Brønsted Base-Modulated Regioselective

Palladium-Catalyzed Intramolecular Aerobic Oxidative
 Amination of Alkenes: Formation of Seven-Membered Amides and Evidence for Allylic C-H Activation

Liang Wu, Shuifa Qiu, and Guosheng Liu*
State Key Laboratory of Organometallics Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 354 Fenglin Road, Shanghai,
China, 200032
Email: gliu@mail.sioc.ac.cn

Supporting Information

Table of Contents

I. General Consideration p. S2
II. General Procedure/Results p. S2
III. Mechanistic studies p. S5
IV. Synthesis of starting materials p. S 11
V. Characterization of allylic C-H oxidative amination Products p. S 20
VI. References p. S 27
VII New Compound's spectrum p. S 28
Table S1. Palladium-catalyzed aerobic oxidative allylic C-H amination:Screen results. p. S3
Table S2. Palladium-catalyzed oxidative allylic C-H amination. p. S4
Table S3. Palladium-catalyzed oxidative allylic C-H amination of 4. p. S5
Scheme S1. The hypothesis of two possible mechanism. p. S6
Scheme S2. The formation of seven- and five-membered products. p. S7

General Considerations.

All commercially available compounds were used as received, and all were purchased from Aldrich, Alfa Aesar and Acros. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a Varian Mercury- 300 MHz or Varian Unity- 400 MHz spectrometers, and CDCl_{3} was purchased from Aldrich. The chemical shifts (δ) are given in parts per million relative to internal TMS (0 ppm for ${ }^{1} \mathrm{H}$), CDCl 3 (77.0 ppm for ${ }^{13} \mathrm{C}$). Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) with hexanes/ethyl acetate. Solvents (DMF, DMA and NMP) were dried with BaO at around $100^{\circ} \mathrm{C}$ for 5 hrs and distallatized under vacuum, kept with $4 \AA$ Molecular Seives.

General procedure for the optimized reaction condition.

In a glass tube, substrate 1a $(0.1 \mathrm{mmol})$, catalyst (0.01 mmol), and additives (see Table S1) were combined in 1.0 mL solvent. The reaction tubes were placed into a custom 12-well parallel reactor mounted in a 300 ML Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. Then the oxygen pressure was increased to 1.0 atm and the reactor was warmed to $70^{\circ} \mathrm{C}$. The reactions were stirred for 8-10 hours. After the reactions were stopped they were fast flashed by a short silic gel with ethyl acetate, then the solution was concentrated in vacuo. After concentrating, $1,3,5$-trimethoxybenzene (1 mL of a known concentration solution in CDCl_{3}) was added to the reaction mixture. The oxidative amination product was evaluated by ${ }^{1} \mathrm{H}$ NMR spectroscopy relative to an internal standard. The results were summarized in Table S1.

Table S1. Palladium-catalyzed aerobic oxidative allylic C-H amination:Screen results. ${ }^{a}$

Entry	Base	additive	Yield $\%^{\text {b }}(\mathbf{2 a} \mathbf{a} \mathbf{3 a})^{\text {c }}$
1	NaOAc	--	44 (3.9:1)
2	NaOAc	Pyridine (40\%)	27 (1.0:1)
3	NaOAc	MA ${ }^{\text {g (40\%) }}$	58 (5.6:1)
4	NaOAc	BQ^{h} (40\%)	39 (5.5:1)
5	NaOAc	nbdi (20\%)	35 (3.7:1)
6	NaOAc	Ethyl Acryate (1 eq)	44 (2.8:1)
7	NaOAc	MA (40\%), 4	72 (5.7:1)
8	NaOBz	MA (40\%), 4A MS (15mg)	90 (5.6:1)
9	NaOBz	MA (40\%), 4 \AA MS (15mg)	69 (4.0:1)
$10^{\text {d }}$	NaOBz	MA (40\%), 4 MS (15mg)	60 (3.2:1)
11^{e}	--	--	20 (0:100)
12	Amberlite IRA-400 (OH) (10 mg)	MA (40\%), 4 MS (15mg)	45 (0:100)
13^{f}	Amberlite IRA-400 (OH) (10 mg)	(salen) $\mathrm{Cr}(\mathrm{III}) \mathrm{Cl}(10 \mathrm{~mol} \%)$	58 (0:100)
14^{f}	--	(salen) Cr (III) Cl (10 mol \%)	65 (0:100)
15^{f}	NaOBz (25 \%)	--	35 (85:15)
16^{f}	$\mathrm{NaOBz}(25 \%)$	(salen) $\mathrm{Cr}(\mathrm{III}) \mathrm{Cl}(10 \mathrm{~mol} \%)$	46 (84:16)
17^{f}	NaOBz (100 \%)	--	43 (82:18)
18^{f}	$\mathrm{NaOBz}(100 \%)$	(salen) $\mathrm{Cr}(\mathrm{III}) \mathrm{Cl}(10 \mathrm{~mol} \%)$	54 (80:20)

${ }^{\text {a }}$ The reaction was conducted on a 0.1 mol scale in 1 mL DMA; ${ }^{b}$ Yiled determined by ${ }^{1} \mathrm{HNMR}$ spectroscopy methods in which 1,3,5-trimethoxybezene was used as the internal standard; ${ }^{c}$ the ratio of $\mathbf{2 a}$ and 3 a , determined by ${ }^{1} \mathrm{HNMR}$; ${ }^{d} \mathrm{DMF}$ as the solvent; ${ }^{e} \mathrm{DMSO}$ as the solvent; ${ }^{f} 50{ }^{\circ} \mathrm{C} ;{ }^{g} \mathrm{MA}=$ maleic anhydride; ${ }^{h} \mathrm{BQ}=$ benzoquinone; ${ }^{i}$ nbd $=2,5$-Norbornadiene; ${ }^{j}$ Including other isomers.

