Supporting Information for "Asymmetric Synthesis of Neolignans (-)-epiConocarpan and (+)-Conocarpan via Rh(II)-Catalyzed C-H Insertion Process and Revision of the Absolute Configuration of (-)-epi-Conocarpan"

Yoshihiro Natori, ${ }^{\dagger}$ Hideyuki Tsutsui, ${ }^{\dagger}$ Naoki Sato, ${ }^{\dagger}$ Seiichi Nakamura, ${ }^{\dagger}$ Hisanori Nambu, ${ }^{\dagger}$ Motoo Shiro, ${ }^{\ddagger}$ and Shunichi Hashimoto* ${ }^{\dagger}$

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and Rigaku Corporation, Akishima, Tokyo 196-8666, Japan.

Table of Contents

General Methods S2

Experimental Section S3-S12
X-ray Structures of 8a and $\mathbf{1 6}$ S13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra \quad S14-S45
Copy of Chromatogram S46-S49
CD Spectrum of $2 \quad$ S50

[^0]
Experimental Section

General. Melting points were determined on a capillary melting point apparatus and are uncorrected. Optical rotations were measured on a digital polarimeter at the sodium D line (589 nm). IR spectra were recorded on a FT/IR spectrometer and absorbance bands are reported in wavenumber $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 270 MHz or a 400 MHz spectrometer. Chemical shifts are reported relative to internal standard (tetramethylsilane at $0.00 \mathrm{ppm}, \mathrm{CDCl}_{3}$ at 7.26 ppm , or $\mathrm{CD}_{3} \mathrm{OD}$ at 3.31 ppm). Data are presented as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), coupling constant and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 67.5 MHz , a 100 MHz or a 125 MHz spectrometer. The following internal references were used $\left(\mathrm{CDCl}_{3}\right.$ at 77.0 ppm or $\mathrm{CD}_{3} \mathrm{OD}$ at 49.0 ppm). Column chromatography was carried out on silica gel 60 N ($63-210 \mathrm{mesh}$). Analytical thin layer chromatography (TLC) was carried out on silica gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with UV light, and anisaldehyde or phosphomolybdic acid stain solution followed by heating. Analytical high performance liquid chromatography (HPLC) was performed on an intelligent HPLC pump with intelligent UV/VIS detector. Detection was performed at 254 nm . Chiralcel OD-H, OJ-H, Chiralpak AD-H and IA columns ($0.46 \mathrm{~cm} \times 25$ cm) were used.
All non-aqueous reactions were carried out in flame-dried glassware under Ar atmosphere unless otherwise noted. Reagents and solvents were purified by standard means. Dehydrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF were purchased from a commercial source. $4 \AA$ molecular sieves were used after dried ($150{ }^{\circ} \mathrm{C}, 1 \mathrm{mmHg}, 12 \mathrm{~h}$). Methyl 2-(5-bromo-2-hydroxyphenyl)acetate (11) ${ }^{1}$, [(4bromomethyl)phenoxy]triisopropylsilane (12) ${ }^{2}$, 3,3-diethylpentanoic acid (14) ${ }^{3}$ and (S)-4-benzyloxazolidin-2-one, ${ }^{4}$ were prepared according to literature procedures.

[^1]
I. Preparation of $\mathbf{R h}_{2}\left(\mathbf{S}\right.$-PTTEA) $\mathbf{4}_{\mathbf{4}}$ (3b)

2-Azido-3,3-diethylpentanoic acid (15)

Phosphorus trichloride ($0.50 \mathrm{~mL}, 5.67 \mathrm{mmol}$) was added to a mixture of 3,3-diethylpentanoic acid ($\mathbf{1 4})^{3}(15.0 \mathrm{~g}, 94.8 \mathrm{mmol})$ and bromine $(5.58 \mathrm{~mL}$, 114 mmol). After stirring at $50^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was evaporated in vacuo to furnish the

15 crude product (24.5 g), which was used without further purification.
$\mathrm{NaN}_{3}(18.5 \mathrm{~g}, 284 \mathrm{mmol})$ was added to a solution of the crude product in DMSO (75 mL), and the whole was heated at $90^{\circ} \mathrm{C}$ for 2 h . After cooling, the reaction mixture was poured into water and acidified with 10% aqueous HCl . The solution was extracted with EtOAc (3×150 mL) and washed with brine ($2 \times 70 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (18.2 g), which was purified by column chromatography (silica gel $150 \mathrm{~g}, 10: 1 \rightarrow 5: 1$ hexane/EtOAc) to provide carboxylic acid $\mathbf{1 5}$ $(16.1 \mathrm{~g}, 85 \%)$ as a colorless oil: $R_{f} 0.58$ ($5: 1$ benzene/Et ${ }_{2} \mathrm{O}$); IR (film) $v 2971,2106,1711,1458$, $1416 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 1.40-1.55(\mathrm{~m}, 6 \mathrm{H}), 4.03(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.0\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right), 43.1(\mathrm{C}), 68.5(\mathrm{CH}), 174.7(\mathrm{C})$; HRMS (FAB) calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 222.1218, found 222.1212.
($4 S, 2^{\prime} S$)-2'-Azido- $\mathbf{3}^{\prime}, 3^{\prime}$ 'diethylpentanoyl-4-benzyloxazolidin-2-one (16) and (4S, $\mathbf{2}^{\prime} R$)-2'-azido- $\mathbf{3}^{\prime}, \mathbf{3}^{\prime}$-diethylpentanoyl-4-benzyloxazolidin-2-one (17)

Oxalyl chloride ($4.3 \mathrm{~mL}, 50.3 \mathrm{mmol}$) and DMF (0.1 mL , 1.3 mmol) were added to a solution of carboxylic acid $\mathbf{1 5}$ ($6.68 \mathrm{~g}, 33.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was evaporated in vacuo to furnish the crude product (7.5 g), which was used without further purification.
$n-B u L i(1.59 \mathrm{M}$ solution in hexane, $21.1 \mathrm{~mL}, 33.5 \mathrm{mmol}$)

