Supporting Information

A Tetrachloro Polyketide Hexahydro-1H-isoindolone, Muironolide A, from the Marine Sponge Phorbas sp. Natural Products at the Nanomole-Scale

Doralyn S. Dalisay, ${ }^{\dagger}$ Brandon I. Morinaka, ${ }^{\dagger}$ Colin K. Skepper ${ }^{\dagger}$ and Tadeusz F. Molinski ${ }^{*,+, \$}$
Department of Chemistry and Biochemistry, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive MC0358, La Jolla, CA, 92093

tmolinski@ucsd.edu

Page Contents
S1 General Procedures and isolation of 1
S2 Synthesis of (\pm)-1,1,1-trichloro-4-phenylbutan-2-yl hexanoate (4).
S2-S4 Isolation of 1; preparation of methyl (2-chloro-1-cylcopropyl)-3-hydroxypropanoates 7a, 7b, 7c and 7d.

S5 $\quad S$ - and R - Mosher's esters of major isomer, 7a.
S6
Hydrolysis of 1: Naphthone Derivative and LCMS Analysis of Napthone esters.
S7-S8
ESI-FT-ICR HRMS (+ve ion mode) of 1and isotope peak simulation
S9-S10 ESI-FT-ICR HRMS (-ve ion mode) of 1and isotope peak simulation
S11 CD spectrum of 1
S12 Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for 1
S13 ${ }^{1} \mathrm{H}$ NMR spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
S14 COSY spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
S15 HMBC spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
S16-S19 HMBC spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, expansions
S20 ${ }^{1} \mathrm{H}$-coupled HSQC spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
S21 ${ }^{1} \mathrm{H}$-coupled HSQC spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, expansion.
NOESY spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, t_{\mathrm{m}}=400 \mathrm{~ms}\right)$.
HETLOC spectrum of $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
Chiral LC-MS chromatograms of 7a, 7b, 7c and 7d.
Chiral LC-MS of 2-naphthone esters of hydrolyzed 1 and 2-naphthone esters $\mathbf{7 b}$ and $\mathbf{7 d}$.
CD spectra of $\mathbf{7 a}, \mathbf{7 b}, \mathbf{7 c}$ and $\mathbf{7 d}$.
${ }^{1} \mathrm{H}$ NMR spectra of (S) - and (R)-MTPA ester of $7 \mathrm{a} .\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
\dagger Department of Chemistry and Biochemistry
§ SSPPS

General Procedures. HPLC grade solvent used for purification of sub-micromole samples was redistilled from glass. CD spectra were recorded on a Jasco J 810 spectropolarimeter in 0.1 cm quartz cells at $23{ }^{\circ} \mathrm{C}$ unless otherwise stated. UV-Vis spectra were recorded in a dual beam Jasco V630 spectrometer in 0.1 cm quartz cells. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectra were recorded in $\mathrm{CDCl}_{3}(99.8 / \% \mathrm{D})$ using either a Varian Mercury-400 (400 MHz), Varian Unity-500 (500 MHz), Bruker DMX-600 (600 MHz) equipped with a $1.7-\mathrm{mm}\left\{{ }^{13} \mathrm{C}\right\}^{1} \mathrm{H}$ cryoprobe (Bruker 1.7 mm CPTCI probe). NMR spectra were measured in CDCl_{3} and referenced to residual solvent signals (${ }^{1} \mathrm{H}, \delta 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}, \delta 77.16 \mathrm{ppm}$). IR spectra were recorded using attenuated total reflectance (ATR, 3 mm ZnSe plate) with a Jasco 4100 FTIR on samples deposited as thin films. LR LCMS was carried out on a ThermoFisher Accela UPLC coupled to an MSQ single quadrupole mass spectrometer operating in positive ion mode, unless otherwise stated. HRMS measurements were measured at the Scripps Research Institute (TOF-MS or ICR-FTMS) mass spectrometry facility. Semi-preparative HPLC was carried out on a Varian SD200 system equipped with a dual-pump and UV-1 detector (variable λ 's) under specified conditions.

