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Derivation of Eqns. 6, 14, and 19-21 in Text 

 The contributions to the electric and magnetic dipole transition moments that are of interest here 

result from: (1) mixing of the ground configuration with doubly excited configurations in which one 

residue is in a discrete excited state (a, b, c,...) and another residue is in a high-energy excited state 

(α, β, γ,...); (2) mixing of singly excited configurations, one with a residue in a discrete excited state and 

the other with a different residue in a high-energy excited state.  Eq. IIIB-18 of Tinoco1 gives the 

electric dipole transition moment for exciton state K, μ0K.  Stripped of terms that are not relevant in the 

present context, this becomes: 
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where CiaK is defined in Eq. 4 of the text; μi0a is the electric dipole transition moment for transition 0→a 

in group i; νa and νβ are the frequencies of  transitions 0→a and 0→β, respectively; and Vi0a;loβ is 

defined in Eq. 8 of the text. 

 Similarly, the magnetic dipole transition moment, mK0, in Tinoco’s Eq. IIIB-20 becomes: 
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where Rj and Rl are, respectively, the positions of groups j and l; and mjb0 is the magnetic dipole 

transition moment of the transition 0→b in group j.  (A contribution to the intrinsic magnetic dipole 

transition moment analogous to the second term in brackets has been omitted because it involves mlβ0, 

the magnetic dipole transition moment of a high-energy transition, about which no information is 

available.)   
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 The exciton rotational strength is the imaginary part of the scalar product of these transition 

dipole moments: 
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The first term and the first term in the last line of Eq. S3 are the zeroth-order exciton contributions, 

which are included in the matrix method, so we shall drop them.  The second and third lines are the 

first-order correction to the exciton rotational strength for electrically allowed transitions and give rise 

to Eq. 6 in the paper.  Because i0a and j0b are equivalent, we can interchange these indices in line 2 

and, using the properties of the scalar triple product, combine lines 2 and 3 to give: 
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where Ril = Rl−Ri.  Substituting νa≈νK, we obtain: 
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This is Eq. 6 in the text of the paper. 
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 The contribution of the high-energy transitions to the rotational strength of exciton level K 

through the magnetically allowed transitions is obtained from the last term of Eq. S3. 
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With the substitution of νK for νa, this becomes 
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which is equivalent to Eq. 14 in the text of the paper. 

 The standard exciton model only considers the mixing of a number of low-energy singly excited 

configurations.  Doubly excited configurations are neglected.  These doubly excited configurations can 

mix with the ground configuration and with the singly excited configurations.  However, only mixing 

with the ground state contributes to the electric and magnetic dipole transition moments.  Therefore, we 

will neglect the perturbation terms in the excited-state wave function and keep only the zeroth-order 

term. 
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where ψia,kc is the wave function for the doubly excited configuration in which group i is in excited state 

a and group k is in excited state c, all other groups being in their ground states. 

 To calculate the contributions to the CD of this mixing with doubly excited configurations, we 

use the dipole velocity formalism of Moffitt2 because this yields rotational strengths that are origin-

independent. 
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where ∇ = i ∂/∂x +j ∂/∂y + k ∂/∂z is the gradient operator and EK is the transition energy for exciton 

level K.  The gradient operator has matrix elements that are proportional to those of the dipole moment 

operator 3: 
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Similarly, the matrix elements of the r ×∇ operator are proportional to those of the m operator: 
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 To first order in V, 
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The second term in this equation will vanish unless ia=ld or ia=me.  Thus, for a given ia, we have two 

equivalent non-zero terms, permitting us to simplify Eq. S14 to: 
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where we have reversed the sign of the summation by interchanging the order of the wave functions in 

the matrix element.  Similarly, the angular momentum matrix element can be written: 
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 We therefore have the rotational strength in the dipole velocity form: 
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where γP = e2 3/2m2c. We have omitted the second-order term arising from the product of the two 

summations.  Eq. S17 contains the zeroth- and first-order exciton contributions: 
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The zeroth-order term, the first term in Eq. S17, has been included via the matrix method.  We are 

interested here in the first-order correction: 
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which is Eq. 19  in the text.  