16

17 was added to a solution of (S)-4-benzyloxazolidin-2-one ${ }^{4}(5.94 \mathrm{~g}, 33.5 \mathrm{mmol})$ in THF (45 mL) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . A solution of the crude acid chloride in THF (15 mL) was added to the mixture at $-78{ }^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the mixture was poured into a two-layer mixture of $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and 5% aqueous $\mathrm{HCl}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The aqueous layer was separated and extracted with EtOAc (120 mL). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine $(2 \times 40 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (11.4 g), which was purified by column chromatography (silica gel 300 g , 15:1 $\rightarrow 10: 1$ hexane/EtOAc) to provide less polar isomer $17(5.18 \mathrm{~g}, 43 \%)$ as colorless oil and more polar isomer $16(5.30 \mathrm{~g}, 44 \%)$ as a white solid. 16: $R_{f} 0.50$ ($2: 1$ hexane/EtOAc); mp
$153.0-153.5^{\circ} \mathrm{C}$ (hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{24}+32.2\left(c 1.10, \mathrm{CHCl}_{3}\right.$); IR (film) $v 2968,2101,1780$, $1704,1455,1388 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 1.52(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 6 \mathrm{H}$), 2.87 (dd, $J=9.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (dd, $J=3.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17-4.25 (m, 2H), 4.69 (ddd, $J=3.2,9.5,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.1\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 44.0(\mathrm{C}), 55.9(\mathrm{CH}), 63.6(\mathrm{CH}), 66.1\left(\mathrm{CH}_{2}\right), 127.5$ $(\mathrm{CH}), 129.0(\mathrm{CH}), 129.4(\mathrm{CH}), 134.8(\mathrm{C}), 153.1(\mathrm{C}), 169.4(\mathrm{C})$; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 381.1903, found 381.1882. 17: $R_{f} 0.56$ (2:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{24}$ +52.1 (c 1.15, CHCl_{3}); IR (film) $v 2971,2103,1782,1705,1456,1389 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.45-1.66(\mathrm{~m}, 6 \mathrm{H}), 2.63(\mathrm{dd}, J=10.5,13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{dd}, J=3.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.79$ (ddd, $J=3.5,10.5,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ $(\mathrm{s}, 1 \mathrm{H}), 7.24-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.2\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right)$, $44.5(\mathrm{C}), 55.6(\mathrm{CH}), 63.5(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right), 127.5(\mathrm{CH}), 129.0(\mathrm{CH}), 129.3(\mathrm{CH}), 135.0(\mathrm{C})$, 153.3 (C), 169.5 (C); HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 381.1910, found 381.1882 .

The absolute configuration of $\mathbf{1 6}$ was established to be $\left(4 S, 2^{\prime} S\right)$ by a single-crystal X-ray analysis. Suitable crystals of $\mathbf{1 6}$ for X-ray crystallographic analysis were obtained by recrystallization from hexane/EtOAc.

(S)-Triethylalanine (18)

A 35% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(5.6 \mathrm{~mL}, 58.0 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.22 \mathrm{~g}$, $29.0 \mathrm{mmol})$ were added to a solution of $16(5.20 \mathrm{~g}, 14.5 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ $(3: 1,150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched by addition of 3 M aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ and saturated aqueous NaHCO_{3}

18 $(200 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the water layer was acidified with 10% aqueous HCl . The solution was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ and washed with brine $(2 \times 50 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (2.32 g), which was used without further purification.
$10 \% \mathrm{Pd} / \mathrm{C}(120 \mathrm{mg})$ was added to a solution of the crude product in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(2: 1,12 \mathrm{~mL})$, and the resulting mixture was stirred vigorously under 1 atm of hydrogen at $23{ }^{\circ} \mathrm{C}$ for 20 h . The catalyst was filtered through a Celite pad, and the filtrate was evaporated in vacuo to furnish the crude product $(2.4 \mathrm{~g})$. The residue was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3: 1,20 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$. The white solid formed at $23{ }^{\circ} \mathrm{C}$ after standing for 48 h , and were collected by suction, washed with ice-cold $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(5: 1,6 \mathrm{~mL})$ and dried in vacuo to give 18 (1.76 g, 70\%): $R_{f} 0.50$ (19:1 $\mathrm{EtOH} / 15 \%$ aqueous $\left.\mathrm{NH}_{3}\right) ; \mathrm{mp}>250{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+12.2(c 0.1, \mathrm{MeOH}) ;$ IR $(\mathrm{KBr}) v$ $3527,3120,2967,1638,1603,1526 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $9 \mathrm{H}), 1.52(\mathrm{dq}, J=7.3,14.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.4\left(\mathrm{CH}_{3}\right)$, $27.0\left(\mathrm{CH}_{2}\right), 41.5(\mathrm{C}), 61.1(\mathrm{CH}), 173.4(\mathrm{C})$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 174.1494, found 174.1485.

N-Phthaloyl-(S)-triethylalanine (19)

Triethylamine ($173 \mathrm{mg}, 1.71 \mathrm{mmol}$) was added to the mixture of $(S) \mathbf{- 1 8}$ ($740 \mathrm{mg}, 4.27 \mathrm{mmol}$), phthalic anhydride ($633 \mathrm{mg}, 4.27 \mathrm{mmol}$) and toluene (40 mL). The mixture was heated to reflux, while the solvent was distilled off at a rate such that $c a .6 \mathrm{~mL}$ of the solvent was removed per

19 hour. After heating the mixture for 2.5 h , the mixture was cooled to $23{ }^{\circ} \mathrm{C} .5 \%$ aqueous $\mathrm{HCl}(10$ mL) was added and resulting solution was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 15 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (1.33 g), which was purified by column chromatography (silica gel $60 \mathrm{~g}, 100: 1 \rightarrow 50: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$) to provide $\mathbf{1 9}(1.19 \mathrm{~g})$ as a white solid. The solid was dissolved in hexane/EtOAc (5:1, 12 mL) at $60^{\circ} \mathrm{C}$. Colorless needles formed at $23{ }^{\circ} \mathrm{C}$ after standing overnight, and were collected by suction, washed with ice-cold hexane/EtOAc (5:1, 4 mL) and dried in vacuo to give 19 ($1.06 \mathrm{~g}, 82 \%$): $R_{f} 0.43$ (10:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$); mp $131.0-131.5^{\circ} \mathrm{C}$ (hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{22}-12.5$ (c 1.01 , EtOH); IR (KBr) v $2967,1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}), 1.57(\mathrm{dq}, J=7.3,14.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.75(\mathrm{dq}, J=7.3,14.6 \mathrm{~Hz}, 3 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.89(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.4\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 43.7(\mathrm{C}), 57.0(\mathrm{CH}), 123.5(\mathrm{CH}), 131.6$ (C), 134.2 (CH), 168.3 (C), 174.8 (C); HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 304.1549, found 304.1577. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 67.31 ; H, 6.98; N, 4.62. Found: C, 67.28; H, 7.01; N, 4.55.

