THE CIRCULAR DICHROISM SPECTRUM OF PEPTIDES IN THE POLY(PRO)II CONFORMATION

Robert W. Woody

Contents:

Derivation of Eqns. 6, 14, and 19-21 in Text	S 3
Table S1. Coordinates of N-Methylacetamide Used in Polarizability Tensor Calculations	S11
Table S2. Positions of Bond and Lone-Pair Tensors in N-Methylacetamide	S12
Table S3. Polarizability Tensor Components for N-Methylacetamide	S13
Tables S4. Positions and Symmetry Axes of Polarizability Ellipsoids	S14
Table S5. Monopoles for $\pi\pi^*$ Transitions and the Ground State in Amides	S15
Table S6. Transition Parameters for $\pi\pi^*$ Transitions in the Amide Group	S16
Table S7. Monopoles for $n\pi^*$ Transitions in Amides	S17
Table S8. Transition Parameters for the $n\pi^*$ Transition in the Amide Group	S18
Figure S1. Comparison of the Exciton CD Spectrum Calculated with Original and	
Corrected Parameters	S19
Figure S2. Calculated CD Spectra for $(Ala)_n$ as a Function of P_{II} Helix Length	S20
Figure S3. Dependence of CD at Negative Maximum (ca. 200 nm) on P _{II} Helix Length	S21
Figure S4. Dependence of CD at Positive Maximum (ca. 220 nm) on P_{II} Helix Length	S22
References	S23

Derivation of Eqns. 6, 14, and 19-21 in Text

The contributions to the electric and magnetic dipole transition moments that are of interest here result from: (1) mixing of the ground configuration with doubly excited configurations in which one residue is in a discrete excited state (a, b, c,...) and another residue is in a high-energy excited state ($\alpha, \beta, \gamma,...$); (2) mixing of singly excited configurations, one with a residue in a discrete excited state and the other with a different residue in a high-energy excited state. Eq. IIIB-18 of Tinoco¹ gives the electric dipole transition moment for exciton state K, μ_{0K} . Stripped of terms that are not relevant in the present context, this becomes:

$$\boldsymbol{\mu}_{0\mathrm{K}} = \sum_{i,a} C_{iaK} \{ \boldsymbol{\mu}_{0a} - (2/h) \sum_{l \neq i} \sum_{\beta} \frac{v_{\beta} V_{i0a;l0\beta} \, \boldsymbol{\mu}_{0\beta}}{(v_{\beta}^2 - v_{a}^2)} \}$$
S1

where C_{iaK} is defined in Eq. 4 of the text; μ_{i0a} is the electric dipole transition moment for transition $0 \rightarrow a$ in group *i*; ν_a and ν_β are the frequencies of transitions $0 \rightarrow a$ and $0 \rightarrow \beta$, respectively; and $V_{i0a;lo\beta}$ is defined in Eq. 8 of the text.

Similarly, the magnetic dipole transition moment, \mathbf{m}_{K0} , in Tinoco's Eq. IIIB-20 becomes:

where \mathbf{R}_{j} and \mathbf{R}_{l} are, respectively, the positions of groups *j* and *l*; and \mathbf{m}_{jb0} is the magnetic dipole transition moment of the transition $0 \rightarrow b$ in group *j*. (A contribution to the intrinsic magnetic dipole transition moment analogous to the second term in brackets has been omitted because it involves $\mathbf{m}_{l\beta0}$, the magnetic dipole transition moment of a high-energy transition, about which no information is available.)

The exciton rotational strength is the imaginary part of the scalar product of these transition dipole moments:

$$\mathbf{R}_{0\mathrm{K}} = \mathrm{Im} \left(\boldsymbol{\mu}_{0\mathrm{K}} \bullet \mathbf{m}_{0\mathrm{K}} \right) = \left(\pi / c \right) \sum_{i,a} \sum_{j,b} C_{ia\mathrm{K}} C_{jb\mathrm{K}} \{ \boldsymbol{v}_{a} \, \boldsymbol{\mu}_{0a} \bullet \mathbf{R}_{j} \times \boldsymbol{\mu}_{j0b} \right.$$
$$\left. - \left(2 / h \right) \sum_{l \neq j} \sum_{\beta} \frac{\boldsymbol{v}_{b} \boldsymbol{v}_{\beta} V_{j0b;l0\beta} \, \boldsymbol{\mu}_{0a} \bullet \mathbf{R}_{l} \times \boldsymbol{\mu}_{0\beta}}{\left(\boldsymbol{v}_{\beta}^{2} - \boldsymbol{v}_{b}^{2} \right)} \right.$$
$$\left. - \left(2 / h \right) \sum_{l \neq j} \sum_{\beta} \frac{\boldsymbol{v}_{a} \boldsymbol{v}_{\beta} V_{i0a;l0\beta} \, \boldsymbol{\mu}_{0\beta} \bullet \mathbf{R}_{j} \times \boldsymbol{\mu}_{j0b}}{\left(\boldsymbol{v}_{\beta}^{2} - \boldsymbol{v}_{a}^{2} \right)} \right\}$$
$$\left. + \mathrm{Im} \sum_{i,a} \sum_{j,b} C_{ia\mathrm{K}} C_{jb\mathrm{K}} \left[\boldsymbol{\mu}_{0a} \bullet \mathbf{m}_{jb0} - \left(2 / h \right) \sum_{l \neq i} \sum_{\beta} \frac{\boldsymbol{v}_{\beta} V_{i0a;l0\beta} \, \boldsymbol{\mu}_{0\beta} \bullet \mathbf{m}_{jb0}}{\left(\boldsymbol{v}_{\beta}^{2} - \boldsymbol{v}_{a}^{2} \right)} \right] \right.$$

