 135.6, 135.5, 134.1, 133.1, 132.7, 131.1, 129.6, 129.4, 129.2, 128.9, 128.7, 128.4, 128.3, 127.9, 127.8, 127.7, 127.6, 127.4, 125.2, 120.5, 120.3, 120.2, 119.7, 104.9. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ε) 416 (5.25), 554 (3.78), 599 (3.98). UV-vis (CH₂Cl₂ + 2% TFA) λ_{max} [nm] (log ε) 425 (5.36), 556 (sh), 603 (4.15), 579 (sh), 633 (3.71). MS (ESI+, 100% CH₃CN, 30 V cone voltage) *m/z* 648 (MH⁺). HR-MS (ESI+, 100% CH₃CN) calculated for $C_{43}H_{29}N_4O_3$ (MH⁺) 649.2240, found 649.2229.

meso-Tetraphenyl-21,23-dithiaporphyrin-21-*S*-oxide (9). Prepared from 8 (3.7×10^{-5} mol) in 20% yields, according to the general procedure using 1 equiv MTO; reaction time 3 h; isolation by preparative plate chromatography; recovery of ~50% starting material. R_f (silica – CH₂Cl₂/3% MeOH) = 0.14. ¹H NMR (400 MHz, CD₂Cl₂, δ): 9.45 (s, 2H), 9.30 (s, 2H), 8.40 (d, ³*J* = 4.1 Hz, 2H), 8.29 (d, ³*J* = 4.1 Hz, 2H), 8.24 (broad s, 3H), 8.18 (broad s, 3H), 7.86-7.79 (broad s, 12H). ¹³C NMR (100 MHz, CD₂Cl₂, δ): 160.4, 155.6, 150.5, 148.8, 141.0, 140.1, 140.0, 139.4, 136.5, 136.4, 135.6, 134.7, 134.5, 134.2, 134.1, 133.3, 128.6, 128.6, 128.1, 127.6, 127.5. UV-vis (CH₂Cl₂) λ_{max} [nm] (log ε) 390 (sh), 453 (4.83), 538 (3.97), 576 (3.68), 769 (3.40). UVvis (CH₂Cl₂ + 2%) λ_{max} [nm] (log ε) 463 (4.86), 499 (4.64), 563 (3.72), 648 (3.85), 778 (3.93). MS (ESI+, 100% CH₃CN, 30 V cone voltage) *m*/*z* 665 (MH⁺). HR-MS (ESI+, 100% CH₃CN) calculated for C₄₄H₂₉N₂OS₂ (MH⁺) 665.1721, found 665.1745.

meso-Tetratolyl-21,23-dithia-7,8-diethoxychlorin-21-S-oxide (11A and 11B). Prepared from 10 (1.9×10^{-5} mol scale) in 20% yield each, according to the general procedure using 1.0 equiv MTO; reaction time 1.5 h; isolation by preparative plate chromatography (silica-CH₂Cl₂/3% MeOH); 40% recovered starting material. **Isomer I** (no assignment whether this isomer is 11A or 11B): R_f (silica – CH₂Cl₂/5% MeOH) 0.56. ¹H NMR (400 MHz, CD₂Cl₂, δ): 9.37 (d, ³J = 5.6 Hz, 1H), 9.13 (d, ³J = 5.0 Hz, 1H), 9.04 (d, ³J = 5.6 Hz, 1H), 8.76 (d, ³J = 5.0 Hz, 1H), 8.25 (d, ³J = 4.3 Hz, 1H), 8.10 (d, ³J = 4.3 Hz, 1H), 8.05-7.96 (m, 4H), 7.85-7.79 (m, 4H), 7.6-7.54 (m, 8H), 5.84 (d, ³J = 6.6 Hz, 1H), 5.70 (d, ³J = 6.6 Hz, 1H), 3.10-3.04 (2s, 6H), 2.65-2.62 (3s, 12H). UV-vis (CH₂Cl₂) λ_{max} [nm] (rel. intensity) 436 (sh), 460 (1.00), 546 (0.16), 669 (0.02). HR-MS (ESI+, 100% CH₃CN) calculated for C₅₀H₄₃N₂O₃S₂ (MH⁺) 783.2715, found 783.2730. **Isomer II** (no assignment whether this isomer is **11A** or **11B**): R_f (silica – CH₂Cl₂/5% MeOH) 0.43. ¹H NMR (400 MHz, CD₂Cl₂, δ): 9.23 (d, ³J = 5.5 Hz, 1H), 9.12 (d, ³J = 4.7 Hz, 1H), 8.82 (d, ³J = 5.5 Hz, 1H), 8.75 (d, ³J = 4.7 Hz, 1H), 8.24 (d, ³J = 4.5 Hz, 1H), 8.14 (d, ³J = 4.5 Hz, 1H), 8.03 (broad s, 2 H), 7.98 (broad s, 2H), 7.65-7.46 (m. 12H), 5.99 (d, ³J = 6.5 Hz, 1H), 5.92 (d, ³J = 6.5 Hz, 1H), 3.05-3.04 (2s, 6H), 2.63-2.60 (3s, 12H). UV-vis (CH₂Cl₂) λ_{max} [nm] (rel. intensity) 460 (1.00), 544 (0.16), 667 (0.02). HR-MS (ESI+, 100% CH₃CN) calculated for C₅₀H₄₃N₂O₃S₂ (MH⁺) 783.2715, found 783.2704.