The enantiopurity of $\mathbf{1 9}$ was determined to be $>99 \%$ ee by comparison of HPLC retention time with the racemic sample after conversion to the corresponding methyl ester obtained by the treatment of $\mathbf{1 9}$ with diazomethane in ether [Chiralcel OJ-H ($9: 1$ hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}($ major $)=8.3 \mathrm{~min}$ for $(S) \mathbf{- 1 9}, t_{\mathrm{R}}($ minor $)=11.6 \mathrm{~min}$ for $\left.(R)-\mathbf{1 9}.\right]$

Dirhodium(II) tetrakis[N-phthaloyl-(S)-triethylalaninate] (3b)

A mixture of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{MeOH}(202 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $19(606 \mathrm{mg}$, 2.0 mmol) in chlorobenzene (30 mL) was heated at reflux with vigorous stirring, while the solvent was distilled off at a rate such that $c a .3 \mathrm{~mL}$ of the solvent was removed per hour. After 3 h , the remaining solvent was removed in vacuo, and the residue was dissolved in EtOAc (30 mL). The resulting solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5$

3b mL) and brine ($2 \times 5 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished a green solid (798 mg), which was purified by column chromatography (silica gel $40 \mathrm{~g}, 2: 1$ hexane/EtOAc) to provide a green solid (680 mg). The solid was dissolved in $\mathrm{EtOAc} /$ hexane $(3: 2,25 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$. Green needles formed at $23^{\circ} \mathrm{C}$ after standing overnight, and were collected by suction, washed with ice-cold hexane/EtOAc ($3: 1,4 \mathrm{~mL}$) and dried in vacuo to give 3b ($560 \mathrm{mg}, 88 \%$): $R_{f} 0.53$ ($1: 1$ hexane $/ \mathrm{EtOAc}$); $\mathrm{mp}>280^{\circ} \mathrm{C}$ (hexane/EtOAc);
$[\alpha]_{\mathrm{D}}{ }^{22}+35.3\left(c 0.052, \mathrm{CDCl}_{3}\right) ;$ IR $(\mathrm{KBr}) v 3432,1967,1884,1780,1721,1607,1381 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 36 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.45-1.71(\mathrm{~m}, 24 \mathrm{H})$, $2.02(\mathrm{~s}, 6 \mathrm{H}), 4.09(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.15(\mathrm{~s}, 4 \mathrm{H}), 7.60-7.73(\mathrm{~m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.6\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right), 43.3(\mathrm{C}), 58.9(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 122.8$ $(\mathrm{CH}), 123.5(\mathrm{CH}), 132.1(\mathrm{C}), 133.3(\mathrm{CH}), 133.7(\mathrm{CH}), 167.5(\mathrm{C}), 168.7(\mathrm{C}), 171.9(\mathrm{C}), 187.7$ (C); HRMS (FAB) calcd for $\mathrm{C}_{68} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Rh}_{2}\left(\mathrm{M}^{+}\right)$1414.3679, found 1414.3680. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Rh}_{2} \cdot 2 \mathrm{EtOAc}: \mathrm{C}, 57.36$; H, 6.08; N, 3.52. Found: C, 57.14; H, 6.03; N, 3.78.
The enantiopurity of the methyl ester of $\mathbf{1 9}$ recovered from aqueous NaHCO_{3} layers was determined to be $>99 \%$ ee by HPLC, indicating that no racemization occurred during the ligand exchange reaction.

II. Asymmetric Synthesis of (-)-epi-Conocarpan (2) and (+)-Conocarpan (1)

Methyl 2-[5-bromo-2-(4-triisopropylsilyloxybenzyloxy)phenyl]acetate (13)

A solution of [(4-bromomethyl)phenoxy]triisopropylsilane $(\mathbf{1 2})^{2}(1.10 \mathrm{~g}, 3.20 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added to a suspension of methyl 2-(5-bromo-2-hydroxyphenyl)acetate (11) ${ }^{1}(654 \mathrm{mg}, 2.67 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(922 \mathrm{mg}, 6.67 \mathrm{mmol})$ in THF (4 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 30 h , the reaction was quenched with water $(10 \mathrm{~mL})$. The mixture was

13 extracted with EtOAc (50 mL), and the combined organic layer was washed with brine (2×15 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (1.5 g), which was purified by column chromatography (silica gel $70 \mathrm{~g}, 40: 1$ hexane/EtOAc) to provide ester $\mathbf{1 3}(925 \mathrm{mg}, 68 \%)$ as a white solid: $R_{f}=0.63$ (4:1 hexane/EtOAc); mp 77.5-78.0 ${ }^{\circ} \mathrm{C}$ (hexane/EtOAc); IR (KBr) $v 1733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.21-1.30(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H})$, $6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.7(\mathrm{CH}), 18.0\left(\mathrm{CH}_{3}\right), 35.8\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 70.2\left(\mathrm{CH}_{2}\right), 112.7(\mathrm{C})$, $113.5(\mathrm{CH}), 119.8(\mathrm{CH}), 125.5(\mathrm{C}), 128.5(\mathrm{CH}), 128.7(\mathrm{C}), 131.0(\mathrm{CH}), 133.5(\mathrm{CH}), 155.7(\mathrm{C})$, 155.8 (C), 171.5 (C); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{SiBr}\left(\mathrm{M}^{+}\right) 506.1487$, found 506.1478. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{SiBr}$: C, 59.16; H, 6.95; Br, 15.74. Found: C, 59.37; H, 6.92; Br, 15.81.