The first term and the first term in the last line of Eq. S3 are the zeroth-order exciton contributions, which are included in the matrix method, so we shall drop them. The second and third lines are the first-order correction to the exciton rotational strength for electrically allowed transitions and give rise to Eq. 6 in the paper. Because *i0a* and *j0b* are equivalent, we can interchange these indices in line 2 and, using the properties of the scalar triple product, combine lines 2 and 3 to give:

$$(\mathbf{R}_{\mu})_{\mathrm{KK}} = -(2\pi/c) \sum_{i,a} \sum_{j,b} \sum_{l \neq j} \sum_{\beta} C_{iaK} C_{jbK} \frac{v_a v_{\beta} V_{j0b;l0\beta} \mathbf{R}_{il} \bullet \boldsymbol{\mu}_{0\beta} \times \boldsymbol{\mu}_{0a}}{h(v_{\beta}^2 - v_a^2)}$$
S4

where $\mathbf{R}_{il} = \mathbf{R}_{l} - \mathbf{R}_{i}$. Substituting $v_a \approx v_K$, we obtain:

$$(\mathbf{R}_{\mu})_{\mathrm{KK}} = -(2\pi / \lambda_{K}) \sum_{i,a} \sum_{j,b} \sum_{l \neq j} \sum_{\beta} C_{iaK} C_{jbK} \frac{\nu_{\beta} V_{j0b;l0\beta} \mathbf{R}_{il} \bullet \boldsymbol{\mu}_{0\beta} \times \boldsymbol{\mu}_{0a}}{\boldsymbol{h}(\nu_{\beta}^{2} - \nu_{K}^{2})}$$
S5

This is Eq. 6 in the text of the paper.

The contribution of the high-energy transitions to the rotational strength of exciton level K through the magnetically allowed transitions is obtained from the last term of Eq. S3.

$$(\mathbf{R}_{m})_{KK} = -2\sum_{i,a} \sum_{j,b} \sum_{l \neq \bar{l}} \sum_{\beta} C_{iaK} C_{jbK} \frac{\nu_{\beta} V_{i0a;l0\beta} \operatorname{Im}[\boldsymbol{\mu}_{0\beta} \bullet \mathbf{m}_{jb0}]}{h(\nu_{\beta}^{2} - \nu_{a}^{2})}$$
S6

With the substitution of $v_{\rm K}$ for $v_{\rm a}$, this becomes

$$(\mathbf{R}_{m})_{KK} = -2\sum_{i,a} \sum_{j,b} \sum_{l \neq i} \sum_{\beta} C_{iaK} C_{jbK} \frac{\nu_{\beta} V_{i0a;l0\beta} \operatorname{Im}[\mu_{0\beta} \bullet \mathbf{m}_{jb0}]}{h(\nu_{\beta}^{2} - \nu_{K}^{2})}$$
S7

which is equivalent to Eq. 14 in the text of the paper.

The standard exciton model only considers the mixing of a number of low-energy singly excited configurations. Doubly excited configurations are neglected. These doubly excited configurations can mix with the ground configuration and with the singly excited configurations. However, only mixing with the ground state contributes to the electric and magnetic dipole transition moments. Therefore, we will neglect the perturbation terms in the excited-state wave function and keep only the zeroth-order term.

$$\Psi_0 = \psi_0 - 2^{-1} \sum_{i,a} \sum_{k,c} \frac{V_{i0a;k0c}}{h(\nu_a + \nu_c)} \psi_{ia,kc}$$
 S8

$$\Psi_{K} = \sum_{i,a} C_{iaK} \psi_{ia}$$

where $\psi_{ia,kc}$ is the wave function for the doubly excited configuration in which group *i* is in excited state *a* and group *k* is in excited state *c*, all other groups being in their ground states.