General procedure for the intramolecular reaction of 1.

Condition A:

In a glass tube, substrate $\mathbf{1}(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$, maleic anhydride (MA, $0.08 \mathrm{mmol}), \mathrm{NaOBz}(0.2 \mathrm{mmol})$ and $4 \AA$ molecular seives (30 mg) were combined in $2.0 \mathrm{~mL} N, N$-dimethylacetamide (DMA). The reaction tubes were placed into a custom 9 -well parallel reactor mounted in a 300 mL Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. Then the oxygen pressure was increased to 1.0 atm and the reactor was warmed to $70^{\circ} \mathrm{C}$;

Condition B: In a glass tube, substrate $1(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$, (salen) $\mathrm{Cr}(\mathrm{III}) \mathrm{Cl}(0.02 \mathrm{mmol})$ were dissolved in 2.0 mL DMA. The reaction tubes were placed into a custom 9 -well parallel reactor mounted in a 300 mL Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. The oxygen pressure was increased to 1.0 atm and the reactor was warmed to $50^{\circ} \mathrm{C}$;
The reaction was stirred for 8-12 hours. After the reaction was complete, the mixture was concentrated in vacuo. The crude mixture was purified by column chromatography. The results were summarized in Table S2.

Table S2. Palladium-catalyzed oxidative allylic C-H amination. ${ }^{\text {a }}$
Entry
${ }^{\text {a }}$ The reaction was conducted at 0.2 mmol scale at 2 mL DMA under 1 atm dioxygen; condition A: $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{NaOBz}\left(1\right.$ equiv), MA ($40 \mathrm{~mol} \%$), $4 \mathrm{~A} \mathrm{MS}(30 \mathrm{mg}), 70^{\circ} \mathrm{C}$; Condition B: $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), (salen) $\mathrm{Cr}(\mathrm{III}) \mathrm{Cl}(10 \mathrm{~mol} \%), 5{ }^{\circ} \mathrm{C}$; ${ }^{b}$ Isolated Yield, the data in parenthesis is the ratio of 2 and 3; ${ }^{c}$ the ratio of trans-3 and cis-3.

General procedure for the intramolecular reaction of 4 to synthesize seven-membered product 5 . In a glass tube, substrate $4(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ (0.02 mmol), maleic anhydride (0.08 mmol), $\mathrm{NaOBz}(0.2 \mathrm{mmol})$ and $4 \AA$ molecular seives (30 mg) were combined in 2.0 mL DMA. The reaction tubes were placed into a custom 9 -well parallel reactor mounted in a 300 ML Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. Then the oxygen pressure was increased to 1.0 atm and the reactor was warmed to $70^{\circ} \mathrm{C}$; The reactions were stirred for 8-12 hours. After the reactions were stopped they were concentrated in vacuo. The crudes mixture was purified by column chromatography. The results were summarized in Table S3.

Table S3. Palladium-catalyzed oxidative allylic C-H amination of 4. ${ }^{\text {a }}$
Entry
${ }^{a}$ The reaction condition: 4 (0.2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), NaOBz (1 equiv), MA ($40 \mathrm{~mol} \%$), 4A MS (30 mg) in DMA (2 mL) under $1 \mathrm{~atm} \mathrm{O}_{2}, 70^{\circ} \mathrm{C}$; ${ }^{b}$ Isolated Yield; ${ }^{c} \mathrm{NaOBz}$ (2.5 equiv); ${ }^{d}$ ratio of $\mathbf{5 a} \mathbf{6 a}$ (5-membered ring); ${ }^{e} \mathrm{NaOBz}$ (1.5 equiv), 20 h ; ${ }^{f} 1.5 \mathrm{mmol}$ scale.

Mechanistic studies:

Hypothesis of allylic C-H activation/reductive elimination or aminopalladation/ $\boldsymbol{\beta}$ hydride elimination pathway:

We hypothesized that the deuterium labeled substrate $\mathbf{4 a}-\boldsymbol{A}$ and $\mathbf{4 a}$ - \boldsymbol{B} might be helpful to gain insights into the mechanism. If the reaction involves allylic $\mathrm{C}-\mathrm{H}$ activation, both the reaction of $\mathbf{4 a}-\boldsymbol{A}$ and $\mathbf{4 a}-\boldsymbol{B}$ will result the same π-allyl- $\mathrm{Pd}^{\mathrm{II}}$ intermediate II- \boldsymbol{d} and afford the similar results containing the mixture of equal amount $\mathbf{5 a}-\boldsymbol{A}$ and $\mathbf{5 a - B}$ (Scheme 4, path a). Otherwise, if the reaction goes through aminopalladation $/ \beta-\mathrm{H}$ elimination pathway, the reactions of $\mathbf{4 a}-\boldsymbol{A}$ and $\mathbf{4 a - B}$ would be formed seven-membered products $\mathbf{5 a - A}$ and $\mathbf{5 a - B}$ respectively (path b)

Scheme S1. the hypothesis of two possible mechanism (AMP = aminopalladation).