Methyl 2-diazo-2-[5-bromo-2-(4-triisopropylsilyloxybenzyloxy)phenyl]acetate (9a)
A solution of ester $\mathbf{1 3}(1.30 \mathrm{~g}, 2.56 \mathrm{mmol})$ in THF (4 mL) was added to lithium bis(trimethylsilyl)amide (0.29 M in THF, 13.2 $\mathrm{mL}, 3.84 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , 2,2,2-trifluoroethyltrifluoroacetate ($0.55 \mathrm{~mL}, 4.10 \mathrm{mmol}$) was added in one portion. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , the

mixture was poured into a two-layer mixture of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and 5% aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The aqueous layer was separated and extracted with EtOAc (50 mL). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine (2 $\times 15 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (1.9 g), which was used without further purification.
A solution of methanesulfonyl azide ($929 \mathrm{mg}, 7.68 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added to a solution of the crude product and triethylamine ($1.3 \mathrm{~mL}, 9.33 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 24 h , the mixture was poured into a two-layer mixture of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and 5% aqueous $\mathrm{NaOH}(20 \mathrm{~mL})$. The aqueous layer was separated and extracted with EtOAc (50 $\mathrm{mL})$. The combined organic layer was washed with water (15 mL), saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(15 \mathrm{~mL})$ and brine $(2 \times 15 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (1.7 g), which was purified by column chromatography (silica gel $200 \mathrm{~g}, 30: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$) to provide α-diazo ester $9 \mathrm{a}(1.02 \mathrm{~g}, 75 \%$) as a yellow solid: $R_{f}=0.59$ ($4: 1$ hexane/EtOAc); mp $63.5-64.5^{\circ} \mathrm{C}$ (hexane/EtOAc); IR $\left(\mathrm{CHCl}_{3}\right) v 2108,1698$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 18 \mathrm{H}), 1.19-1.32(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $4.98(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (dd, $J=2.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.7(\mathrm{CH})$, $18.0\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 70.9\left(\mathrm{CH}_{2}\right), 113.5(\mathrm{C}), 113.6(\mathrm{CH}), 116.1(\mathrm{C}), 120.0(\mathrm{CH}), 127.9(\mathrm{C})$, $129.2(\mathrm{CH}), 130.6(\mathrm{CH}), 132.0(\mathrm{CH}), 153.3(\mathrm{C}), 156.1(\mathrm{C}), 166.0(\mathrm{C})$; HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiBrNa}\left(\mathrm{M}^{2} \mathrm{Na}^{+}\right) 555.1291$, found 555.1306. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiBr}$: C, 56.28; H, 6.23; N, 5.25; Br, 14.98. Found: C, 56.28; H, 6.15; N, 5.08; Br, 15.21.

(2R,3S)-5-Bromo-3-methoxycarbonyl-2-(4-triisopropylsilyloxyphenyl)-2,3-dihydrobenzo-

 furan (8a, Table 1, entry 8)$\mathrm{Rh}_{2}(\mathrm{~S} \text {-PTTEA })_{4}(\mathbf{3 b}) \cdot 2 \mathrm{EtOAc}(47.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 1$ $\mathrm{mol} \%)$ was added to a mixture of $9 \mathrm{a}(1.60 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(1.60 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$. After stirring at this temperature for 24 h , the $4 \AA \mathrm{MS}$ was filtrated
 through a Celite pad and the filtrate was concentrated in vacuo. The ratio of 8a/10a was determined to be $97: 3$ by ${ }^{1} \mathrm{H}$ NMR of the crude product. The residue $(1.7 \mathrm{~g})$ was purified by column chromatography (silica gel $90 \mathrm{~g}, 25: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$) to give $\mathbf{8 a}(1.21 \mathrm{~g}, 80 \%)$ as a white solid and 10a ($31.0 \mathrm{mg}, 2 \%$ yield, $6 \% \mathrm{ee}$) as a colorless oil. 8a: $R_{f}=0.50\left(6: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$; mp $62.0-63.0^{\circ} \mathrm{C}$ for 84% ee; $[\alpha]_{\mathrm{D}}{ }^{21}-31.4\left(c 1.15, \mathrm{CHCl}_{3}\right)$ for 84% ee; IR $\left(\mathrm{CHCl}_{3}\right) v 1738 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}), 1.20-1.29(\mathrm{~m}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 4.56$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33-7.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6(\mathrm{CH}), 17.9\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 53.6$ $(\mathrm{CH}), 86.1(\mathrm{CH}), 111.4(\mathrm{CH}), 112.8(\mathrm{C}), 119.7(\mathrm{CH}), 127.0(\mathrm{C}), 127.5(\mathrm{CH}), 128.9(\mathrm{C}), 129.0$ (CH), $132.3(\mathrm{CH}), 156.3$ (C), 159.6 (C), 169.7 (C); LRMS (EI) m/z 504 (M ${ }^{+}$), 463, 433, 407,

207, 134; HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{SiBr}\left(\mathrm{M}^{+}\right)$504.1331, found 504.1332.
The enantiomeric excess of $\mathbf{8 a}$ was determined to be 84% by HPLC with a Chiralcel OD-H column (100:1 hexane $/ i-\operatorname{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}($ major $)=20.6 \mathrm{~min}$ for $(2 R, 3 S)-\mathbf{8 a}, t_{\mathrm{R}}($ minor $)=$ 25.6 min for $(2 S, 3 R)-\mathbf{8 a}$.

Recrystallization was performed by dissolving $\mathbf{8 a}$ ($520 \mathrm{mg}, 1.03 \mathrm{mmol}, 84 \%$ ee) in hexane (5 $\mathrm{mL})-\mathrm{EtOAc}(0.2 \mathrm{~mL})$ at $40^{\circ} \mathrm{C}$. Colorless prisms formed at $-20^{\circ} \mathrm{C}$ after standing overnight, and were collected by suction, washed with ice-cold hexane (2 mL) and dried in vacuo to give enantiomerically pure $\mathbf{8 a}(106 \mathrm{mg}, 20 \%)$: $\mathrm{mp} 60.0-62.0{ }^{\circ} \mathrm{C}$ (hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}-38.7$ (c 1.11, CHCl_{3}); Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{SiBr}: \mathrm{C}, 59.40 ; \mathrm{H}, 6.58 ; \mathrm{Br}, 15.81$. Found: C, $59.11 ; \mathrm{H}$, $6.36 ; \mathrm{Br}, 16.11$. The enantiopurity of $\mathbf{8 a}$ was determined to be $>99 \%$ ee by HPLC analysis.
The preferred absolute configuration of $\mathbf{8 a}$ was established as $(2 R, 3 S)$ by a single-crystal X-ray analysis. Suitable crystals of $\mathbf{8 a}$ for X-ray crystallographic analysis were obtained by recrystallization from $i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$.