To calculate the contributions to the CD of this mixing with doubly excited configurations, we use the dipole velocity formalism of Moffitt² because this yields rotational strengths that are origin-independent.

$$R_{0K} = \frac{e^2 \hbar^3}{2m^2 c E_K} (\Psi_0 |\nabla| \Psi_K) \bullet (\Psi_0 |\mathbf{r} \times \nabla| \Psi_K)$$
 S10

where $\nabla = \mathbf{i} \partial/\partial \mathbf{x} + \mathbf{j} \partial/\partial \mathbf{y} + \mathbf{k} \partial/\partial \mathbf{z}$ is the gradient operator and E_K is the transition energy for exciton level *K*. The gradient operator has matrix elements that are proportional to those of the dipole moment operator ³:

$$\nabla_{i0a} = \frac{2\pi m v_a}{e\hbar} \,\boldsymbol{\mu}_{0a}$$

Similarly, the matrix elements of the $\mathbf{r} \times \nabla$ operator are proportional to those of the **m** operator:

$$\mathbf{r} \times \nabla = -\frac{2imc}{e\hbar^2} \mathbf{m}_{i0a}$$

To first order in V,

$$(\Psi_0 | \nabla | \Psi_K) = (\psi_0 - 2^{-1} \sum_{k,c} \sum_{l,d} \frac{V_{k0c;l0d}}{h(v_c + v_d)} \psi_{kc,ld} | \nabla | \sum_{i,a} C_{iaK} \psi_{ia})$$
S13

$$= \sum_{i,a} C_{iaK} \{ (\psi_0 | \nabla | \psi_{ia}) - 2^{-1} \sum_{k,c} \sum_{l,d} \frac{V_{k0c;l0d}}{h(\nu_c + \nu_d)} (\psi_{kc,ld} | \nabla | \psi_{ia}) \}$$
S14

The second term in this equation will vanish unless *ia=ld* or *ia=me*. Thus, for a given *ia*, we have two equivalent non-zero terms, permitting us to simplify Eq. S14 to:

$$(\Psi_{0} | \nabla | \Psi_{K}) = \sum_{i,a} C_{iaK} \{ (\psi_{0} | \nabla | \psi_{ia}) + \sum_{k,c} \frac{V_{i0a;k0c}}{h(\nu_{a} + \nu_{c})} (\psi_{0} | \nabla | \psi_{kc}) \}$$
S15

where we have reversed the sign of the summation by interchanging the order of the wave functions in the matrix element. Similarly, the angular momentum matrix element can be written:

$$(\Psi_0 | \mathbf{r} \times \nabla | \Psi_K) = \sum_{j,b} C_{jbK} \{ (\psi_0 | \mathbf{r} \times \nabla | \psi_{jb}) + \sum_{l,d} \frac{V_{j0b;l0d}}{h(v_b + v_d)} (\psi_0 | \mathbf{r} \times \nabla | \psi_{ld}) \}$$
S16

We therefore have the rotational strength in the dipole velocity form:

$$R_{0AK} = \frac{\gamma_P}{E_K} (\Psi_0 |\nabla| \Psi_{AK}) \bullet (\Psi_0 |\mathbf{r} \times \nabla| \Psi_{AK}) = \frac{\gamma_P}{E_K} \sum_{i,a} \sum_{j,b} C_{iaK} C_{jbK} \{\nabla_{i0a} \bullet (\mathbf{r} \times \nabla)_{j0b} + \sum_{k,c} \frac{V_{i0a;k0c}}{h(\nu_a + \nu_c)} \nabla_{i0a} \bullet (\mathbf{r} \times \nabla)_{l0c} + \sum_{l,d} \frac{V_{j0b;l0d}}{h(\nu_b + \nu_d)} \nabla_{i0a} \bullet (\mathbf{r} \times \nabla)_{l0d} \}$$

where $\gamma_P = e^2 \hbar^3 / 2m^2 c$. We have omitted the second-order term arising from the product of the two

summations. Eq. S17 contains the zeroth- and first-order exciton contributions:

$$R_{0K} = R_{0K}^{(0)} + R_{0K}^{(1)}$$
 S18

The zeroth-order term, the first term in Eq. S17, has been included via the matrix method. We are interested here in the first-order correction:

$$R_{0K}^{(1)} = \frac{\gamma_p}{E_K} \sum_{i,a} \sum_{j,b} C_{iaK} C_{jbK} \{ \sum_{k,c} \frac{V_{i0a;k0c}}{h(\nu_a + \nu_c)} \nabla_{k0c} \bullet (\mathbf{r} \times \nabla)_{j0b}$$

+
$$\sum_{l,d} \frac{V_{j0b;l0d}}{h(\nu_b + \nu_d)} \nabla_{i0a} \bullet (\mathbf{r} \times \nabla)_{l0d} \}$$
 S19

which is Eq. 19 in the text.