Isolation of 1. The sponge Phorbas sp. (sample ID: 93-054) was collected at -10 m by scuba near Muiron Island, Western Australia in 1993. The single specimen was immediately frozen and stored at $20{ }^{\circ} \mathrm{C}$ until extraction (~ 2 months). The CCl_{4}-soluble fraction (93-054-B-1, 350 mg) of the MeOH extract ${ }^{1}$ was separated by flash chromatography (silica cartridge, Analogix RS-12, $12 \mathrm{~g}, 2 \mathrm{~cm} \times 7.5 \mathrm{~cm}$) and elution by step-gradient of solvent ($0-100 \%$ EtOAc in hexane) to yield seven fractions. Fraction 5 (93-054-B1-5, 12.5 mg) was further purified twice by reversed phase HPLC (Phenylhexyl column, 250 $\times 10 \mathrm{~mm}, 1: 9 \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$, followed by Phenylhexyl column, $250 \times 4.6 \mathrm{~mm}, 2: 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}$) to yield pure $1\left(t_{\mathrm{R}}=34 \mathrm{~min}\right), 90 \mu \mathrm{~g}$ (yield $=4.1 \times 10^{-5} \%$ dry weight of sponge). The yield was calculated using NMR quantitation by solvent ${ }^{13} \mathrm{C}$-satellites (QSCS). ${ }^{2}$

[^0](\pm)-1,1,1-trichloro-4-phenylbutan-2-yl hexanoate, 4. A solution of
 (\pm)-1,1,1-trichloro-4-phenylbutan-2-ol $(130 \mathrm{mg}, \quad 0.516 \mathrm{mmol}$, prepared from hydrocinnamaldehyde, $\mathrm{Cl}_{3} \mathrm{COOH}$ and $\mathrm{Cl}_{3} \mathrm{COONa}$ in DMF^{3}) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with DMAP ($63 \mathrm{mg}, 0.516$ $\mathrm{mmol})$ and DCC ($106.7 \mathrm{mg}, 0.516 \mathrm{mmol}$) and the mixture stirred for 5 min . Hexanoic acid (72.2 mg , 0.621 mmol) was added and the mixture stirred at r.t. under N_{2} until TLC indicated completion of the reaction (3 h). The solvent was removed under reduced pressure and the solid residue was dissolved in EtOAc (10 mL) and chilled at $0^{\circ} \mathrm{C}$ for 10 min whereupon a colorless solid precipitated. The solid was removed by filtration and the supernatant washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 6 \mathrm{~mL})$ and sat. $\mathrm{NaCl}(3 \times 4 \mathrm{~mL})$. The organic layer was passed through a short column of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the filtrate was concentrated under reduced pressure to give a crude product which was purified by flash chromatography (silica, 2:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) to give (\pm)-4 (71.6 $\mathrm{mg}, 72 \%$) as a colorless oil. FTIR (ATR): v 2956, 2933, 2861, 1751, 1496, 1455, 1372, 1265, 1222, 1148, 1093, 785, 735, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28 \mathrm{~m}(2 \mathrm{H}), 7.24 \mathrm{~m}(4 \mathrm{H}), 5.57(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70 \mathrm{~m}(1 \mathrm{H})$, $2.47 \mathrm{~m}(1 \mathrm{H}), 2.41 \mathrm{~m}(1 \mathrm{H}), 2.21 \mathrm{~m}(1 \mathrm{H}), 1.70 \mathrm{~m}(1 \mathrm{H}), 1.35 \mathrm{~m}(1 \mathrm{H}), 0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.6(\mathrm{C}), 140.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 126.5(\mathrm{CH}), 100.1(\mathrm{C}), 80.3(\mathrm{C})$, $34.1\left(\mathrm{CH}_{2}\right)$, $32.4\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right)$, $24.5\left(\mathrm{CH}_{2}\right)$, $22.4\left(\mathrm{CH}_{2}\right)$, $14.0\left(\mathrm{CH}_{3}\right)$. HREIMS m / z $373.0503[\mathrm{M}+\mathrm{Na}]^{+}$; calc. 373.0499 for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{Na}$.