(2S,3S)-5-Bromo-3-methoxycarbonyl-2-(4-triisopropylsilyloxyphenyl)-2,3-dihydrobenzofuran (10a, Table 1, entry 2)

$\mathrm{Rh}_{2}(S-\mathrm{PTTL}) 4 \cdot 2 \mathrm{EtOAc}(1.42 \mathrm{mg}, 0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ was added to a solution of $\mathbf{9 a}(53.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ at $-23{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 0.5 h , the mixture was concentrated in vacuo. The ratio of
 8a/10a was determined to be $89: 11$ by ${ }^{1} \mathrm{H}$ NMR of the crude product. The residue (56 mg) was purified by column chromatography (silica gel $5 \mathrm{~g}, 25: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$) to give $\mathbf{8 a}$ ($31.8 \mathrm{mg}, 63 \%$ yield, 75% ee) as a white solid and $\mathbf{1 0 a}(4.4 \mathrm{mg}, 9 \%)$ as a colorless oil. 10a: $R_{f}=0.63$ (6:1 hexane/ $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}{ }^{23}+26.5\left(c 0.22, \mathrm{CHCl}_{3}\right)$ for 32% ee; IR (neat) $v 1744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.19-1.29(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.33(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.6(\mathrm{CH}), 17.9\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right)$, $55.3(\mathrm{CH}), 86.1(\mathrm{CH}), 111.4(\mathrm{CH}), 112.5(\mathrm{C}), 120.1(\mathrm{CH}), 126.2(\mathrm{C}), 127.1(\mathrm{CH}), 128.1(\mathrm{CH})$, 132.2 (C), 132.4 (CH), 156.4 (C), 158.4 (C), 170.7 (C); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{SiBr}$ $\left(\mathrm{M}^{+}\right) 504.1331$, found 504.1318. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{SiBr}$: C, $59.40 ; \mathrm{H}, 6.58$; $\mathrm{Br}, 15.81$. Found: C, 59.41; H, 6.44; Br, 16.05.
The enantiomeric excess of 10a was determined to be 32% by HPLC with a Chiralpak IA column (100:1 hexane $/ i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}($ minor $)=11.9 \mathrm{~min}$ for $(2 R, 3 R)-\mathbf{1 0 a}, t_{\mathrm{R}}$ (major) $=15.0 \mathrm{~min}$ for $(2 S, 3 S)-\mathbf{1 0 a}$.
The preferred absolute configuration of $\mathbf{1 0 a}$ was determined to be $(2 S, 3 S)$ by comparison of the sign of optical rotation with that of the compound obtained by epimerization of $\mathbf{8 a}$ at the C3 stereocenter.

Pyridine (0.5 mL) was added to ($2 R, 3 S$)-8a ($25.0 \mathrm{mg}, 0.495 \mathrm{mmol}, 84 \%$ ee) at $23{ }^{\circ} \mathrm{C}$. After stirring for 15 h at $50^{\circ} \mathrm{C}$, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The whole was extracted with EtOAc (6 mL), and the organic layer was washed with water (2 mL) and brine ($2 \times 2 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (38 mg), which was purified by column chromatography (silica gel $4 \mathrm{~g}, 25: 1$ hexane $/ \mathrm{Et}_{2} \mathrm{O}$) to provide $(2 R, 3 R)$ - $\mathbf{1 0 a}(23.0 \mathrm{mg}, 93 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-62.3$ (c $1.08, \mathrm{CHCl}_{3}$) for 84% ee.
(2R,3R)-[5-Bromo-2-(4-triisopropylsilyloxyphenyl)-2,3-dihydrobenzofuran-3-yl]methanol (20)

DIBAL-H (1.0 M in toluene, $5.2 \mathrm{~mL}, 5.2 \mathrm{mmol}$) was added to a solution of ester $\mathbf{8 a}(1.20 \mathrm{~g}, 2.38 \mathrm{mmol}, 84 \% \mathrm{ee})$ in THF $(24 \mathrm{~mL})$ at $-23{ }^{\circ} \mathrm{C}$. After stirring at $-23{ }^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched by addition of methanol (1 mL) and 1

M aqueous potassium sodium tartrate (30 mL). The resulting mixture was stirred vigorously at $23^{\circ} \mathrm{C}$ for 2 h , and the whole was extracted with $\operatorname{EtOAc}(2 \times 60 \mathrm{~mL})$. The organic layer was washed with brine $(2 \times 30 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (1.4 g), which was purified by column chromatography (silica gel $30 \mathrm{~g}, 15: 1$ hexane/EtOAc) to provide alcohol $20(1.10 \mathrm{~g}, 97 \%)$ as a colorless oil: $R_{f}=$ 0.38 (4:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{21}+25.1\left(c 1.33, \mathrm{CHCl}_{3}\right)$ for 84% ee; IR (neat) $v 3432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 18 \mathrm{H}), 1.18-1.31(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.51(\mathrm{~m}, 2 \mathrm{H})$, $3.72(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 12.5(\mathrm{CH}), 17.8\left(\mathrm{CH}_{3}\right), 48.3(\mathrm{CH}), 62.6\left(\mathrm{CH}_{2}\right), 86.5(\mathrm{CH}), 111.0(\mathrm{CH}), 112.4(\mathrm{C}), 120.0(\mathrm{CH})$, $127.2(\mathrm{CH}), 128.3(\mathrm{CH}), 128.7(\mathrm{C}), 130.9(\mathrm{C}), 131.4(\mathrm{CH}), 156.0(\mathrm{C}), 158.7(\mathrm{C}) ;$ HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{SiBr}\left(\mathrm{M}^{+}\right) 476.1382$, found 476.1382. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{SiBr}$: C , 60.37; H, 6.97; Br, 16.73. Found: C, 60.44; H, 6.89; Br, 16.88.
(2R,3R)-Methyl [5-bromo-2-(4-triisopropylsilyloxyphenyl)-2,3-dihydrobenzofuran-3-yl]-ptoluenesulfonate (21)
p-Toluenesulfonyl chloride ($658 \mathrm{mg}, 3.45 \mathrm{mmol}$) was added to a solution of alcohol $20(1.10 \mathrm{~g}, 2.30 \mathrm{mmol})$ in pyridine $(12 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 15 h , the reaction