According to perturbation theory⁴, the energy shift for exciton state K due to mixing with highenergy transitions is:

$$\Delta E_{\kappa} = \sum_{l,\beta} \frac{H_{\kappa l\beta} H_{l\beta\kappa}}{h(\nu_{\kappa} - \nu_{\beta})}$$
S20

where v_K is the unperturbed frequency of exciton state *K*; v_β is the unperturbed frequency of the transition $0 \rightarrow \beta$ in group *l*; and

$$\boldsymbol{H}_{Kl\beta} = (\Psi_K \left| \sum_{i} \sum_{l>i} V_{ij} \right| \psi_{l\beta}) = (\sum_{i,a} C_{iaK} \psi_{ia} \left| \sum_{i} \sum_{l>i} V_{il} \right| \psi_{l\beta}) = \sum_{i,a} \sum_{l,\beta} C_{iaK} V_{i0a;l0\beta}$$
S21

Using the monopole approximation for the charge density of the discrete transition $0 \rightarrow a$ (Eq. 8 in the text), we obtain:

$$H_{Kl\beta} = -\sum_{i,a} \sum_{s} \sum_{l,\beta} C_{iaK} \frac{q_{is0a} \mathbf{R}_{is,l\beta} \bullet \boldsymbol{\mu}_{0\beta}}{R_{is,l\beta}^3}$$
S22

Correspondingly,

$$H_{l\beta K} = -\sum_{j,b} \sum_{t} \sum_{l,\beta} C_{jbK} \frac{q_{jt0b} \, \boldsymbol{\mu}_{0\beta} \bullet \mathbf{R}_{is,l\beta}}{R_{is,l\beta}^3}$$

Thus,

$$\Delta E_{K} = -\sum_{i,a} \sum_{j,b} \sum_{l,\beta} C_{iaK} C_{jbK} \frac{\mathsf{R}_{is,l\beta} \bullet \boldsymbol{\mu}_{0\beta} \boldsymbol{\mu}_{0\beta} \bullet \mathsf{R}_{jt,l\beta}}{h(\boldsymbol{v}_{\beta}^{0} - \boldsymbol{v}_{K}^{0}) R_{is,l\beta}^{3} R_{jt,l\beta}^{3}}$$
S24

We can approximate¹ the summation over the high-energy states β in group *l* by introducing the polarizability of group *l*, α_l :

$$\sum_{\beta} \frac{\boldsymbol{\mu}_{0\beta} \, \boldsymbol{\mu}_{0\beta}}{\boldsymbol{\nu}_{\beta} - \boldsymbol{\nu}_{K}} \cong \frac{h \, \boldsymbol{\nu}_{0} \, \boldsymbol{\alpha}_{l}}{2(\boldsymbol{\nu}_{0} - \boldsymbol{\nu}_{K})}$$

where v_0 is an average frequency for the high-energy transitions, assumed in this work to be (in wavenumbers) 10^5 cm^{-1} . With this substitution, we have:

$$\Delta E_{K} = -\frac{\nu_{0}}{2(\nu_{0} - \nu_{K})} \sum_{i,a} \sum_{j,b} \sum_{l,\beta} C_{iaK} C_{jbK} \frac{\mathsf{R}_{is,l\beta} \bullet \boldsymbol{\alpha}_{l} \bullet \mathsf{R}_{jt,l\beta}}{h(\nu_{\beta} - \nu_{K}) R_{is,l\beta}^{3} R_{jt,l\beta}^{3}}$$
S26

Eq. 20 in the text is now obtained by recognizing that the multiple summations in Eq. S26 are equivalent to the matrix product:

$$\Delta E_{K} = -\frac{\nu_{0}}{2(\nu_{0} - \nu_{K})} \sum_{l} \mathbf{C}^{+} \mathbf{G} \, \boldsymbol{\alpha} \mathbf{G}^{+} \mathbf{C}$$

where the matrices **C** and **C**⁺ are the eigenvector matrix and its transpose, respectively, from the diagonalization of the Hamiltonian matrix in the matrix method; the matrix **G** is defined in Eq. 12 in the text and **G**⁺ is its transpose; and the polarizability matrix α_l is constructed from the matrices representing the group polarizability tensors as described in the text.

To calculate the change in dipole strength of exciton level K due to mixing with high-energy transitions, we start with Eq. S1. We wish to calculate:

$$D_{K} = \boldsymbol{\mu}_{0K} \boldsymbol{\mu}_{K0} = \sum_{i,a} C_{iaK} \{ \boldsymbol{\mu}_{0a} - 2\sum_{l \neq i} \sum_{\alpha} \frac{V_{i0a;l0\alpha} \boldsymbol{\mu}_{0\alpha} \boldsymbol{\nu}_{\alpha}}{h(\boldsymbol{\nu}_{\alpha}^{2} - \boldsymbol{\nu}_{a}^{2})} \} \bullet \sum_{j,b} C_{jbK} \{ \boldsymbol{\mu}_{j0b} - 2\sum_{m \neq j} \sum_{\beta} \frac{V_{j0b;m0\beta} \boldsymbol{\mu}_{m0\beta} \boldsymbol{\nu}_{\beta}}{h(\boldsymbol{\nu}_{\beta}^{2} - \boldsymbol{\nu}_{b}^{2})} \} S28$$