Procedure of deuterium-labeled reaction of $4 a-A$ and $4 a-B$

The deuterium-labeled substrates $\mathbf{4 a} \mathbf{-} \boldsymbol{A}$ and $\mathbf{4 a} \mathbf{a} \boldsymbol{B}$ were treated under the standard reaction condition: In a glass tube, substrates $\mathbf{4 a - A}$ or $\mathbf{4 a - B}(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.02 \mathrm{mmol})$, Melanie anhydride $(0.08 \mathrm{mmol}), \mathrm{NaOBz}(0.4 \mathrm{mmol})$ and $4 \AA$ Molecular Seives (30 mg) were combined in 2.0 mL DMA. The reaction tubes were placed into a custom 9-well parallel reactor mounted in a 300 ML Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. Then the oxygen pressure was increased to 1.0 atm and the reactor was warmed to $70^{\circ} \mathrm{C}$. The reactions were stirred for 8-12 hours. After the reactions were stopped they were concentrated in vacuo. The crudes mixture was purified by column chromatography. The results were summarized in eq S1 and eq S2.

Those results, the formation of mixture of $\mathbf{5 a - A}$ and $\mathbf{5 a - B}$ with roughly 1:1 ratio, strong supports that the reactions go thought allylic $\mathrm{C}-\mathrm{H}$ activation/nucleophilic attack pathway. On the other hand, the formation of five-membered products $\mathbf{6 a - A}$ and $\mathbf{6 a}-\boldsymbol{B}$ from $\mathbf{4 a - A}$ and $\mathbf{4 a} \mathbf{- B}$ respectively, were also the strong evidence to support the allylic C-H activation mechanism (eq S1 and S2). For the case of 4a-A, except the formation of intermediate III-d via C-D activation, the reaction also generated the intermediate II-d, via allylic C-H activation at methylene position. Then the nucleophilic attack afforded product $\mathbf{6 a - A}$. In contrast, if the reaction proceeded via the isomerization/aminopalladation pathway, the reaction should give raise to the mixture of $\mathbf{6 a}-\mathbf{A}$ and $\mathbf{6 a - B}$. On the other hand, no observation of the double bond isomerization within the recovered $\mathbf{4 a} \mathbf{a} \boldsymbol{A}$ rules out the possibility of isomeriztion between $5 \mathbf{a}^{\prime}-\boldsymbol{d}_{3}$ and $\mathbf{5 a - A}$ (or $\mathbf{5 a - B}$), which also supported that intermediate II-d exclusively generated five-membered product 6a-A (Scheme S2).

Figure S1. Representive spectrum of deuterium-labeled products 5a-A and 5a-B (Structure of 5 a was determined by H-H cosy).

Scheme S2. the formation of seven- and five-membered products.

Studies of Kinetic Isotopic Effect: In a glass tube, substrates $\mathbf{4 a}(0.1 \mathrm{mmol})$ and 4a-A (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$, Melanie anhydride $(0.08 \mathrm{mmol}), \mathrm{NaOBz}$ $(0.4 \mathrm{mmol})$ and $4 \AA$ Molecular Seives (30 mg) were combined in 2.0 mL DMA. The reaction tubes were placed into a custom 9-well parallel reactor mounted in a 300 ML Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. Then the oxygen pressure was increased to 1.0 atm and the reactor was warmed to $70^{\circ} \mathrm{C}$ for 4 hours. After the reactions were stopped they were concentrated in vacuo. The crude was detected by HNMR with 1,3,5-trimethoxybenzene as internal standard. The result was summarized in eq S3.

Figure S2. The HNMR of mixture products of the reaction of 4a and 4a-A with 1:1 ratio

Controlled reaction: In a glass tube, substrates $\mathbf{4 h}(0.2 \mathrm{mmol})$ and $\mathbf{2 a}(0.2 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.02 \mathrm{mmol})$, melanie anhydride $(0.08 \mathrm{mmol}), \mathrm{NaOBz}(0.4 \mathrm{mmol})$ and $4 \AA$ Molecular Seives (30 mg) were combined in 2.0 mL DMA. The reaction tubes were placed into a custom 9-well parallel reactor mounted in a 300 ML Parr bomb and sealed. The whole system was purged with molecular oxygen for ca. 10 times. Then the oxygen pressure was increased to 1.0 atm and the reactor was warmed to $70^{\circ} \mathrm{C}$ for

4 hours. After the reactions were stopped they were concentrated in vacuo. The residue was detected by HNMR with 1,3,5-trimethoxybenzene as internal standard. The result was summarized in eq S4 and S5.
No observation of transformation between 2a and 3a indicated that the formation of seven-membered product $\mathbf{2 a}$ is the kinetically preferred product and the $\mathrm{C}-\mathrm{N}$ bond formation is irreversible

Synthesis of deuterium-labeled substrates 4a-A and 4a-B:

Scheme S1.