21
was quenched with crushed ice. The whole was extracted with EtOAc $(2 \times 40 \mathrm{~mL})$. The organic layer was washed with 5% aqueous $\mathrm{HCl}(2 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (1.9 g), which was purified by column chromatography (silica gel $30 \mathrm{~g}, 12: 1$ hexane/EtOAc) to provide sulfonate $21(1.39 \mathrm{~g}, 96 \%)$ as a white solid: $R_{f}=0.47$ (4:1 hexane/EtOAc); mp $69.0-71.0^{\circ} \mathrm{C}$ for 84% ee; $[\alpha]_{\mathrm{D}}{ }^{21}+4.9(c 1.18$, CHCl_{3}) for 84% ee; IR (KBr) $v 1513,1472 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 18 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dt}, J=7.2,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dt}, J=2.8,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dt, $J=2.8,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.7(\mathrm{CH}), 18.0\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 69.2\left(\mathrm{CH}_{2}\right), 85.9(\mathrm{CH}), 111.2(\mathrm{CH})$, $112.7(\mathrm{C}), 120.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.6(\mathrm{CH}), 127.7(\mathrm{C}), 128.5(\mathrm{CH}), 129.1(\mathrm{C}), 129.7(\mathrm{CH})$, $132.0(\mathrm{CH}), 132.3$ (C), 144.7 (C), 156.2 (C), 158.6 (C); HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{SSiBr}$ $\left(\mathrm{M}^{+}\right) 630.1470$, found 630.1471 .
The enantiomeric excess of 21 was determined to be 84% by HPLC with a Chiralpak AD-H column ($50: 1$ hexane $/ i-\operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}($ major $)=11.1 \mathrm{~min}$ for $(2 R, 3 R)-\mathbf{2 1}, t_{\mathrm{R}}($ minor $)=$ 14.6 min for $(2 S, 3 S)-\mathbf{2 1}$.
$21\left(1.39 \mathrm{~g}, 84 \%\right.$ ee) was dissolved in hexane (15 mL)-EtOAc (2 mL) at $50^{\circ} \mathrm{C}$ and stored at $23{ }^{\circ} \mathrm{C}$ overnight. Colorless prisms ($238 \mathrm{mg}, 17 \%, 6 \%$ ee) are removed by filtration, and the filtrate was concentrated in vacuo to afford enantiomerically pure $21(1.15 \mathrm{~g}, 83 \%)$: mp $54.0-55.0^{\circ} \mathrm{C}$ (hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{22}+6.2\left(c 1.15, \mathrm{CHCl}_{3}\right.$); Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{SSiBr}$: C, 58.94; H, 6.22; S, 5.08; Br, 12.65. Found: C, 58.87; H, 6.09; S, 5.16, Br, 12.82. The enantiopurity of $\mathbf{2 1}$ was determined to be $>99 \%$ ee by HPLC analysis.
(2R,3R)-Methyl $\{5-[(E)$-propen-1-yl]-2-(4-triisopropylsilyloxyphenyl)-2,3-dihydrobenzo-furan-3-yl $\}$ - p-toluenesulfonate (22)
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(27.2 \mathrm{mg}, 3.88 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($329 \mathrm{mg}, 3.10 \mathrm{mmol}$) were added to a mixture of sulfonate 21 ($490 \mathrm{mg}, 0.776 \mathrm{mmol},>99 \%$ ee) and trans-1-propen-1ylboronic acid ($133 \mathrm{mg}, 1.55 \mathrm{mmol}$) in THF/ $\mathrm{H}_{2} \mathrm{O}(4: 1,8$
 mL), and the mixture was heated at reflux for 7 h . After cooling, the reaction mixture was extracted with EtOAc (30 mL), and the organic layer was washed with water $(2 \times 5 \mathrm{~mL})$ and brine $(2 \times 5 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (580 mg), which was purified by column chromatography (silica gel $20 \mathrm{~g}, 1: 2$ hexane/toluene) to provide sulfonate $22(350 \mathrm{mg}, 76 \%)$ as a colorless oil: $R_{f}=0.46$ (4:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{21}-39.8\left(c 0.90, \mathrm{CHCl}_{3}\right)$ for $>99 \%$ ee; IR (neat) $v 1609 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 18 \mathrm{H}), 1.21-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=1.7,6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.92(\mathrm{~m}, 3 \mathrm{H}) 5.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dq}, J=6.6,15.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.31(\mathrm{dd}, J=1.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.6(\mathrm{CH}), 17.9\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 69.5$ $\left(\mathrm{CH}_{2}\right), 85.6(\mathrm{CH}), 109.4(\mathrm{CH}), 120.0(\mathrm{CH}), 122.7(\mathrm{CH}), 123.4(\mathrm{CH}), 126.8(\mathrm{C}), 127.2(\mathrm{CH})$, $127.3(\mathrm{CH}), 127.7(\mathrm{CH}), 128.4(\mathrm{C}), 129.6(\mathrm{CH}), 130.4(\mathrm{CH}), 131.5(\mathrm{C}), 132.4(\mathrm{C}), 144.6(\mathrm{C})$, 156.1 (C), 158.5 (C); HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SSi}\left(\mathrm{M}^{+}\right) 592.2678$, found 592.2661. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SSi}$: C, 68.88; H, 7.48; S, 5.41. Found: C, 68.81; H, 7.56; S, 5.42.