The leading (zeroth-order) term in this scalar product is the usual exciton dipole strength that is calculated in the matrix method. We are interested in the two first-order terms, which are equivalent and can be combined to give:

$$\Delta D_{K} = -4 \sum_{i,a} \sum_{j,b} C_{iaK} C_{jbK} \, \boldsymbol{\mu}_{0a} \bullet \sum_{m \neq j} \sum_{\beta} \frac{V_{j0b;m0\beta} \, \boldsymbol{\mu}_{j0b} v_{\beta}}{h(v_{\beta}^{2} - v_{b}^{2})}$$
S29

Using the monopole approximation for μ_{j0b} (Eq. 8 in text), we have:

$$\Delta D_{K} = \frac{4}{h} \sum_{i,a} \sum_{j,b} \sum_{t} C_{iaK} C_{jbK} \sum_{m \neq j} \sum_{\beta} \frac{q_{j0bt} \, \mu_{0a} \bullet \mu_{m0\beta} \, \mu_{m0\beta} \bullet R_{jbt,m\beta}}{R_{jbt,m\beta}^{3} (v_{\beta}^{2} - v_{b}^{2})}$$
S30

Replacing v_{β} by v_0 , v_b by v_K , and $\sum_{\beta} \mu_{n0\beta} \mu_{n0\beta}$ by $h v_0 \alpha_m/2$, we obtain:

$$\Delta D_{K} = \frac{2v_{0}^{2}}{v_{0}^{2} - v_{K}^{2}} \sum_{i,a} \sum_{j,b} \sum_{t} \sum_{m \neq j} C_{iaK} C_{jbK} \frac{q_{j0bt} \boldsymbol{\mu}_{0a} \bullet \boldsymbol{\alpha}_{m} \bullet \boldsymbol{R}_{jbt,m\beta}}{R_{jbt,m\beta}^{3}}$$
S31

$$=\frac{2v_0^2}{v_0^2-v_K^2}\sum_{\boldsymbol{m}}\mathbf{C}^+\boldsymbol{\mu}\;\boldsymbol{\rho}\mathbf{G}^+\mathbf{C}$$
S32

This is Eq. 21 in the text. The *Kth* diagonal element of the matrix product on the right-hand side of Eq. S32 is the correction to the dipole strength of exciton level *K*.

	ATOMIC POSITIONS					
Atom	Х	Y	Z			
C' (carbonyl C)	1.530000	.000000	.000000			
O (carbonyl O)	2.154272	1.059804	.000000			
C ₁ (C-methyl C)	0.000000	0.000000	.000000			
H ₁ (C-methyl H)	-0.363333	1.027662	.000000			
H ₂ (C-methyl H)	-0.363333	-0.513831	889981			
H ₃ (C-methyl H)	-0.363333	-0.513831	.889981			
N (amide N)	2.089969	-1.200858	.000000			
C ₂ (N-methyl C)	3.535009	-1.352738	.000000			
H ₄ (N-methyl H)	3.788932	-2.412749	.000000			
H ₅ (N-methyl H)	3.950062	-0.879701	889981			
H ₆ (N-methyl H)	3.950062	-0.879701	.889981			
H _N (amide H)	1.574931	-2.058025	.000000			

Polarizability Tensor Calculations

^a The coordinate system is the standard coordinate system of Ooi et al.⁵, with the x-axis along the C_{α} -C' bond, the carbonyl O having a positive y-coordinate, and the origin at C_{α} . Coordinates are in Å.

TENSO	TENSOR POSITIONS ^a							
Tensor	х	У	Z	Comment				
CO1	3.685810	1.333735	471490	CARBONYL BANANA BOND				
CO2	3.685810	1.333735	.471490	CARBONYL BANANA BOND				
O-LP1	3.707191	2.464276	.000000	CARBONYL OXYGEN LONE PAIR				
O-LP2	4.664518	1.913979	.000000	CARBONYL OXYGEN LONE PAIR				
CC ₁	1.426908	028686	.000000	C METHYL CC BOND				
C_1 - H_1	466819	1.297037	.000000	C METHYL CH BOND				
C ₁ -H ₂	446901	670431	-1.133331	C METHYL CH BOND				
C ₁ -H ₃	446901	670431	1.133331	C-METHYL CH BOND				
CN1	3.646710	-1.665251	512077	AMIDE CN BANANA BOND				
CN2	3.646710	-1.665251	.512077	AMIDE CN BANANA BOND				
NH	3.351576	-3.229547	.000000	AMIDE NH BOND				
NC ₂	5.103751	-2.392518	.000000	N METHYL NC BOND				
C ₂ -H ₄	6.987396	-3.933881	.000000	N METHYL CH BOND				
C ₂ -H ₅	7.215265	-1.959871	-1.142717	N METHYL CH BOND				
C ₂ -H ₆	7.215265	-1.959871	1.142717	N METHYL CH BOND				

^a The coordinate system is the standard coordinate system of Ooi et al.⁵, with the x-axis along the C_{α} -C' bond, the carbonyl O having a positive y-coordinate, and the origin at the C_{α} . Coordinate values are in atomic units, a_0 . Based upon bond and lone-pair polarizability tensors calculated for *trans*-N-methylacetamide by Walter Stevens using the method of Garmer and Stevens.⁶