Preparation of (2-Chloro-1-cyclopropyl)-3-hydroxypropanoate esters, 6a and 6b

6a

6b

Aldehyde. A solution of alcohol (-)-5 (200 mg, 1.88 mmol, 86% ee $)^{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a mixture of pyridinium chlorochromate $(2.83 \mathrm{~g}, 13$ $\mathrm{mmol})$ and Celite $(2.83 \mathrm{~g})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11$ mL) at room temperature. After stirring 3.5 h , the mixture was filtered through a bed of Florisil (elution with $2: 3 \mathrm{Et}_{2} \mathrm{O}$ /pentane). Fractions containing the aldehyde were combined and carefully concentrated under reduced pressure maintaining a bath temperature of $0{ }^{\circ} \mathrm{C}$ to give aldehyde $(\sim 100 \mathrm{mg} \text {, volatile! })^{5}$ as a clear, colorless oil which was used in the next step without further purification.
(3) Corey, E. J.; Link, J. O.; Shao, Y. Tetrahedron Lett. 1992, 33, 3435
(4) Masuno, M. N.; Young, D. M.; Hoepker, A. C.; Skepper, C. K.; Molinski, T. F. J. Org. Chem. 2005, 70, 4162
(5) (a) Paterson, I.; Davies, R. D. M.; Marquez, R. Angew. Chem., Int. Ed. 2001, 40, 603. (c) Huang, H.; Panek, J. S. Org. Lett. 2004, 6, 4383. (c) Olivo, H. F.; Velaquez, F.; Trevisan, H. C. Org. Lett. 2000, 2, 4055

Reformatsky Reaction. ${ }^{6} \mathrm{Zn}$ dust ($1.26 \mathrm{~g}, 19.3 \mathrm{mmol}$) was suspended in anhydrous THF (8 mL) and the mixture heated to $40^{\circ} \mathrm{C} . \mathrm{TMSCl}(260 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added and the temperature elevated to $55^{\circ} \mathrm{C}$. After 15 minutes, the pressure of the reaction flask was reduced to $250-260 \mathrm{~mm} \mathrm{Hg}$ to produce a steady reflux. Methyl bromoacetate $(2.70 \mathrm{~g}, 17.7 \mathrm{mmol})$ was added dropwise over approximately 10 minutes at which time the mixture turned a yellow-green color. The mixture was stirred an additional 5 minutes then cooled to room temperature. After excess solids had settled, the supernatant was transferred under nitrogen through a nylon syringe filter $(0.45 \mu \mathrm{~m})$ into a clean, dry scintillation vial.
The resulting bromozincate reagent ($\sim 0.57 \mathrm{mmol}$) was added dropwise to a mixture of aldehyde (50 $\mathrm{mg}, 0.48 \mathrm{mmol})$ in THF (2 mL) at $0{ }^{\circ} \mathrm{C}$ and the pale yellow mixture stirred 20 minutes then allowed to warm to room temperature over 2 hours. The mixture was quenched with a mixture of concentrated $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})(2.3 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\text {(aq })}(23 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Flash chromatography (silica, 2:3 $\mathrm{Et}_{2} \mathrm{O}$-pentane) gave an inseparable mixture of $\mathbf{6 a}$ and $\mathbf{6 b}$ ($56 \mathrm{mg}, 66 \%, d r \sim 1: 1$) as a clear, colorless oil which was used immediately in the next step.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.78$ (ddd, $1 \mathrm{H}, 9.0,6.2,3.2 \mathrm{~Hz}$), 3.71 (s, 3 H), 3.62 (ddd, $1 \mathrm{H}, 7.8,6.6$, 3.9 Hz), 3.04 (ddd, $1 \mathrm{H}, 7.2,4.0,3.9 \mathrm{~Hz}$), 2.97 (ddd, $1 \mathrm{H}, 7.6,3.6,3.6 \mathrm{~Hz}$), 2.67-2.52 (m, 2H, overlap), 1.37-1.29 (m, 1H, overlap), $1.08(\mathrm{q}, 1 \mathrm{H}, 6.7 \mathrm{~Hz}), 1.01-0.94\left(\mathrm{~m}, 2 \mathrm{H} \boldsymbol{6} \boldsymbol{a}^{*}\right.$ and $\left.1 \mathrm{H} \boldsymbol{6} \boldsymbol{b}^{*}\right) ;$ LR-ESI-MS m$/ z$ $211.20[\mathrm{M}+\mathrm{Na}]^{+} *$ arbitrary assignment.