(2R,3S)-3-Methyl-5-[(E)-propen-1-yl]-2-(4-triisopropylsilyloxyphenyl)-2,3-dihydrobenzofuran (23)

$\mathrm{LiBEt}_{3} \mathrm{H}$ (1.09 M solution in THF, $2.1 \mathrm{~mL}, 2.29 \mathrm{mmol}$) was added to a solution of sulfonate 22 ($340 \mathrm{mg}, 0.573$ $\mathrm{mmol},>99 \% \mathrm{ee})$ in THF (3.0 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring at $23^{\circ} \mathrm{C}$ for 10 h , the reaction was quenched by addition

23
of water (3 mL). The whole was extracted with EtOAc (30 mL), and the organic layer was washed with water (5 mL) and brine $(2 \times 5 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (379 mg), which was purified by column chromatography (silica gel $15 \mathrm{~g}, 30: 1$ hexane/EtOAc) to provide silyl ether 23 ($213 \mathrm{mg}, 88 \%$) as a colorless oil: $R_{f}=0.46$ (4:1 hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{21}-11.5\left(c 0.95, \mathrm{CHCl}_{3}\right)$ for $>99 \%$ ee; IR (neat) $v 1610 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $18 \mathrm{H}), 1.19-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{dd}, J=1.8,6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.58-3.66(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{dq}, ~ J=6.8,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=1.8,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.87(\mathrm{~m}, 3 \mathrm{H})$, 7.10-7.15 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.6(\mathrm{CH}), 16.7\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{CH}_{3}\right), 40.8(\mathrm{CH}), 87.9(\mathrm{CH}), 109.1(\mathrm{CH}), 119.7(\mathrm{CH}), 121.5(\mathrm{CH}), 122.9(\mathrm{CH}), 126.2(\mathrm{CH})$, 127.4 (CH), 130.4 (C), 130.7 (CH), 131.2 (C), 133.1 (C), 155.6 (C), 158.3 (C); HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right) 422.2641$, found 422.2643. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 76.72 ; \mathrm{H}$, 9.06. Found: C, 76.83; H, 9.22.

(2R,3S)-epi-Conocarpan (2)

TBAF (0.4 M solution in THF, $0.8 \mathrm{~mL}, 0.32 \mathrm{mmol}$) was added to a solution of silyl ether $23(90 \mathrm{mg}, 0.213 \mathrm{mmol}$, $>99 \%$ ee $)$ in THF/AcOH ($6 ; 1,1.4 \mathrm{~mL}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 8 h , the reaction was quenched with water (3

(-)-epi-conocarpan (2) $\mathrm{mL})$. The whole was extracted with $\operatorname{EtOAc}(30 \mathrm{~mL})$, and the organic layer was washed with water ($3 \times 5 \mathrm{~mL}$) and brine $(2 \times 5 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (141 mg), which was purified by column chromatography (silica gel $8 \mathrm{~g}, 8: 1$ hexane/EtOAc) to provide (-)-epi-conocarpan (2) $(53.3 \mathrm{mg}$, $94 \%)$ as a white amorphous solid: $R_{f} 0.37\left(3: 1\right.$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{21}-9.7(c 0.45, \mathrm{MeOH})$ for
$>99 \%$ ee $\left[\right.$ lit. $\left.{ }^{5}[\alpha]_{\mathrm{D}}{ }^{21}-33.3(c 0.03, \mathrm{MeOH})\right]$; IR (neat) $v 3388,2964,1614,1015 \mathrm{~cm}^{-1} ; \mathrm{CD}(c$ $0.003, \mathrm{MeOH}):[\theta]_{209} 0,[\theta]_{228}+54825,[\theta]_{241} 0,[\theta]_{262}-28671,[\theta]_{278} 0,[\theta]_{285}+6609\left[\right.$ lit. ${ }^{5} \mathrm{CD}(c$ $\left.0.003, \mathrm{MeOH}):[\theta]_{218} 0,[\theta]_{229}+14390,[\theta]_{235} 0,[\theta]_{243}-9923,[\theta]_{275} 0,[\theta]_{282}+2658\right] ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{dd}, J=1.7,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 4.79$ (s, 1H), $5.75(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dq}, J=6.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=1.7,15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.80-6.83 (m, 3H), 7.11-7.19 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.7\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$, $40.7(\mathrm{CH}), 87.9(\mathrm{CH}), 109.1(\mathrm{CH}), 115.1(\mathrm{CH}), 121.5(\mathrm{CH}), 123.0(\mathrm{CH}), 126.2(\mathrm{CH}), 127.8$ (CH), 130.0 (C), 130.7 (CH), 131.3 (C), 133.0 (C), 155.0 (C), 158.0 (C); LRMS (EI) m/z 266 $\left(\mathrm{M}^{+}\right), 251$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$266.1307, found 266.1304.
The enantiopurity of synthetic (-)-epi-conocarpan (2) was determined to be $>99 \%$ ee by comparison of HPLC retention time (Chiralcel OD-H column, 9:1 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$) with the racemic sample: $t_{R}=10.1 \mathrm{~min}$ for $(2 R, 3 S) \mathbf{2}, t_{R}=20.5 \mathrm{~min}$ for $(2 S, 3 R) \mathbf{- 2}$.

(2S,3S)-Conocarpan (1)

$\mathrm{Na}_{2} \mathrm{CO}_{3}(53.3 \mathrm{mg}, 0.50 \mathrm{mmol})$ was added to a solution of $(-)-2(53.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The whole was

(+)-conocarpan (1) extracted with EtOAc (30 mL), and the organic layer was washed with water (5 mL) and brine ($2 \times 5 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation in vacuo furnished the crude product (64 mg), which was purified by column chromatography (silica gel $20 \mathrm{~g}, 8: 1$ hexane/EtOAc) to afford a $12: 1$ mixture of $\mathbf{1} / \mathbf{2}(52.0 \mathrm{mg}, 98 \%)$. The mixture was dissolved in hexane/EtOAc (5:1, 1.2 mL) at $60^{\circ} \mathrm{C}$. Colorless plates formed at $23^{\circ} \mathrm{C}$ after standing overnight, and were collected by suction, washed with ice-cold hexane (1 mL) and dried in vacuo to give $(+)$-conocarpan (1) ($37.7 \mathrm{mg}, 71 \%$): $R_{f}=0.37$ (3:1 hexane/EtOAc); mp $137-139{ }^{\circ} \mathrm{C}$ (hexane/EtOAc) $\left[\right.$ lit. $\left.{ }^{6} \mathrm{mp} 133-135{ }^{\circ} \mathrm{C}\right] ;[\alpha]_{\mathrm{D}}{ }^{22}+117(c 1.18, \mathrm{MeOH})\left[\right.$ lit. ${ }^{6}[\alpha]_{\mathrm{D}}{ }^{21}+122(c 1.03$, $\mathrm{MeOH})$; IR (neat) $v 3376,1615,1599 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.86$ (d, $J=1.7,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 5.08$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dq, $J=6.6,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=1.7,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 6.83-6.85(\mathrm{~m}$, $3 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.9\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{CH}_{3}\right), 45.2(\mathrm{CH}), 92.6(\mathrm{CH}), 109.3(\mathrm{CH}), 115.4(\mathrm{CH}), 120.7(\mathrm{CH}), 123.1(\mathrm{CH}), 126.3(\mathrm{CH})$, 127.9 (CH), 130.7 (CH), 131.2 (C), 132.3 (C), 132.8 (C), 155.6 (C), 158.2 (C); LRMS (EI) m/z $266\left(\mathrm{M}^{+}\right), 251$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$266.1307, found 266.1304.