Tensor ^b	XX	Yy	ZZ	ху	XZ	yz	ух	ZX	zy
CO1	2.3415	4.0788	2.1384	.7521	.1762	.5742	1.5538	5978	2989
CO2	2.3420	4.0787	2.1383	.7519	1759	5738	1.5542	.5978	.2990
O-LP1	1.3778	2.4885	1.3635	.2190	.0002	.0001	2610	.0000	.0001
O-LP2	2.3898	1.6498	.4983	.3743	0004	0004	.5707	.0000	.0000
CC ₁	5.6466	2.1853	1.6693	5428	0001	0001	4168	.0000	.000 1
C ₁ -H ₁	3.5448	4.4530	2.3873	-1.2985	.0000	.0000	9856	.0000	.0002
C ₁ -H ₂	3.9332	2.8193	4.1044	.5402	1.2184	.8375	.2821	.7221	.8784
C ₁ -H ₃	3.9333	2.8193	4.1042	.5402	-1.2183	8375	.2822	7219	8782
CN1	3.4114	4.2605	3.2452	-1.5968	.4432	7879	-1.6077	-2.8432	6. 3464
CN2	3.4115	4.2599	3.2483	-1.5971	4431	.7880	-1.6075	2.8431	-6.3460
NH	2.3879	2.9124	2239	.3929	.0000	.0000	.6230	0002	0002
NC ₂	4.5585	1.7751	0224	5299	.0000	.0000	-1.1250	.0000	0003
C ₂ -H ₄	3.0773	4.8056	2.3651	-1.2281	.0000	.0000	9114	.0001	0002
C ₂ -H ₅	3.5593	2.6216	3.9689	.2678	-1.1500	4886	3180	6668	7248
C ₂ -H ₆	3.5593	2.6215	3.9686	.2678	1.1500	.4886	3180	.6665	.7247

Table S3. Polarizability Tensor Components for N-Methylacetamide^a

^a The coordinate system is the standard coordinate system of Ooi et al.⁵, with the x-axis along the C_{α} -C' bond, the carbonyl O having a positive y-coordinate, and the origin at the C_{α} . Polarizabilities are in atomic units, $a_0^3 = 0.148$ Å³. Based upon bond and lone-pair polarizability tensors calculated for *trans*-N-methylacetamide by Walter Stevens using the method of Garmer and Stevens.⁶

^b For more complete identification of the tensors, see Table S2.

Group	Position ^a			Symmetry axis ^b		
	X	У	Z	e _x	ey	ez
C' = O	-0.003273	0.0	0.821519	0.0	0.0	1.0
O lone pair 1	-0.301802	0.0	1.340094	-0.515207	0.0	0.857066
O lone pair 2	0.282415	0.0	1.351514	0.544937	0.0	0.838477
$C_{\alpha}-C'$	-0.656331	0.0	-0.412251	0.857066	0.0	0.515207
C' – N	0.796624	0.0	-0.549301	0.930247	0.0	-0.365437
$N - H^{c}$	1.089253	0.0	-1.339235	0.0	-1.0	0.0
$N - C_{\alpha}$	1.65573	0.0	-0.481903	0.927517	0.0	0.373779
$\pi\pi*$ trans	0.0	0.0	0.0	-0.881463	0.0	0.472254
$C_{\alpha} - H$	0.74	0.0	0.0	1.0	0.0	0.0
$C_{\alpha} - C_{\beta}$	0.765	0.0	0.0	1.0	0.0	0.0
C_{β} methyl	1.711667	0.0	0.0	1.0	0.0	0.0

^a The coordinate system used for amide polarizability ellipsoids has the z-axis along the C=O bond, with the x-axis in the plane and directed such that the amide N has a positive x-coordinate. The y-axis is perpendicular to the amide plane. The origin is at the carbonyl C. For the side-chain and the C_{α} – H groups, the x-axis is along the bond direction, with the origin at the C_{α} and directed toward C_{β} or H_{α} . Coordinates are in Å. Based upon bond and lone-pair polarizability tensors calculated for *trans*-N-methylacetamide by Walter Stevens using the method of Garmer and Stevens.⁶

^b The directions of the symmetry axes are specified by their components along the axes of the coordinate system described in footnote a.

^c All of the polarizability ellipsoids are prolate, except that for the NH bond, which is oblate. The outof-plane polarizability is much smaller than the two in-plane components, so the symmetry axis is perpendicular to the amide plane.

	x ^b	y ^b	z ^b	NV ₁	NV ₁	NV ₂ ^c	G. S. ^e
				(-55°) ^c	(-40°) ^d		
C1	0.0	1.0806	0.0	1.1211	0.4914	1.4469	1.0496
	0.0	-1.0806	0.0	1.1211	0.4914	1.4469	1.0496
02	0.0	0.7737	0.0	0.0130	0.3986	-0.7586	-1.1181
	0.0	-0.7737	0.0	0.0130	0.3986	-0.7586	-1.1181
N3	0.0	0.9813	0.0	-1.1341	-0.8900	-0.6883	0.0705
	0.0	-0.9813	0.0	-1.1341	-0.8900	-0.6883	0.0705
	0.0	0.0	0.0				-1.3
H4	0.0	0.0	0.0				1.3

^a The origin is at the carbonyl carbon. The z axis is along the carbonyl bond with O in the positive direction. The x-axis is in-plane and directed such that the N has a positive x coordinate.