 According to perturbation theory4, the energy shift for exciton state K due to mixing with high-

energy transitions is: 
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where   is the unperturbed frequency of exciton state K; is the unperturbed frequency of the 

transition 0→β in group l; and  
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Using the monopole approximation for the charge density of the discrete transition 0→a (Eq. 8 in the 

text), we obtain: 
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We can approximate1 the summation over the high-energy states β in group l by introducing the 

polarizability of group l, αl: 
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where ν0 is an average frequency for the high-energy transitions, assumed in this work to be (in 

wavenumbers) 105 cm−1.  With this substitution, we have:  
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Eq. 20 in the text is now obtained by recognizing that the multiple summations in Eq. S26 are 

equivalent to the matrix product: 
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where the matrices C and C+ are the eigenvector matrix and its transpose, respectively, from the 

diagonalization of the Hamiltonian matrix in the matrix method; the matrix G is defined in Eq. 12 in the 

text and G+ is its transpose; and the polarizability matrix αl is constructed from the matrices 

representing the group polarizability tensors as described in the text. 

 To calculate the change in dipole strength of exciton level K due to mixing with high-energy 

transitions, we start with Eq. S1.  We wish to calculate: 
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The leading (zeroth-order) term in this scalar product is the usual exciton dipole strength that is 

calculated in the matrix method.  We are interested in the two first-order terms, which are equivalent 

and can be combined to give: 
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Using the monopole approximation for μj0b (Eq. 8 in text), we have: 
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Replacing νβ by ν0, νb by νK, and by hν0αm/2, we obtain: ββ
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This is Eq. 21 in the text.  The Kth diagonal element of the matrix product on the right-hand side of Eq. 

S32 is the correction to the dipole strength of exciton level K.  
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Table S1.  Coordinatesa of N-Methylacetamide Used in 

Polarizability Tensor Calculations 

 
 

 

 

 

 

 

 

 

 

 

 ATOMIC POSITIONS 

Atom X Y Z 

C' (carbonyl C) 1.530000 .000000 .000000 

O (carbonyl O) 2.154272 1.059804 .000000 

C1 (C-methyl C) 0.000000 0.000000 .000000 

Η1 (C-methyl H) −0.363333 1.027662 .000000 

Η2 (C-methyl H) −0.363333 −0.513831 − .889981 

Η3 (C-methyl H) −0.363333 −0.513831 .889981 

N (amide N) 2.089969 −1.200858 .000000 

C2 (N-methyl C) 3.535009 −1.352738 .000000 

Η4 (N-methyl H) 3.788932 −2.412749 .000000 

Η5 (N-methyl H) 3.950062 −0.879701 − .889981 

Η6 (N-methyl H) 3.950062 −0.879701 .889981 

HN (amide H) 1.574931 −2.058025 .000000 

a The coordinate system is the standard coordinate system of Ooi et al.5, with the x-axis along the 
Cα−C' bond, the carbonyl O having a positive y-coordinate, and the origin at Cα.  Coordinates are in Å.    
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Table S2.  Positions of Bond and Lone-Pair Tensors in N-Methylacetamide 

 

TENSOR POSITIONSa 

Tensor x y z Comment 

CO1 3.685810 1.333735  −.471490  CARBONYL BANANA BOND 

CO2 3.685810 1.333735  .471490 CARBONYL BANANA BOND 

O-LP1 3.707191 2.464276  .000000 CARBONYL OXYGEN LONE PAIR 

O-LP2 4.664518 1.913979  .000000 CARBONYL OXYGEN LONE PAIR 

CC1 1.426908 −.028686 .000000  C METHYL CC BOND 

C1-H1 −.466819 1.297037  .000000 C METHYL CH BOND 

C1-H2 − .446901 −.670431 −1.133331 C METHYL CH BOND 

C1-H3 − .446901 −.670431 1.133331 C-METHYL CH BOND 

CN1 3.646710 −1.665251 −.512077 AMIDE CN BANANA BOND 

CN2 3.646710 −1.665251 .512077  AMIDE CN BANANA BOND 

NH 3.351576 −3.229547 .000000 AMIDE NH BOND 

NC2 5.103751 −2.392518 .000000  N METHYL NC BOND 

C2-H4 6.987396 −3.933881 .000000  N METHYL CH BOND 

C2-H5 7.215265 −1.959871 −1.142717 N METHYL CH BOND 

C2-H6 7.215265 −1.959871  1.142717  N METHYL CH BOND 

 
a The coordinate system is the standard coordinate system of Ooi et al.5, with the x-axis along the 