Compound $\mathbf{S 1}$ was synthesized by the literature procedure. ${ }^{1}$ To a solution of $\mathbf{S 1}$ $(1.8 \mathrm{~g}, 10.0 \mathrm{mmol})$ in dry diethyl ether (100 mL), $\mathrm{CD}_{3} \mathrm{MgI}\left(20 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added slowly at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred overnight and saturation $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous was added at low temperature, then extracted by $\mathrm{Et}_{2} \mathrm{O}$, dried by MgSO_{4}. After the solvent was removed under vacumm, the residue was purified by silical gel column to afford the ketone $\mathbf{S} 2(1.3 \mathrm{~g}, 65 \%) .{ }^{\mathrm{S} 2}$

To a suspension $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ in THF ($7.14 \mathrm{~g}, 20 \mathrm{mmol}$), n-butyl lithium (12.5 mL , 1.6 M in hexane) was slowly added at $0{ }^{\circ} \mathrm{C}$. The mixture became to clear solution. Then S2 ($1.6 \mathrm{~g}, 6 \mathrm{mmol}$) was added and the mixture was stirred for over night. After the workup as above, the residue was redissoved in actone, then Jone's reagent (24
mmol) was added slowly at $-10 \sim 0{ }^{\circ} \mathrm{C}$. After two hours, the acetone was removed under vacumm, and the mixture was extracted by methylene chloride. The organic layer washed with brine, dried by MgSO_{4}, filtered and concentrated under vacumm to give oil S3-A $430 \mathrm{mg}(55 \%$ yield, $>99 \% \mathrm{D}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.75(\mathrm{~m}$, $1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{tt}, J=7.5$, $7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

In a solution of S3-A ($300 \mathrm{mg}, 2.3 \mathrm{mmol}$) in dry THF (5 mL), TsNCO ($0.5 \mathrm{~g}, 2.5$ mmol) was added under Nitrogen. The mixture was stirred for 10 min , then $\mathrm{Et}_{3} \mathrm{~N}(0.5$ mL) was added. The mixture was stirred overnight, and a 2 N HCl solution (10 mL) was added. The mixture was extracted with diethyl ether. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under vacuum, and the residue was purified by silica gel chromatography to give 4a-A (594 $\mathrm{mg}, 91 \%$ yield). 4a-A ($>99 \% \mathrm{D}$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25$ (s,1H), 7.96(d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{M}, 2 \mathrm{H}) .{ }^{2} \mathrm{H} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta$ 1.61 (s). ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,145.1,144.2,135.6,129.6,128.3$, 111.0, 36.6, 35,5, 21.9, 21.6.. HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}$285.1347, measured 285.1354 .

Synthetic procedure of $\mathbf{4 a - B}$ is the same with that of $\mathbf{4 a - A}$ which using $\mathrm{CH}_{3} \mathrm{MgBr}$ instead of $\mathrm{CD}_{3} \mathrm{MgI}$, and $\mathrm{Ph}_{3} \mathrm{PCD}_{3} \mathrm{Br}$ instead of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$. The synthesis of $\mathrm{Ph}_{3} \mathrm{PCD}_{3} \mathrm{Br}$ is according to the literature procedure. 4a-B ($88 \% \mathrm{D}$): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (s, $3 \mathrm{H}), 2.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{M}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CHCl}_{3}$) $\delta 4.60$ (br s, 2 H). ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.8, 145.1, 144.1, 135.5, 129.6, 128.3, 111.0, 36.5, 35.4, 21.9, 21.8, 21.7.. HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated $[\mathrm{M}+\mathrm{H}]^{+}$284.1284, measured 284.1296.

Starting material synthesis:

Scheme S3

Synthesis 1a from S4 ${ }^{\mathbf{3}}$: The same protocol used in the preparation of $\mathbf{4 a} \mathbf{a} \boldsymbol{A}$ from S3- \boldsymbol{A} was employed (see above) (73% yield). 1a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.66$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,145.1,137.2,135.4,129.6,128.2$, 115.6, 35.3, 32.6, 23.2, 21.6. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 58.40 ; \mathrm{H}, 6.41$; N. 5.24. Found: C, 58.23; H, 6.17; N. 5.18.

Scheme S4

1) $\mathrm{LiCl} / \mathrm{DMSO}$ 2) $\mathrm{NaOH} / \mathrm{EtOH}$
2) $\mathrm{TsNCO} / \mathrm{Et}_{3} \mathrm{~N}$

Synthesis of S6 is modified from the literature procedure, ${ }^{\text {S4 }}$ and the NMR spectrums of $\mathrm{S} 6 \mathrm{~b},{ }^{\mathrm{S5}} \mathrm{~S} 6 \mathrm{~d},{ }^{6} \mathrm{~S} 6 \mathrm{f},{ }^{\text {S7 }} \mathrm{S} 6 \mathrm{~g}^{\mathrm{S} 8}$ and $\mathrm{S} 7 \mathrm{~d}^{\mathrm{S} 9}$ are consisted with literatures: To a solution of $\mathrm{CuCl}(2.5 \mathrm{~g}, 25 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$, the solution of allylic Magnesiumbromide ($30 \mathrm{mmol}, 0.3 \mathrm{M}$ in THF) was added at $-15^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . Then S5b $\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)^{10}(4.6 \mathrm{~g}, 25 \mathrm{mmol})$ was added. After 2 hours, the mixture was quenched by aqueous of $\mathrm{NH}_{4} \mathrm{Cl}$, extracted by ether, dried by MgSO_{4} and concentrated under vacumm. The residue was purified by silic gel chromatography to give $\mathbf{S 6 b}(4.95 \mathrm{~g}, 87 \%$ yield).
 $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 14 \mathrm{H}), 0.87(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,135.8,117.1,61.0,54.8,37.8,35.2,3$, 31.8, 30.5, 26.2, 22.4, 14.0, 13.9. HRMS: m/z (ESI) calculated [M] 284.1988, measured 284.1987.