2-Napthone Ester Standards: 7a, 7b, 7c and 7d

A mixture of diastereomers $\mathbf{6 a}$ and $\mathbf{6 b}(1: 1$, ee $86 \%)(5.8 \mathrm{mg}, 0.035 \mathrm{mmol})$ was dissolved in $250 \mu \mathrm{~L}$ of $\mathrm{LiOH}(1.45 \mathrm{mg}, 0.053)$ and then stirred for 3 min , then added with $250 \mu \mathrm{~L}$ solution of α-bromo-2acetonaphthalene ($88 \mathrm{mg}, 0.355 \mathrm{mmol}$) in THF and stirred vigorously at RT for 24 h . The reaction mixture was neutralized with $250 \mu \mathrm{~L} \mathrm{HCl}(1.90 \mathrm{mg}, 0.053)$ to pH 6.0 the extracted with 1 mL CHCl 3 $(3 x)$. The organic layer was dried under reduced pressure to form a yellow solid residue which then purified by flash chromatography 8:2 EtOAc:hexane to yield the mixture of diastereomers ($5.4 \mathrm{mg}, 23$ $\%$ yield) as colorless oil. Individual diastreomers were separated by HPLC (3:7 i - PrOH -hexane, chiral column, Chiralpak ${ }^{\circledR} \mathrm{AD}, 250 \times 4.6 \mathrm{~mm}$) to afford pure samples of $7 \mathbf{7 a}\left(t_{\mathrm{R}} \min =11.68\right), 7 \mathrm{c}\left(t_{\mathrm{R}}=13.05\right)$, $7 \mathbf{d}\left(t_{\mathrm{R}}=13.74\right)$ and $\mathbf{7 b}\left(t_{\mathrm{R}}=14.83\right)$ in the ratios 10:0.9:0.6:7.5 respectively.
(6) (a) Reformatsky, S. Chem. Ber. 1887, 20, 1210. (b) Kloetzing, R. J.; Thaler, T.; Knochel, P. Org. Lett. 2006, 8, 1125.

(R)-2-(naphthalen-2-yl)-2-oxoethyl

3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoate, 7a, colorless solid. FTIR (ATR): v 3571 (broad peak), 2973, 2254, 1625, 1281, 952, 674, 648, 615. UV (hexane: $i-\mathrm{PrOH}, 70: 30) \lambda 209 \mathrm{~nm}(\varepsilon 5700) 248$ (34300), 284 (6487). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1 H), 3.09 (ddd, $J=7.2,3.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, $J=14.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $J=14.8,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43$ (dddd, $J=9.4,9.4,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{q}, J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{7}$: $\delta 192.2$ (C), 171.0 (C), 136.0 (C), 132.1 (C), 130.7 (C), 130.1 (CH), 130.0 (CH), 129.5 (CH), 129.1 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 123.2(\mathrm{CH}), 67.7(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH}), 27.4(\mathrm{CH})$, $13.1\left(\mathrm{CH}_{2}\right)$. HREIMS $m / z 355.0712[\mathrm{M}+\mathrm{Na}]^{+}$; calcd. 355.0708 for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNaO}_{4}$.

(S)-2-(naphthalen-2-yl)-2-oxoethyl

3-((1R,2S)-2-chlorocyclopropyl)-3-hydroxypropanoate, 7c, colorless solid. FTIR (ATR): v 3571 (broad peak), 2973, 2254, 1625, 1281, 952, 674, 648, 615. UV (hexane: $i-\mathrm{PrOH}, 70: 30) \lambda 209 \mathrm{~nm}(\varepsilon 5700) 248$ (34300), 284 (6487). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1 H), 3.09 (ddd, $J=7.2,3.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, $J=14.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, $J=14.8,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43$ (dddd, $J=9.4,9.4,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{q}, J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{7}$: $\delta 192.2$ (C), 171.0 (C), 136.0 (C), 132.1 (C), 130.7 (C), 130.1 (CH), 130.0 (CH), 129.5 (CH), 129.1 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 123.2(\mathrm{CH}), 67.7(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH}), 27.4(\mathrm{CH})$, 13.1 $\left(\mathrm{CH}_{2}\right)$. HREIMS $m / z 355.0716[\mathrm{M}+\mathrm{Na}]^{+}$; calcd. 355.0708 for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNaO}_{4}$.

(R)-2-(naphthalen-2-yl)-2-oxoethyl 3-((1R,2S)-2-chlorocyclopropyl)-3-hydroxypropanoate, 7d, colorless solid. FTIR (ATR): v 3571 (br), 2973, 2254, 1625, 1281, 952, 674, 648, 615. UV (hexane:i-PrOH, 70:30) $\lambda 209 \mathrm{~nm}(\varepsilon 5700) 248$ (34300), 284 (6487). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J$

[^1]$=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1 H), 3.16 (ddd, $J=7.2,3.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (dd, $J=14.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (dd, $J=14.8,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45$ (dddd, $J=9.4,9.4,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{q}, J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H})$. HREIMS $m / z 355.0710[\mathrm{M}+\mathrm{Na}]^{+}$; calcd. 355.0708 for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNaO}_{4}$.