[^2]

Figure 1. X-ray structure of 8a.

Figure 2. X-ray structure of $\mathbf{1 6}$.
2-azide carboxylic acid -azide carboxylic acid-1.als
 single pulse.ex2 395.88 MHz
6.88 KHz $\mathrm{zH} \angle 8 \mathrm{O}$
z
 5.0000 sec
5.65 usec - 등Nㅗ M 으ㅁㅜㅜ U

$$
\begin{array}{ll}
0 \\
0 \\
0 \\
0 \\
0
\end{array}
$$

(S,S)-2-azide oxazolidinone_1H

$$
\mathrm{HI}
$$

(S,S)-2-azide oxazolidinone_13C

(2S,R)-2-azide oxazolidinone_1H

(2S,R)-2-azide oxazolidinone_13C
2S,R)-2-azide oxazolidinone_13C-1.als
2S,R)-2-azide oxazolidinone_13C S,R)-2-azide oxazolidinone_13C
6-09-2008 21:02.21

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

 N

YN05005P_1H_TEA.als

$\underset{\sim}{\infty}$

$0888 \times$

PTTEA_13C

Rh2(S-PTTEA)4_5

020409-1,RECRYST 1HT416C_Rh2(PTTEA)4.als
0409-1,RECRYST 0

YN06021P_13C

YN06027P_13C
YNO6027P_13C.als
YN06027P-13C
Thu Dec 14 13:30:45 2006
13C
BCM $\Sigma^{-}=$ 125.00 KHz zH 00 OOOGO $\stackrel{N}{1}$ 1.2059 sec
1.7940 sec 4.50 usec H $\quad 19.8 \mathrm{c}$

エ | 튼 |
| :---: |
| 1 |
| 8 |

-93
0
0
0

 ฐ

YN06076P

(

YN06044P

YN06061Q_13C-1.als
YN06061Q-13C

 ZHW $9 \mathrm{~S}^{6} 66$ ZH 296666 tz
 in ${ }^{\circ} 861$ 틍N

± 0

21

YN06054P

YN06054P_13C

YN06054P 13C-1(DP).als
YN06054P-13C
$06-01-200712: 46: 38$
single puise_dec

 zH 2966662

YN06055R_F10-12

DFILE	YN06055R-1.als
COMNT	YNO6055RF10-12
DATIM	$08-01-200708: 36: 06$
OBNUCC	1 H
EXMOD	single.pulse.ex2
OBFRQ	395.88 MHz
OBSET	6.28 KHz
OBFIN	0.87 Hz
POINT	13107
FREQU	5938.15 Hz
SCANS	8
ACQTM	2.2073 sec
PD	5.0000 sec
PW1	5.65 usec
IRNUC	1 H
CTEMP	19.9 c
SLVNT	CDCL3
EXREF	0.00 ppm
BF	0.12 Hz
RGAIN	40

YN06055R_13C

${ }_{1}^{29-09-2008} 18: 38: 27$
single_pulse.ex2

${ }^{\circ}$

 .0000 sec
3.33 usec $1 \mathrm{H} \begin{aligned} & 3.33 \text { usec } \\ & 20.8 \mathrm{c}\end{aligned}$ E
0
0
0
0

YN12135P_first crops-1.als
YN12135P-first crops
$06-10-200811: 17: 37$
1 H
single_pulse.ex2
500.16 MHz

0
0
0
0
0
0
0
0
0
0
 틈Nㅗㄴ ํ.ํํํ

YN12135P_1st crops_13C

8a (racemate)

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	20.43	1297146	50.21
2	26.36	1286267	49.79

8a

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	20.57	14611856	92.10
2	25.59	1253687	7.90

10a (racemate)

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	11.82	452079	49.94
2	15.25	453180	50.06

10a

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	11.85	1826356	33.83
2	15.03	3572047	66.17

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	14.31	4247935	50.01
2	18.50	4246675	49.99

21

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	13.95	1873743	92.11
2	18.63	160531	7.89

21 (optically pure)

Peak No.	Time (min)	Area $\left[\mu \mathrm{V}^{-} \mathrm{sec}\right]$	Area $\%$
1	14.22	5576513	100.00

racemate of epi-conocarpan

Peak No.	Time (min)	Area [V^{\star} sec]	Area \%
1	10.09	1064994	50.22
2	20.49	1055461	49.78

synthetic (-)-epi-conocarpan

Peak No.	Time (min)	Area [V`sec]	Area \%
1	9.95	4830618	100.00

$\mathrm{CD}(\mathrm{c} 0.003, \mathrm{MeOH})$
2

[^0]: ${ }^{\dagger}$ Hokkaido University.
 ${ }^{\ddagger}$ Rigaku Corporation.

[^1]: (1) Greenspan, P. D.; Fujimoto, R. A.; Marshall, P. J.; Raychaudhuri, A.; Lipson, K. E.; Zhou, H.; Doti, R.
 A.; Coppa, D. E.; Zhu, L.; Pelletier, R.; Uziel-Fusi, S.; Jackson, R. H.; Chin, M. H.; Kotyuk, B. L.; Fitt, J. J. J. Med. Chem. 1999, 42, 164-172.
 (2) Ohshima, T.; Gnanadesikan, V.; Shibuguchi, T.; Fukuta, Y.; Nemoto, T.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 11206-11207.
 (3) Rabjohn, N.; Phillips, L. V.; Stapp, P. R. J. Chem. Eng. Data 1962, 7, 543-544.
 (4) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77-82.

[^2]: (5) Benevides, P. J. C.; Sartorelli, P.; Kato, M. J. Phytochemistry 1999, 52, 339-343.
 (6) Achenbach, H.; Gross, J.; Dominguez, X. A.; Cano, G.; Star, J. V.; Brussolo, L. D. C.; Muñoz, G.;

 Salgado, F.; López, L. Phytochemistry 1987, 26, 1159-1166.