${ }^{\text {co }{ }_{2} \text { Et }}$ S7c (42% yield) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{~m}, 4 \mathrm{H}), 3.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.65$ $(\mathrm{s}, 3 \mathrm{H}), 1.02(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,168.7$, $143.2,112.8,61.2,61.1,57.1,43.1,31.2,21.9,16.7,14.1$. HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+} 243.1510$, measured 243.1595 .

```
N +CO2Et
\({ }^{\text {Co } 2 \text { Et }}\) S7g ( \(45 \%\) yield) \({ }^{1} \mathrm{H}\) NMR ( \(300 \mathrm{MHz}, \mathrm{CDCl} 3\) ) \(\delta 4.91\) (s, 1 H ), \(4.70(\mathrm{~s}, 1 \mathrm{H})\),
``` 4.18 (q, \(J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}\), 6 H ), 1.14 (s, 3 H ). \({ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 168.4,142.4,115.6,60.8,59.8\), \(47.5,36.8,25.7,25.4,14.1\) HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)257.1747, measured 257.1748 .

\(\mathrm{CO}_{2} \mathrm{Et}\) S7i \(\left(38 \%\right.\) yield) \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H})\), 4.17 (q, \(J=7.2 \mathrm{~Hz}, 4 \mathrm{H}\)), 3.57 (s, 1H), 2.35 (s, 2H), 1.93 (m, 2H), 1.78 (\(\mathrm{s}, 3 \mathrm{H}), 1.66\) \((\mathrm{m}, 6 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,143.0\), 115.4, 60.8, 57.5, 47.0, 46.0, 35.7, 24.8, 24.8, 14.0. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)283.1904, measured 283.1915.

\(\mathrm{CO}_{2} \mathrm{Et}\) S7j \(\left(35 \%\right.\) yield) \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H})\), 4.18 (q, \(J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 10 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}\), \(6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,142.6,115.8,60.8,56.1,41.4,40.0\), 32.7, 25.7, 25.6, 21.5, 14.1. HRMS: m/z (EI) calculated [M] \({ }^{+}\)296.1988, measured 296.1992.

Synthesis of 1b: To a solution of S6b (\(2.3 \mathrm{~g}, 10.0 \mathrm{mmol}\)) in DMSO (25 mL), LiCl \((1.5 \mathrm{~g}, 36 \mathrm{mmol})\) and \(\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})\) were added and the mixture was refluxed. The reaction was monitored by TLC. After the reaction completed, \(\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})\) was added and the mixture was extracted by ether. The organic layer was washed with brine and dried with \(\mathrm{MgSO}_{4}\). The solvent was removed under vacumm to give crude oil 1.27 g . The oil was dissolved in the mixture of ethanol (10 mL) and NaOH aqueous solution (\(2 \mathrm{~N}, 6 \mathrm{~mL}\)). The mixture was stirred for overnight at \(50^{\circ} \mathrm{C}\). The ethanol was removed under vacumm. The water \((10 \mathrm{~mL})\) was added and the mixture was extracted with ether for twice. Then the water phase was acidified with HCl solution (2 N) and extracted with ether. The organic layer was dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated to afford acid 0.97 g . To a solution of acid (\(0.97 \mathrm{~g}, 7.5\) \(\mathrm{mmol})\) in dry THF (5 mL), TsNCO (\(1.6 \mathrm{~g}, 8 \mathrm{mmol}\)) was added under Nitrogen. The mixture was stirred for 10 min , then \(\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})\) was added. The mixture was stirred overnight, and a 2 N HCl solution \((10 \mathrm{~mL})\) was added. The mixture was extracted with diethyl ether. The combined organic layer was washed with brine and dried over \(\mathrm{MgSO}_{4}\). The solvent was removed under vacuum, and the residue was purified by silica gel chromatography to give \(\mathbf{1 b}(1.82 \mathrm{~g}, 65 \%\) yield for three steps \()\).
\({ }_{\text {NHTs }} \mathbf{1 b}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~m}, 21), 4.95(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=17.7\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.86(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})\), \({ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,145.1,135.9,135.5,129.6,128.3,116.9\), 42.8, 40.6, 29.8, 21.6, 19.3. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 304.0978\) measured 304.0983.
\(\underbrace{1 c}_{\text {NHTs }}\left(61 \%\right.\) yield for three steps): \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71\) (br s, \(1 \mathrm{H}), 7.94\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.34 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 5.61 (m, 1H), 4.94 (d, \(J=11.6\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.20-1.84(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.11(\mathrm{~m}, 8 \mathrm{H})\), \(0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,145.1,135.9\), 135.5, 129.6, 128.4, 117.1, 40.7, 37.9, 34.5, 33.4, 31.8, 26.2, 22.5, 21.7, 14.0. HRMS: \(\mathrm{m} / \mathrm{z}(\) ESI \()\) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)338.1784, measured 338.1792.
 \(1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=17.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 3 \mathrm{H})\), \(1.63(\mathrm{~m}, 1 \mathrm{H}), 0.77(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,145.1,136.7\),
135.4, 129.5, 128.3, 116.7, 40.0, 37.6, 35.3, 29.6, 21.6, 19.1, 18.7. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)310.1471, measured 310.1476 .