(S)-2-(naphthalen-2-yl)-2-oxoethyl

3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoate, 7b, colorless solid. FTIR (ATR): v 3571 (broad peak), 2973, 2254, 1625, 1281, 952, 674, 648, 615. UV (hexane: $i-\mathrm{PrOH}, 70: 30) \lambda 209 \mathrm{~nm}(\varepsilon 5700) 248$ (34300), 284 (6487). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16$ (ddd, $J=7.2,3.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=14.8,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45$ (dddd, $J=9.4,9.4,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{q}, J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}{ }^{7}$: $\delta 192.2$ (C), 171.0 (C), 136.0 (C), 132.1 (C), 131.7 (C), 130.1 (CH), 130.0 (CH), 129.5 (CH), 129.1 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 123.2(\mathrm{CH}), 68.7(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH}), 27.5(\mathrm{CH})$, $13.5\left(\mathrm{CH}_{2}\right)$. HREIMS $m / z 355.0710[\mathrm{M}+\mathrm{Na}]^{+}$; calcd. 355.0708 for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNaO}_{4}$.

Preparation of (R) - and (S)-MTPA esters of (R)-2-(naphthalen-2-yl)-2-oxoethyl 3-((1S,2R)-2-chlorocyclopropyl)-3-hydroxypropanoate. Separate solutions of $7 \mathbf{7 a}(100 \mu \mathrm{~g})$ in dry pyridine (100 $\mu \mathrm{L})$ were treated with added (R) - or (S)-MTPACl $(5 \mu \mathrm{~L})$ and the mixture stirred vigorously at r.t. for 2 h. The reaction mixtures were concentrated by under reduced pressure and each residue purified by silica gel chromatography (pencil column) with elution by 9:1 EtOAc:hexanes to afford pure (S)-8 (white solid; $100 \mu \mathrm{~g}, 85 \%$) or (R)-9 (white solid; $100 \mu \mathrm{~g} ; 86 \%$).
(S)-MTPA Ester of 7a (S8): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 4 \mathrm{H}), 5.53(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=16.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (dd, $J=16.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{dddd}, J=9.4,9.4,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{q}, J=13.8$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~m}, 1 \mathrm{H})$. HREIMS $m / z 571.1102[\mathrm{M}+\mathrm{Na}]^{+}$; calc. 571.1106 for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{ClNaF}_{3} \mathrm{O}_{6}$.
(R)-MTPA Ester of $7 \mathbf{7 a}(\mathbf{S 9}):{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 4 \mathrm{H}), 5.42(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dddd}, J=9.4,9.4,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{q}, J=13.8,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H})$. HREIMS $m / z 571.1120[\mathrm{M}+\mathrm{Na}]^{+}$; calc. 571.1106 for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{ClNaF}_{3} \mathrm{O}_{6}$.

Hydrolysis-Derivatization of 1 with α-Bromo-2-Acetonaphthalene

Muironolide A ($1,30 \mu \mathrm{~g}, 0.050 \mathrm{mmole}$) was dissolved in THF ($50 \mu \mathrm{~L}$) and treated with aqueous LiOH solution $(0.002 \mathrm{M}, 50 \mu \mathrm{~L})$, and the mixture stirred at r.t. for 1.5 h before neutralization with aqueous $\mathrm{HCl}(0.002 \mathrm{M}, 50 \mu \mathrm{~L})$. The mixture was dried under the stream of N_{2} and the residue re-dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O}(25 \mu \mathrm{~L}$, HPLC grade) and aqueous $\mathrm{LiOH}(0.001 \mathrm{M}, 50 \mu \mathrm{~L})$, stirred for 5 min , then treated with solution of α-bromo-2-acetonaphthalene ($3 \mathrm{M}, 50 \mu \mathrm{~L}, 0.151 \mathrm{mmol}$) in THF and stirred vigorously at rt for 24 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 500 \mu \mathrm{~L})$. The combined organic layers were concentrated under reduced pressure and the residue purified by flash chromatography (silica, pencil column, 30 mm) eluting with $1: 4 \mathrm{EtOAc}-$ hexane. Fractions corresponding to the product were pooled and dried under reduced pressure and dissolved in $20 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{CN}$ (HPLC grade) for LCMS analysis.