Cα−C' bond, the carbonyl O having a positive y-coordinate, and the origin at the Cα. Coordinate values 
are in atomic units, a0.  Based upon bond and lone-pair polarizability tensors calculated for trans-N-
methylacetamide by Walter Stevens using the method of Garmer and Stevens.6 
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Table S3.  Polarizability Tensor Components for N-Methylacetamidea 

 

Tensorb xx Yy zz xy xz yz yx zx zy 

CO1 2.3415 4.0788 2.1384 .7521 .1762 .5742 1.5538 −.5978 − .2989 

CO2 2.3420 4.0787 2.1383 .7519 −.1759 −.5738 1.5542 .5978 .2990 

O-LP1 1.3778 2.4885 1.3635 .2190 .0002 .0001 −.2610 .0000 .0001 

O-LP2 2.3898 1.6498 .4983 .3743 − .0004 − .0004 .5707 .0000 .0000 

CC1 5.6466 2.1853 1.6693 −.5428 −.0001 −.0001 −.4168 .0000 .000 1 

C1-H1 3.5448 4.4530 2.3873 −1.2985 .0000 .0000 −.9856 .0000 .0002 

C1-H2 3.9332 2.8193 4.1044 .5402 1.2184 .8375 .2821 .7221 .8784 

C1-H3 3.9333 2.8193 4.1042 .5402 −1.2183 −.8375 .2822 −.7219 − .8782 

CN1 3.4114 4.2605 3.2452 −1.5968 .4432 −.7879 −1.6077 −2.8432 6. 3464 

CN2 3.4115 4.2599 3.2483 −1.5971 −.4431 .7880 −1.6075 2.8431 −6.3460 

NH 2.3879 2.9124 − .2239 .3929 .0000 .0000 .6230 − .0002 − .0002 

NC2 4.5585 1.7751 −.0224 −.5299 .0000 .0000 −1.1250 .0000 − .0003 

C2-H4 3.0773 4.8056 2.3651 −1.2281 .0000 .0000 −.9114 .0001 − .0002 

C2-H5 3.5593 2.6216 3.9689 .2678 −1.1500 −.4886 −.3180 −.6668 − .7248 

C2-H6 3.5593 2.6215 3.9686 .2678 1.1500 .4886 −.3180 .6665 .7247 

 
a The coordinate system is the standard coordinate system of Ooi et al.5, with the x-axis along the 

Cα−C' bond, the carbonyl O having a positive y-coordinate, and the origin at the Cα.  Polarizabilities are 
in atomic units, a0

3 = 0.148 Å3.  Based upon bond and lone-pair polarizability tensors calculated for 
trans-N-methylacetamide by Walter Stevens using the method of Garmer and Stevens.6 

b For more complete identification of the tensors, see Table S2.  

 

 

S13 



Table S4.  Positions and Symmetry Axes of Polarizability Ellipsoids 

 

Positiona Symmetry axisb Group 

x y z ex ey ez 

C′ = O −0.003273 0.0 0.821519 0.0 0.0 1.0 

O lone pair 
1 

−0.301802 0.0 1.340094 −0.515207 0.0 0.857066 

O lone pair 
2 

0.282415 0.0 1.351514 0.544937 0.0 0.838477 

Cα − C′ −0.656331 0.0 −0.412251 0.857066 0.0 0.515207 

C′ − N 0.796624 0.0 −0.549301 0.930247 0.0 −0.365437 

N − Hc 1.089253 0.0 −1.339235 0.0 −1.0 0.0 

N − Cα 1.65573 0.0 −0.481903 0.927517 0.0 0.373779 

ππ∗ trans 0.0 0.0 0.0 −0.881463 0.0 0.472254 

Cα − H 0.74 0.0 0.0 1.0 0.0 0.0 

Cα − Cβ 0.765 0.0 0.0 1.0 0.0 0.0 

Cβ methyl 1.711667 0.0 0.0 1.0 0.0 0.0 

 
a The coordinate system used for amide polarizability ellipsoids has the z-axis along the C=O bond, 

with the x-axis in the plane and directed such that the amide N has a positive x-coordinate.  The y-axis 
is perpendicular to the amide plane.  The origin is at the carbonyl C.  For the side-chain and the Cα − H 
groups, the x-axis is along the bond direction, with the origin at the Cα and directed toward Cβ or Hα.  
Coordinates are in Å.  Based upon bond and lone-pair polarizability tensors calculated for trans-N-
methylacetamide by Walter Stevens using the method of Garmer and Stevens.6  

b The directions of the symmetry axes are specified by their components along the axes of the 
coordinate system described in footnote a.  