NHTs \(\mathbf{1 f}\left(42 \%\right.\) yield for three steps): \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12\) (s, \(1 \mathrm{H}), 7.96\) (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.35 (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\)), 5.72 (m, 1H), 4.99 (d, \(J=11.4\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.63(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,145.0,135.4\), 134.4, 129.5, 128.3, 118.0, 47.1, 46.2, 34.0, 26.9, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)296.1315, measured 296.1320.
\(\underbrace{}_{\text {NHTs }} 4 \mathrm{C}\left(55 \%\right.\) yield for three steps): \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80\) (br s, 1H), \(7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H})\), \(2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J=14.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{dd}, \mathrm{J}=14.7,8.1 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 170.5,145.1,143.4,135.5,129.6,128.3,112.5,45.3,43.1\), 27.9, 21.9, 21.7, 19.5. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)296.1315, measured 296.1322.
\(\underbrace{\text { Ph } i_{N H T s}} \mathbf{4 d}\left(45 \%\right.\) yield for three steps): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl} 3\)) \(\delta 9.29\) (br s, 1H), 7.74 (d, \(J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\)), \(7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 7.04\) (m, \(2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~m}\), \(1 \mathrm{H}), 2,41(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}\), \(\mathrm{CDCl} 3) \delta 170.2,144.7,142.8,142.5,135.2,129.4,128.3,127.9,127.1,126.4,113.0\), 44.5, 42.6, 39.7, 21.8, 21.5. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)358.1471, measured 358.1460 .
\({ }^{\circ}{ }_{\mathrm{NHTs}} \mathbf{4 g}\) (48\% yield for three steps): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl} 3\)) \(\delta 9.15\) (br s, 1H), 7.96 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.35 (d, \(J=8.7 \mathrm{~Hz}, 2 \mathrm{H}\)), \(4.81(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H})\), \(2.45(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (75 \(\mathrm{MHz}, \mathrm{CDCl} 3) \delta 169.9,145.0,142.5,135.4,129.5,128.3,115.1,49.5,47.6,34.5,27.6\), 25.1, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 310.1471\), measured 310.1475 .
\({ }^{\text {NHTs }} 4 \mathbf{i}\left(65 \%\right.\) yield for three steps): \({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83\) (br \(\mathrm{s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H})\), \(2.45(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \((75\) \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 169.9,145.0,143.9,135.5,129.5,128.3,114.7,46.3,45.0,43.0,38.4\), 24.3, 23.7, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 336.1628\), measured 336.1630.
\(\mathrm{NHTs}^{4 j}\) (57\% yield for three steps): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.59\) (br \(\mathrm{s}, 1 \mathrm{H}), 7.95\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H})\), \(2.45(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 170.0,145.0,142.8,135.6,129.5,128.3,115.4,45.0,43.0\), 37.4, 35.9, 35.7, 25.8, 25.3, 21.7, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)

9.34 (br s, 1H), 7.96 (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.34 (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\)), 5.70 (ddd, \(J=18.1\), \(11.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})\), \(2.12(\mathrm{~s}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \((75 \mathrm{MHz}\), \(\mathrm{CDCl}_{3}\)) \(\delta 170.0,145.0,138.7,135.4,129.5,128.2,114.1,47.5,41.1,33.8,28.3,26.8\), 21.6. HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 332.1291\), measured 332.1292.

\section*{Scheme S5}

Compound 4a was synthesized from \(\mathbf{S 8}{ }^{11}\) with \(65 \%\) yield. The procedure is the same as above. \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) \(\delta 170.9,145.2,144.3,135.4,129.6,128.3,110.9,36.5,35.4,22.0,21.8,21.7\). HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)282.1158, measured 282.1165.

Synthesis of 4f: To a solution of diisopropylamine (\(5.05 \mathrm{~g}, 50 \mathrm{mmol}\)) in dry THF (50 mL), n-butyllithium (\(50 \mathrm{mmol}, 32 \mathrm{~mL} 1.6 \mathrm{M}\) in hexane) was added slowly at \(-50^{\circ} \mathrm{C}\). The mixture was stirred for 30 min at \(0{ }^{\circ} \mathrm{C}\), then cooled to \(-78{ }^{\circ} \mathrm{C}\). S9 \({ }^{12}(10 \mathrm{~g}, 50\) mmol) was added. The mixture was stirred for 30 min at the same temperature, following 2-methyl allylbromide (\(9.4 \mathrm{~g}, 70 \mathrm{mmol}\)) addition. The mixture was allowed to warm to room temperature and stirred for 2 hours. \(\mathrm{The}^{\mathrm{NH}_{4} \mathrm{Cl}}\) aqueous was added to quench reaction. The solution was extracted by ether. The organic layer was washed by brine and dried with MgSO , filtered and concentrated under vacumm. Purification by flash chromatography (silica gel, diethyl ether/hexane) gave S11 8.32 \(\mathrm{g}\left(65 \%\right.\) yield). S11: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~m}\), \(1 \mathrm{H}), 3.84,(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}\), \(1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}) 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.47(\mathrm{~m}, 10 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75\) \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 176.04,176.01,142.68,142.64,112.38,112.34,98.71,98.49,65.25\),
\(65.19,62.05,61.82,51.37,51.35,41.12,40.97,40.77,40.62,31.87,31.80,30.49\), 25.39, 22.03, 19.33, 19.24. HRMS: m/z (EI) calculated [M] \({ }^{+}\)256.1675, measured 256.1671 .