LC-ESI-MS Analysis

The acetonapthone derivative of $\mathbf{1}$ was analysed by LC-MS using a ThermoElectron Accela series ultra-high pressure liquid chromatograph (UPLC) and a ChiralPak AD-RH column ($2.1 \times 150 \mathrm{~mm}, 5 \mu$) connected to a PDA and ThermoFinnigan MSQ quadrupole mass spectrometer. LC parameters were as follows; isocratic $1: 4 \mathrm{HCOOH}(0.1 \% \mathrm{aq})-\mathrm{CH}_{3} \mathrm{CN}, 80 \%(0.2 \mathrm{~mL} / \mathrm{min}$, over 20 min . Injection volume was $3 \mu \mathrm{~L}$. PDA parameters were as follows; channel A; 210 nm ; channel B, 248 nm ; channel C, 284 nm . MSQ parameters were as follows; ESI-MS, selected ion monitoring at $m / z 355.07[\mathrm{M}+\mathrm{Na}]^{+}$, span 1.5 amu ; dwell, 0.6 sec ; cone voltage, 75 V ; probe temperature $450^{\circ} \mathrm{C}$. Retention times (min) for the naphthone ester derivatives were as follows: 7a, $t_{\mathrm{R}}=13.84 ; 7 \mathbf{c}, t_{\mathrm{R}}=9.05 ; \mathbf{7 d}, t_{\mathrm{R}}=9.90 ; 7 \mathbf{b}, t_{\mathrm{R}}=11.13$. The naphthone ester, derived from hydrolysis-derivation of $\mathbf{1}$, eluted at $t_{\mathrm{R}}=11.13 \mathrm{~min}$. and was confirmed by co-injections with standard naphthone ester 7b that co-eluted as a single peak ($t_{\mathrm{R}}=11.11$ min). See Figure S20.

Fig. S4. LC-ESI-FT-ICR HRMS (+ve ion mode). 7.0T Bruker q-FT-ICR interfaced with an Agilent 1200 capillary LC (500 μ ID x 15 cm Zorbax, $10 \mu \mathrm{~L} / \mathrm{min}$).

Figure S5. LC-ESI-FT-ICR HRMS (+ve ion mode). Expansion of Figure S4 and simulated isotopic pattern.

Figure S6. LC-ESI-FT-ICR HRMS (-ve ion mode). 7.0T Bruker q-FT-ICR interfaced with an Agilent 1200 capillary LC (500μ ID x 15 cm Zorbax, $10 \mu \mathrm{~L} / \mathrm{min}$).

Figure S7. LC-ESI-FT-ICR HRMS (-ve ion mode). Expansion of Figure S6 and simulated isotopic pattern.

Figure S8. Circular dichroism (CD) spectrum of 1. Concentration $2.5 \times 10^{-4} \mathrm{M}_{\mathrm{in}} \mathrm{CH}_{3} \mathrm{CN}$. $\boldsymbol{\lambda}_{\max }(\Delta \varepsilon) 186(58.5), 225(-37.2)$.

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data of muironolide A, $\mathbf{1}\left(600 \mathrm{MHz}, 1.7 \mathrm{~mm}\right.$ cryoprobe, $\left.\mathrm{CDCl}_{3}\right)$