c All of the polarizability ellipsoids are prolate, except that for the NH bond, which is oblate.  The out-
of-plane polarizability is much smaller than the two in-plane components, so the symmetry axis is 
perpendicular to the amide plane.  
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Table S5. Monopoles for ππ* Transitions and the Ground State in Amidesa 

 

 

 x b yb z b NV1 

(−55°)c 

NV1  

(−40°)d 

NV2
c G. S.e 

C1 0.0 1.0806 0.0 1.1211 0.4914 1.4469 1.0496 

 0.0 −1.0806 0.0 1.1211 0.4914 1.4469 1.0496 

Ο2 0.0 0.7737 0.0 0.0130 0.3986 −0.7586 −1.1181 

 0.0 −0.7737 0.0 0.0130 0.3986 −0.7586 −1.1181 

Ν3 0.0 0.9813 0.0 −1.1341 −0.8900 −0.6883 0.0705 

 0.0 −0.9813 0.0 −1.1341 −0.8900 −0.6883 0.0705 

 0.0 0.0 0.0    −1.3 

Η4 0.0 0.0 0.0    1.3 

 
a The origin is at the carbonyl carbon. The z axis is along the carbonyl bond with O in the positive 

direction. The x-axis is in-plane and directed such that the N has a positive x coordinate.  
b Monopole positions relative to atomic centers 7.  Coordinates are in Å. 
cMonopole charges in 10−10 esu. Transition moment for secondary amide group in N-acetylglycine 8.  

This was the transition moment direction used by Woody and Sreerama.9  The signs of the charges are 
reversed relative to those used by Woody and Sreerama, as indicated by the red font.  

dMonopole charges in 10−10 esu. These monopole charges yield a transition moment close to that 
reported for myristamide.10  This is the transition moment direction that gives the best results for the PII 
conformation, as found in the present work.. 

e These are the ground-state permanent monopoles for secondary amide groups.11   Monopole charges 
in 10−10 esu.  For tertiary (Pro) amides, the π monopoles are the same, but the two in-plane σ monopoles 
are set to zero. 
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Table S6.  Transition Parameters for ππ* Transitions in the Amide Groupa 

 

Transition E  

(eV) 

∇x  

(A-1)b 

∇z  

(A-1)b 

(r x ∇)y 

(BM) 
Bandwidth 
(nm) 

NV1 (−55°)c 6.5255d 0.4416 −0.3092 0 11.3 

NV1 (−40°)c 6.5255d 0.3465 −0.4130 0 11.3 

NV2
e 8.9275 0.3663 0.2031 0 7.2 

 
a Because of the plane of symmetry, the y-component of the ∇ matrix element and the x, z 

components of the (r x ∇) matrix element are zero.  
b The origin is at the carbonyl carbon. The z axis is along the carbonyl bond with O in the positive 

direction. The x-axis is in-plane and directed such that the N has a positive x coordinate. 
c Two NV1 transition moment directions are used in this work, corresponding to the angles of 

−55° and −40° relative to the carbonyl bond direction.8, 10.    
d For the tertiary amide of an X-Pro bond, the NV1 transition energy is 6.1993 eV. 
e The gradient matrix element for the NV2 transition is reversed in direction relative to that used by 

Woody and Sreerama. 9  This is indicated by the red font.   
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 Table S7. Monopoles for nπ* Transitions in Amidesa 

Atom xb yb zb nπ*c,d nπ*-NV1
c nπ*-NV2

c,e

O2 0.6064 0.6064 0.0 0.4761 0.4171 −0.3720 

 0.6064 −0.6064 0.0 −0.4761 −0.4171 0.3720 

 −0.6064 −0.6064 0.0 0.4761 0.4171 −0.3720 

 −0.6064 0.6064 0.0 −0.4761 −0.4171 0.3720 

C1 0.8470 0.8470 0.0 0.1318 0.0 0.0521 

 0.8470 −0.8470 0.0 −0.1318 0.0 −0.0521 

 −0.8470 −0.8470 0.0 0.1318 0.0 0.0521 

 −0.8470 0.8470 0.0 −0.1318 0.0 −0.0521 

N3 0.7716 0.7716 0.0 0.0 −0.0681 0.0 

 0.7716 −0.7716 0.0 0.0 0.0681 0.0 

 −0.7716 −0.7716 0.0 0.0 −0.0681 0.0 

 −0.7716 0.7716 0.0 0.0 0.0681 0.0 
 

a The z axis is along the carbonyl bond with O positive. The x-axis is in-plane and directed such that 
the N has a positive x coordinate. The origin is at the carbonyl carbon.  