^b Monopole positions relative to atomic centers ⁷. Coordinates are in Å.

^cMonopole charges in 10⁻¹⁰ esu. Transition moment for secondary amide group in N-acetylglycine ⁸. This was the transition moment direction used by Woody and Sreerama.⁹ The signs of the charges are reversed relative to those used by Woody and Sreerama, as indicated by the red font.

^dMonopole charges in 10^{-10} esu. These monopole charges yield a transition moment close to that reported for myristamide.¹⁰ This is the transition moment direction that gives the best results for the P_{II} conformation, as found in the present work.

^e These are the ground-state permanent monopoles for secondary amide groups.¹¹ Monopole charges in 10^{-10} esu. For tertiary (Pro) amides, the π monopoles are the same, but the two in-plane σ monopoles are set to zero.

Transition	E	∇_{x}	$ abla_{z}$	$(\mathbf{r} \mathbf{x} \nabla)_{\mathbf{y}}$	Bandwidth
	(eV)	$(A^{-1})^b$	$(A^{-1})^b$	(BM)	(nm)
$NV_1 (-55^{\circ})^{c}$	6.5255 ^d	0.4416	-0.3092	0	11.3
$NV_1 (-40^{\circ})^{c}$	6.5255 ^d	0.3465	-0.4130	0	11.3
NV ₂ ^e	8.9275	0.3663	0.2031	0	7.2

^a Because of the plane of symmetry, the y-component of the ∇ matrix element and the x, z components of the (**r x** ∇) matrix element are zero.

^b The origin is at the carbonyl carbon. The z axis is along the carbonyl bond with O in the positive direction. The x-axis is in-plane and directed such that the N has a positive x coordinate.

^c Two NV₁ transition moment directions are used in this work, corresponding to the angles of -55° and -40° relative to the carbonyl bond direction.^{8, 10}.

^d For the tertiary amide of an X-Pro bond, the NV_1 transition energy is 6.1993 eV.

^e The gradient matrix element for the NV_2 transition is reversed in direction relative to that used by Woody and Sreerama.⁹ This is indicated by the red font.

Atom	x ^b	y ^b	z ^b	$n\pi^{*^{c,d}}$	$n\pi^*-NV_1^c$	$n\pi^*-NV_2^{c,e}$
02	0.6064	0.6064	0.0	0.4761	0.4171	-0.3720
	0.6064	-0.6064	0.0	-0.4761	-0.4171	0.3720
	-0.6064	-0.6064	0.0	0.4761	0.4171	-0.3720
	-0.6064	0.6064	0.0	-0.4761	-0.4171	0.3720
C1	0.8470	0.8470	0.0	0.1318	0.0	0.0521
	0.8470	-0.8470	0.0	-0.1318	0.0	-0.0521
	-0.8470	-0.8470	0.0	0.1318	0.0	0.0521
	-0.8470	0.8470	0.0	-0.1318	0.0	-0.0521
N3	0.7716	0.7716	0.0	0.0	-0.0681	0.0
	0.7716	-0.7716	0.0	0.0	0.0681	0.0
	-0.7716	-0.7716	0.0	0.0	-0.0681	0.0
	-0.7716	0.7716	0.0	0.0	0.0681	0.0
	I					

Table S7. Monopoles for $n\pi^*$ Transitions in Amides^a

^a The z axis is along the carbonyl bond with O positive. The x-axis is in-plane and directed such that the N has a positive x coordinate. The origin is at the carbonyl carbon.

^b Monopole positions relative to the atomic centers.⁷. Coordinates are in Å.

^c Monopole charges in 10⁻¹⁰ esu. Calculated from INDO/S¹² wave functions for N-methylacetamide.

 d The signs of the $n\pi^*$ monopole charges are reversed relative to those used by Woody and Sreerama, 9 as indicated by the red font.

^e For transitions connecting the $n\pi$ * state with the ground-, NV_1 and NV_2 states, the transition charge density has quadrupolar charge arrays at O, C, and N. Our program limits the number of monopoles to eight, so the charges at one of the three centers were neglected. Naturally, those with the smallest magnitudes were eliminated. In the case of the $n\pi$ *-NV₂ transition, the magnitudes of the monopoles at the C and N were similar (0.0521 vs. 0.0421), both significantly smaller than those at the carbonyl O (0.3720). Woody and Sreerama⁹ inadvertently used the somewhat smaller N monopoles rather than the C monopoles. This is reflected by the red font in the altered $n\pi$ *-NV₂ monopoles.