Figure S1. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C) of 3a.

Figure S2. ¹³C NMR (100 MHz, CD_2Cl_2 , D1 = 3 s, 25 °C) of 3a.

Figure S3. ¹H NMR (400 MHz, CD_2CI_2 , 25 °C) of 3b.

Figure S4. ¹³C NMR (100 MHz, CD_2Cl_2 , D1 = 1.5 s, 25 °C) of 3b.

Figure S5. ¹H NMR (400 MHz, CH_2Cl_2/CD_2Cl_2 , 25 °C) of **3c**. This compound is characterized by marginal solubility in CH_2Cl_2/CD_2Cl_2 .

Figure S6. ¹³C NMR (100 MHz, CD_2Cl_2 , D1 = 3 s, 25 °C) of **3c**. This compound is characterized by marginal solubility in CH_2Cl_2/CD_2Cl_2 .

Figure S7. ¹H NMR (400 MHz, CH₂Cl₂/CD₂Cl₂, 25 °C) of 3d.

Figure S8. ¹³C NMR (100 MHz, CH_2Cl_2/CD_2Cl_2 , D1 = 1.5 s, 25 °C) of **3d**.

S17

Figure S14. ¹³C NMR (100 MHz, CD_2CI_2 , D1 = 1.5 s, 25 °C) of 5.

S21

Figure S19. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C) comparison, low-field region, of **10** (bottom spectrum), **11-isomer I**, and **isomer II** (top spectra). Assignment of which of the two isomers corresponds to **11A** and which to **11B** is unknown.

Figure S20. UV-vis spectrum (CH_2CI_2) of 11-isomer I.

Figure S21. UV-vis spectrum (CH₂Cl₂) of 11-isomer II.

Figure S22. IR Spectrum (diffuse reflectance, neat) of 3a.

Figure S23. IR Spectrum (diffuse reflectance, neat) of 3b.

Figure S24. IR Spectrum (diffuse reflectance, neat) of 3c.

Figure S25. IR Spectrum (diffuse reflectance, neat) of 3d.

Figure S26. IR Spectrum (diffuse reflectance, neat) of 3e.

Figure S27. IR Spectrum (diffuse reflectance, neat) of 7.

Figure S28. IR Spectrum (diffuse reflectance, neat) of 9.

Figure S29. ORTEP Representation of the crystal structure of **3d**·CH₂Cl₂, 30% occupancy, under omission of the diosorder of the N-oxide unit showing also the numbering system used. Disordered solvent is omitted for clarity.

Black crystals of **3d** were obtained by vapor phase diffusion of petroleum ether 30-60 into a CH_2Cl_2 solution of **3d**. Diffraction data were collected on a Bruker AXS SMART APEX CCD diffractometer at 100(2) K using monochromatic Mo K α radiation with omega scan technique. Reflections were collected. The unit cell was determined, the data were collected, integrated corrected for absorption using the Apex2 suite of programs.¹ The structure was solved by direct methods and refined by full matrix least squares against F² against all reflections using SHELXTL.² All hydrogen atoms were placed in calculated positions and were isotropically refined with a displacement parameter of 1.2 times that of the adjacent carbon atom.

Note: The oxygen atom of the N-oxide moiety is disordered over two symmetry related positions and is thus only half occupied. This disorder extends to a neighboring methylene chloride solvate molecule, which is disordered in a 1:1 ratio over two positions. The carbon atoms of the CH_2Cl_2 molecules were constrained to have identical ADPs. For further details, see .cif file.

Table S1. Crystallographic data for 3d ·CH ₂ C	12.
---	-----

09mz003_0m

Crystal data	
Chemical formula	$C_{58}H_{56}Cl_4N_4O_{13}$
Moiety formula	$C_{56}H_{52}N_4O_{13} \cdot 2(CH_2Cl_2)$
M_r	1158.87
Cell setting, space group	Monoclinic, $P2_1/c$
Temperature (K)	100(2)
a, b, c (Å)	14.870(5), 17.144(6), 11.875(4)
α, β, γ (°)	90.00, 113.475(5), 90.00
$V(\text{\AA}^3)$	2776.75
Ζ	2
D_x (Mg m ⁻³)	1.386
Radiation type	Μο Κα
$\mu (mm^{-1})$	0.282
Crystal form, colour	plate, black
Crystal size (mm)	$0.55 \times 0.40 \times 0.04$
Data collection	
Diffractometer	Bruker AXS SMART APEX CCD
	diffractometer
Data collection method	ω scans
Absorption correction	Multi-scan (based on symmetry-rel

 T_{\min}

$T_{ m max}$		
No. of measured, independent and		
observed reflections		
Criterion for observed reflections		
R _{int}		
θ_{\max} (°)		

diffractometer				
ω scans				
Multi-scan (based on symmetry-related				
measurements)				
0.497				
0.989				
15185, 5277, 2282				
$I > 2\sigma(I)$				
0.0956				
25.67				

Refinement

F^2
0.0823, 0.2237, 1.045
5277 reflections
388
0
Constrained to parent site
Calculated $w = 1/[\sigma^2(F_o^2) + (0.0939P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
<0.0001
0.529, -0.407

- (1) Bruker (2007). Apex2 v2.1-4. Bruker AXS Inc, Madison (WI), USA.
- (2) Bruker Advanced X-ray Solutions SHELXTL (Version6.10), Bruker AXS Inc., Madison, WI, USA, 2000.