 

b Monopole positions relative to the atomic centers.7. Coordinates are in Å. 
c Monopole charges in 10−10 esu. Calculated from INDO/S12 wave functions for N-methylacetamide. 
d The signs of the nπ* monopole charges are reversed relative to those used by Woody and Sreerama, 

9 as indicated by the red font. 
e For transitions connecting the nπ∗ state with the ground-, NV1 and NV2 states, the transition charge 

density has quadrupolar charge arrays at O, C, and N.  Our program limits the number of monopoles to 
eight, so the charges at one of the three centers were neglected.  Naturally, those with the smallest 
magnitudes were eliminated.  In the case of the nπ*-NV2 transition, the magnitudes of the monopoles at 
the C and N were similar (0.0521 vs. 0.0421), both significantly smaller than those at the carbonyl O 
(0.3720).  Woody and Sreerama9 inadvertently used the somewhat smaller N monopoles rather than the 
C monopoles.   This is reflected by the red font in the altered nπ*-NV2 monopoles. 

S17 



 Table S8. Transition Parameters for the nπ* Transition in the Amide Groupa 

Transition E (eV)b ∇y  

(A-1) 

(r x ∇)x 
(BM)c 

(r x ∇)z 
(BM)c Bandwidth (nm) 

nπ* 5.6357 0.0 0.0904 −0.9094 10.5 
 

a Because of the plane of symmetry, the x and z components of the ∇ matrix element and the y 
component of the (r x ∇) matrix element are zero.  

b Corresponds to the standard wavelength for the nπ* transition in polypeptides, 220 nm. Note that 
INDO/S12 significantly underestimates the nπ* transition energy, placing the transition at about 300 nm.  

c Calculated from INDO/S12 wave functions for N-methylacetamide.
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Figure S1. Comparison of the exciton CD spectrum calculated for (Ala)20 in a Pauling and Corey13 α-

helix using the amide transition parameters of Woody and Sreerama9 (red spectrum) and the corrected 

parameters used in this work (blue spectrum).  
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Figure S2. CD spectra of PII helices of (Ala)n as a function of n.  (φ,ψ) = (−60°, 160°).  The arrows 

indicate the direction of increasing n: 2, 3, ..., 10, 15, 20.
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Figure S3.  Length dependence of the CD of (Ala)n in the PII conformation, (φ,ψ) =(−60°, 160°), at the 

short-wavelength negative maximum.  The length dependence is described by the empirical equation of 

Chen et al.14: Δελ = Δελ(∞)(n−k)/n, where Δελ(∞) is the per residue CD at wavelength λ for the infinite 

helix and k is an end-effect correction, the “number of missing residues” due to end effects.  A plot of 

nΔελ vs. n gives Δελ(∞) as the slope and −k Δελ(∞) as the intercept.  In the present plot, the data are not 

for a single wavelength but for the peak of the short-wavelength negative maximum, which shifts from 

185 nm to 196 nm as n increases.  Data for n < 6 deviated from linearity, so only points for n≥6 were 

used for linear regression, which gave the equation shown on the plot.  From this, we obtain Δελ(∞) = 

−12.53 and k = 2.67, i.e., each residue in the infinite helix contributes −12.53 M−1cm−1 to the CD near 

200 nm and 2.7 residues are effectively missing from the helix due to end effects. 
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Figure S4.  Length dependence of the CD of (Ala)n in the PII conformation, (φ,ψ) =(−60°, 160°), at the 

long-wavelength positive maximum, at 221 nm for all n.  For details, see the caption to Fig. S3.  Linear 

regression using all of the data points gives the expression shown on the plot.  From this, we conclude 

that each residue contributes 2.72 M−1cm−1 to the CD near 220 nm and that the end effects decrease the 

effective helix length by −0.70, i. e., they increase the effective helix length.
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