Table S8. Transition Parameters for the $n\pi^*$ Transition in the Amide Group^a

Transition	E (eV) ^b	$ abla_{y}$ (A ⁻¹)	(r x (BM) ^c	$ abla)_x (\mathbf{r} \mathbf{x} \nabla \\ (\mathbf{BM})^c $	⁽⁷⁾ _z Bandwidth (nm)
nπ*	5.6357	0.0	0.0904	-0.9094	10.5

^a Because of the plane of symmetry, the x and z components of the ∇ matrix element and the y component of the (r x ∇) matrix element are zero.

^b Corresponds to the standard wavelength for the $n\pi^*$ transition in polypeptides, 220 nm. Note that INDO/S¹² significantly underestimates the $n\pi^*$ transition energy, placing the transition at about 300 nm.

^c Calculated from INDO/S¹² wave functions for N-methylacetamide.

Figure S1. Comparison of the exciton CD spectrum calculated for $(Ala)_{20}$ in a Pauling and Corey¹³ α -helix using the amide transition parameters of Woody and Sreerama⁹ (red spectrum) and the corrected parameters used in this work (blue spectrum).

Figure S2. CD spectra of PII helices of $(Ala)_n$ as a function of n. $(\phi, \psi) = (-60^\circ, 160^\circ)$. The arrows indicate the direction of increasing n: 2, 3, ..., 10, 15, 20.

Figure S3. Length dependence of the CD of (Ala)_n in the P_{II} conformation, $(\phi, \psi) = (-60^{\circ}, 160^{\circ})$, at the short-wavelength negative maximum. The length dependence is described by the empirical equation of Chen et al.¹⁴: $\Delta \varepsilon_{\lambda} = \Delta \varepsilon_{\lambda}(\infty)(n-k)/n$, where $\Delta \varepsilon_{\lambda}(\infty)$ is the per residue CD at wavelength λ for the infinite helix and *k* is an end-effect correction, the "number of missing residues" due to end effects. A plot of $n\Delta \varepsilon_{\lambda}$ vs. n gives $\Delta \varepsilon_{\lambda}(\infty)$ as the slope and $-k \Delta \varepsilon_{\lambda}(\infty)$ as the intercept. In the present plot, the data are not for a single wavelength but for the peak of the short-wavelength negative maximum, which shifts from 185 nm to 196 nm as *n* increases. Data for n < 6 deviated from linearity, so only points for $n\geq 6$ were used for linear regression, which gave the equation shown on the plot. From this, we obtain $\Delta \varepsilon_{\lambda}(\infty) = -12.53$ and k = 2.67, i.e., each residue in the infinite helix contributes $-12.53 \text{ M}^{-1}\text{cm}^{-1}$ to the CD near 200 nm and 2.7 residues are effectively missing from the helix due to end effects.

Figure S4. Length dependence of the CD of $(Ala)_n$ in the P_{II} conformation, $(\phi, \psi) = (-60^\circ, 160^\circ)$, at the long-wavelength positive maximum, at 221 nm for all *n*. For details, see the caption to Fig. S3. Linear regression using all of the data points gives the expression shown on the plot. From this, we conclude that each residue contributes $2.72 \text{ M}^{-1} \text{ cm}^{-1}$ to the CD near 220 nm and that the end effects *decrease* the effective helix length by -0.70, i. e., they *increase* the effective helix length.

REFERENCES

- (1) Tinoco, I., Jr. Adv. Chem. Phys. 1962, 4, 113-160.
- (2) Moffitt, W. J. Chem. Phys. 1956, 25, 467-478.
- (3) Eyring, H.; Walter, J.; Kimball, G. E., Quantum Chemistry. In Ed. John Wiley & Sons: New York, 1944; p. 111.
- (4) Eyring, H.; Walter, J.; Kimball, G. E., Quantum Chemistry. In Ed. John Wiley & Sons: New York, 1944; p. 95.
- (5) Ooi, T.; Scott, R. A.; Vanderkooi, G.; Scheraga, H. A. J. Chem. Phys. 1967, 46, 4410-4426.
- (6) Garmer, D. R.; Stevens, W. J. J. Phys. Chem. 1989, 93, 8263-8270.
- (7) Woody, R. W. J. Chem. Phys. 1968, 49, 4797-4806.
- (8) Clark, L. B. J. Am. Chem. Soc. 1995, 117, 7974-7986.
- (9) Woody, R. W.; Sreerama, N. J. Chem. Phys. 1999, 111, 2844-2845.
- (10) Peterson, D. L.; Simpson, W. T. J. Am. Chem. Soc. 1957, 79, 2375-2382.
- (11) Woody, R. W.; Tinoco, I., Jr. J. Chem. Phys. 1967, 46, 4927-4945.
- (12) Ridley, J.; Zerner, M. Theor. Chim. Acta 1973, 32, 111-134.
- (13) Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci. USA 1951, 37, 205-211.
- (14) Chen, Y. H.; Yang, J. T.; Martinez, H. M. Biochemistry 1972, 11, 4120-4131.