S10 (\(68 \%\) yield). S10: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 5.73\) (m, 1H), 5.06 (d, \(J=17.2\) \(\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 3.84,(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.49\) \((\mathrm{m}, 1 \mathrm{H}), 3.37,(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.48(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\) \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.79,175.75,135.19,116.95,98.77,98.56,65.21,65.13\), \(62.15,61.89,51.43,51.40,42.48,42.30\), \(36.58,36.38,31.59,31.47,30.53,25.42\), 19.39, 19.27. HRMS: m/z (ESI) calculated [M+Na] 265.1410, measured 265.1410.

The procedure for oxidation of S11 by Jones reagent and the preparation of \(\mathbf{4 f}\) is the same as that for \(\mathbf{4 a - A}\) (above). \(\mathbf{4 f}\) (\(67 \%\) yield for two steps): \({ }^{1} \mathrm{H}\) NMR (300 MHz , \(\mathrm{CDCl}_{3}\)) \(\delta 8.69\) (br s, 1H), 7.93 (d, \(J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.34 (d, \(J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\)), 4.75 (s, \(1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=9.3,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}\), \(3 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{dd}, J=9.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (75 \(\mathrm{MHz}, \mathrm{CDCl} 3) \delta 175.2,169.4,145.0,141.6,135.5,129.5,128.3,113.8,52.1,39.9\), 38.8, 36.9, 21.7, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)362.1032, measured 362.1028 .

Synthesis of 1e: The procedure of synthesis of S10 is the same as that of S11.
To a suspension of LiAlH4 (\(1.1 \mathrm{~g}, 30 \mathrm{mmol}\)) in dry THF (50 mL), S10 (\(3.6 \mathrm{~g}, 15\) \(\mathrm{mmol})\) was added. The mixture was stirred for 5 hours. Then the extra of LiAlH4 was quenched by wet THF.. The mixture was extracted with diethyl ether (\(3 \times 50 \mathrm{~mL}\)). The combined organic layer was dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under vacuum. Purification by flash chromatography (silica gel, hexane) gave S12 3.0 g (90 yield). S12: \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.39\), \((\mathrm{m}, 6 \mathrm{H}), 2.21-1.49(\mathrm{~m}, 10 \mathrm{H})\). \({ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.80,136.76,99.06,98.92,66.11,65.94,65.73\), 65.60 , \(62.43,62.38,39.07,39.02,36.38,36.23,31.53,31.49,30.55,25.29,19.51\), 19.48. HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)237.1461, measured 237.1462.

The alcohol (\(3.0 \mathrm{~g}, 13.5 \mathrm{mmol}\)) was added to a solution of \(\mathrm{NaH}(0.36 \mathrm{~g}, 15 \mathrm{mmol})\) in THF at \(0{ }^{\circ} \mathrm{C}\). After \(15 \mathrm{~min}, \mathrm{BnBr}(2.6 \mathrm{~g}, 15 \mathrm{mmol})\) was added. The mixture was stirred for overnight and 10 mL water was added. The mixture was extracted with diethyl ether (\(3 \times 50 \mathrm{~mL}\)). The combined organic layer was dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under vacuum to give the crude ether 3.4 g . The procedure of synthesis of ether from \(\mathbf{S 1 2}\) is the same as that of \(4 \mathrm{a}-A\). \(\mathbf{1 e}\left(58 \%\right.\) yield for three steps): \({ }^{1} \mathrm{H}\) NMR \((400 \mathrm{MHz}\), \(\mathrm{CDCl}_{3}\)) \(\delta 9.24\) (br s, 1H), 7.87 (d, \(J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.39-7.30 (m, 7H), 5.61 (ddd, \(J=\) \(18.8,10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49\) (d, \(J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J\) \(=9.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.96(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \((100\) \(\mathrm{MHz}, \mathrm{CDCl} 3) \delta 170.2,144.8,137.4,135.7,135.2,129.4,128.5,128.3,128.0,127.9\), \(117.5,73.3,72.4,39.2,36.0,35.0,21.6\). HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 338.1577. measured 338.1588 .

The procedure is modified from the literature \({ }^{13}\) : To a solution of 2-methyl allyl magnesiumbromide (80 mmol) in ether (100 mL), methyl cyanoacetate \((4.5 \mathrm{~g}, 40\) mmol) was added dropwisely at \(0^{\circ} \mathrm{C}\). The mixture was stirred for overnight and \(10 \%\) HCl aqueous was added. The mixture was extracted with ether. The organic layer was washed with brine, dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under vacumm. Purification by flash chromatography (silica gel, hexane) gave S13 \(2.7 \mathrm{~g}\left(40 \%\right.\) yield). S13: \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl} 3\)) \(\delta 4.99\) (\(\mathrm{s}, 1 \mathrm{H}\)), 4.86 (\(\mathrm{s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48\) \((\mathrm{s}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}\), CDCl3) \(\delta 200.8,167.1,138.2,115.8,61.3,52.1,48.1,22.4,14.0,13.9\). HRMS: m/z (EI) calculated \([M]^{+} 170.0950\) measured 170.0943 .