Position	${ }^{1} \mathrm{H}(\mathrm{m}, J=\mathrm{Hz})$	${ }^{13} \mathrm{C}^{\mathrm{a}}\left(\mathrm{m}, \mathrm{J}_{\mathrm{CH}}=\mathrm{Hz}\right)$	COSY	$\mathrm{HMBC}^{\text {a }}$	NOESY ${ }^{\text {b }}$
1		164.4			
2	5.77 (d, 15.5)	124.8 (CH, 161.5)	H3	C1, C4	H4, H13
3	6.53 (dd, 15.5, 11.6)	146.9 (CH, 164.5)	H2, H4	C1, C2, C4, C5, C11	H6, H11
4	2.45 (t, 11.6)	53.6 (CH, 128.4)	H3, H11	C2, C3, C5, C6, C10, C11, C12, C25	H2, H10, H13, H25
5		44.0			
6	3.33 (d, 8.8)	$49.0\left(\mathrm{CH}_{2}, 141.6\right)$	H6'	C4, C5, C25	H3, H6', H11, -NH
	2.84 (br d, 8.8)	$49.0\left(\mathrm{CH}_{2,} 147.6\right)$	H6, -NH	C5, C7, C8, C25	H6, H25, -NH
7		169.7			
8		139.7			
9	6.73 (dd, 7.8, 2.5)	130.0 (CH, 165.0)	H10, H10'	C7, C10, C11	H10, H10'
10	1.92 (m)	$31.3\left(\mathrm{CH}_{2}, 136.8\right)$	H9, H10', H11	C4, C8, C9, C11	H9, H10', H13,
	2.40 (m)	$31.3\left(\mathrm{CH}_{2}, 134.4\right)$	H9, H10, H11	C8, C9, C11, C12	H9, H10, H11
11	1.70 (ddd, 11.6, 8.7, 2.8)	46.2 (CH, 131.4)	H4, H10, H10'	$\begin{aligned} & \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 9, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 15, \\ & \mathrm{C} 26, \end{aligned}$	H3, H6, H10'
12		133.8			
13	4.88 (d, 9.12)	131.6 (CH, 150.0)	H14, H26	C11, C15, C26	H2, H15
14	2.42 (m)	30.8 (CH, 137.4)	H13, H15, H15', H27	C15	H15', H16', H26, H27
15	1.16 (m)	$31.4\left(\mathrm{CH}_{2}, 131.4\right)$	H14, H15', H16	C13, C14, C17,	H14, H15, H16, H17
	1.05 (m)	$31.4\left(\mathrm{CH}_{2}, 131.4\right)$	H14, H15, H16	C13, C14, C16, C17, C27	H13, H15', H16, H16'
16	1.95 (m)	$27.1\left(\mathrm{CH}_{2}, 131.4\right)$	H15, H15', H16', H17	C14, C15, C18	H15', H16'
	2.04 (m)	$27.1\left(\mathrm{CH}_{2}, 131.4\right)$	H15, H15', H16, H17	C14, C15, C18	H14, H15, H17
17	5.55 (dd, 10.8, 2.4)	80.3 (CH, 157.5)	H16, H16'	C15, C16, C19, C18	H14, H15', H16'
18		99.3			
19		168.9			
20	2.90 (dd, 16.2, 3.0)	$39.4\left(\mathrm{CH}_{2}, 123.0\right)$	H20', H21	C19, C21, C22	H21
	2.94 (dd, 16.2, 11.6)	$39.4\left(\mathrm{CH}_{2}, 123.0\right)$	H20, H21	C19, C21, C22	H21
21	5.03 (ddd, 11.6, 9.4, 3.2)	70.8 (CH, 153.6)	H20, H20', H22	C1, C19, C20, C22, C23, C24	H20, H2O', H23, H24'
22	$\begin{aligned} & 1.44 \text { (dddd, } 9.4,9.4,6.3 \text {, } \\ & 3.2 \text {) } \end{aligned}$	25.6 (CH, 177.0)	H21, H23, H24, H24'	C23	H24
23	2.98 (ddd, 6.5, 3.7, 3.2)	30.0 (CH, 200.4)	H22, H24, H24'	C21, C22	H21, H24'
24	1.09 (ddd, 9.4, 6.5, 3.7)	$14.7\left(\mathrm{CH}_{2}, 173.4\right)$	H22, H23, H24'	C21, C22, C23	H22, H24
	1.25 (q, 6.5)	$14.7\left(\mathrm{CH}_{2}, 173.4\right)$	H22, H23, H24	C21, C22	H21, H23, H24
25	1.28 (s)	$27.7\left(\mathrm{CH}_{3}, 130.0\right)$		C4, C5, C6, C8	H4, H6
26	1.56 (s)	$19.1\left(\mathrm{CH}_{3}, 128.4\right)$	H13	C11, C12, C13	H14

${ }^{\text {a. }}$ Assigned by HSQC $\left({ }^{1} J_{C H}=190 \mathrm{~Hz}\right)$ and $\operatorname{HMBC}\left({ }^{1} J_{\mathrm{CH}}=6 \mathrm{~Hz}\right)$. ${ }^{\text {b. }}$ Mixing time $=400 \mathrm{~ms}$.

Figure S $\mathbf{S}^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}(90 \mu \mathrm{~g}, 152 \mathrm{nmole})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S10. COSY NMR spectrum of $1(90 \mu \mathrm{~g}, 152 \mathrm{nmole})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S11. HMBC NMR spectrum of $\mathbf{1}(90 \mu \mathrm{~g}, 152 \mathrm{nmole})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Optimized for ${ }^{1} J_{\mathrm{CH}}=6 \mathrm{~Hz}$.

Figure S12. HMBC spectrum of $\mathbf{1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, expansion. Optimized for ${ }^{1} J_{\mathrm{CH}}=6 \mathrm{~Hz}$.

Figure S13. HMBC spectrum of $\mathbf{1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, expansion. Optimized for ${ }^{1} J_{\mathrm{CH}}=6 \mathrm{~Hz}$.

Figure S14 HMBC NMR spectrum expansion of $\mathbf{1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Optimized for ${ }^{1} J_{\mathrm{CH}}=6 \mathrm{~Hz}$.

\longrightarrow H2/C4

Figure S15. HMBC NMR spectrum expansion of $\mathbf{1}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Optimized for ${ }^{1} J_{\mathrm{CH}}=6 \mathrm{~Hz}$.

Figure S16. ${ }^{1} \mathrm{H}$-coupled HSQC spectrum of $1(90 \mu \mathrm{~g}, 152$ nmole $)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Optimized for ${ }^{1} \mathrm{~J}_{\mathrm{CH}}=190 \mathrm{~Hz}$.

Figure S17. ${ }^{1} \mathrm{H}$-coupled HSQC spectrum of $\mathbf{1}(90 \mu \mathrm{~g}, 152 \mathrm{nmole})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, expansion. Optimized for ${ }^{1} \mathrm{~J}_{\mathrm{CH}}=190 \mathrm{~Hz}$.

Figure S18. NOESY $1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) . t_{\mathrm{m}}=400 \mathrm{~ms}$.

Figure S19. Expansion of HETLOC spectrum showing H17/H15 cross peak ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S20. ESI LCMS chromatograms (single ion monitoring, m / z 355.2, $\mathrm{M}^{2}+\mathrm{Na}^{+}$). Chiralpak AD-RH ($2.1 \times 150 \mathrm{~mm}, 5 \mu ; 1: 4 \mathrm{HCOOH}$ (aq. 0.1%) $-\mathrm{CH}_{3} \mathrm{CN}, 0.2 \mathrm{~mL} / \mathrm{min}$). (a) $7 \mathbf{7 a}$ (b) $7 \mathbf{c}$ (c) $7 \mathbf{d}$ (d) $7 \mathbf{b}$.

Figure S21. ESI LCMS chromatograms (single ion monitoring, $m / z 355.2$, $\mathrm{M}+\mathrm{Na}^{+}$). Chiralpak AD-RH ($2.1 \times 150 \mathrm{~mm}, 5 \mu ; 1: 4 \mathrm{HCO}_{2} \mathrm{H}$ ($0.1 \% \mathrm{aq}$.) $-\mathrm{CH}_{3} \mathrm{CN}, 0.2 \mathrm{~mL} / \mathrm{min}$). (a) 2-naphthone derivative of hydrolysate of $\mathbf{1}$ (see text). (b) co-injection of (a) and authentic $(3 S, 4 S, 5 R)-7 \mathbf{b}$. (a). (c) co-injection of (a) $+\mathbf{7 b}+7 \mathbf{d}$.

Figure S22. CD spectra of 7a-d (3:7 i-PrOH:hexane). $7 \mathbf{a}$, conc. $2.4 \times 10^{-4} \mathrm{M}$; $7 \mathbf{c}$, conc. $1.28 \times 10^{-4} \mathrm{M}$; $7 \mathbf{b}$, conc. $2.4 \times 10^{-4} \mathrm{M} 7 \mathbf{7 d}$, conc. $1.26 \times 10^{-4} \mathrm{M}$.

Figure S23. Expansion of ${ }^{1} \mathrm{H}$ NMR spectra of (a) (S)-MTPA and (b) (R)-MTPA esters of 7a. ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$).

[^0]: (1) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126.
 (2) Dalisay, D. S.; Molinski, T. F. J. Nat. Prod. 2009, 11, 1967.

[^1]: (7) Measured indirectly and assigned by HSQC and $\mathrm{HMBC}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