To a solution of \(\mathbf{S 1 3}(2.0 \mathrm{~g}, 12 \mathrm{mmol})\) in methanol \((20 \mathrm{~mL}), \mathrm{NaBH} 4(0.6 \mathrm{~g}, 16.5\) mmol) was added in couple potion at \(0{ }^{\circ} \mathrm{C}\). After 1 hour, the \(\mathrm{NH}_{4} \mathrm{Cl}\) aqueous was added and solvent was removed under vacumm. The mixture was extracted with ether. The organic layer was dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under vacumm to give crude alcohol 1.3 g (\(65 \%\) yield). The crude alcohol (\(1.3 \mathrm{~g}, 7.6 \mathrm{mmol}\)) dissolved in DMF (10 mL), \(\mathrm{NaH}(0.2 \mathrm{~g}, 8.3 \mathrm{mmol})\) was added at \(-45^{\circ} \mathrm{C}\). After \(10 \mathrm{~min}, \mathrm{MeI}(5.3 \mathrm{~g}\), 38 mmol) was added. The mixture was stirred for 3 hours at the same temperature and slowly raise temperature at \(0{ }^{\circ} \mathrm{C}\), then \(\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})\) was added. The mixture was extracted with ether. The organic layer was washed with brine, dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated under vacumm. Purification by flash chromatography (silica gel, hexane) gave methyl ether \(0.7 \mathrm{~g}(55 \%\) yield \()\). The methyl ether \((0.7 \mathrm{~g})\) was dissolved in mixture of ethanol (5 mL) and NaOH aqueous solution (\(2 \mathrm{~N}, 3 \mathrm{~mL}\)). The mixture was stirred for overnight at \(50^{\circ} \mathrm{C}\). The ethanol was removed under vacumm. The water \((10 \mathrm{~mL})\) was added and the mixture was extracted with ether for twice. Then the water phase was acidified with HCl solution (2 N) and extracted with ether. The organic layer was dried with \(\mathrm{MgSO}_{4}\), filtered and concentrated to afford acid 0.6 g . To a solution of acid (\(0.6 \mathrm{~g}, 3.5 \mathrm{mmol}\)) in dry THF (5 mL), TsNCO (\(0.8 \mathrm{~g}, 4.0 \mathrm{mmol}\)) was added under Nitrogen. The mixture was stirred for 10 min , then \(\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})\) was added. The mixture was stirred overnight, and a HCl solution \((2 \mathrm{~N}, 10 \mathrm{~mL})\) was added. The mixture was extracted with diethyl ether. The combined organic layer was washed with brine and dried over \(\mathrm{MgSO}_{4}\). The solvent was removed under vacuum, and the residue was purified by silica gel chromatography to give \(4 \mathbf{e} 0.9 \mathrm{~g}\) (\(23 \%\) yield for four steps). 4e: \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})\), 2.49 (dd, \(J=15.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{dd}, J=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28\) (dd, \(J=14.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(168.8,144.9,140.7,135.7,129.4,128.4,114.3,75.9,56.9,41.1,40.7,22.6,21.6\). HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 312.1264\), measured 312.1269.

\section*{Scheme S8}

The procedure is modified from the literature: in a 100 ml - three-neck round-bottom flask equipped with a reflux condenser and mechanical stirrer was placed \(10.0 \mathrm{~g}(0.15\) mol) of anhydrous Zn powder in 20 mL of anhydrous ether. After the reaction initiated, a mixture solution of ethyl acetoacetate \((13.0 \mathrm{~g}, 0.1 \mathrm{~mol})\) and methyl allyl bromide (\(16.2 \mathrm{~g}, 0.12 \mathrm{~mol}\)) in 70 mL of \(75 \%\) THF-ether (anhydrous) was added dropwisely. The mixture was allowed to stir overnight under nitrogen, decanted from unreacted Zn poured into 100 mL ice water, carefully acidified with \(4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}\) and saturated with \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\). The mixture was extracted with ether (5 x 50 mL). The combined organic layer were washed with NaOH solution (\(1 \mathrm{~N}, 2 \times 50 \mathrm{~mL}\)) and saturated NaCl solution, dried with \(\mathrm{MgSO}_{4}\), and filtered. The ether removed under vacumm to give S14 14.6 (\(85 \%\) yield). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.18\) \((\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.27(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (75 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,142.4,115.1,71.1,60.6,49.5,44.7,27.4,24.5,14.1\). HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)209.1148, measured 209.1149.
Synthesis of 4h: The procedure of synthesis of \(\mathbf{4 h}\) from S14 is similar as that for \(\mathbf{4 e}\).
4h: (\(43 \%\) yield for three steps). \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.57\) (s, 1H), 7.94 (d, \(J\) \(=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.53\) (d, \(J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.03(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) \(\delta 169.0,144.6,140.5,135.7,129.2,128.1,115.8,76.1,49.2,46.5,44.1,23.7,22.0\), 21.4. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 384.1240\), measured 384.1235 .

Scheme S9

The compounds \(\mathbf{4 k} \mathbf{k} \mathbf{4 m}\) were synthesized from \(\mathbf{S 1 5 - S 1 7}{ }^{\mathrm{S} 14}\) respectively, according to the same procedure as that of \(\mathbf{4 h}\) (see above).
\({ }^{2}{ }^{\text {NHTs }} 4 \mathrm{k}\left(53 \%\right.\) yield, two steps) \(:{ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94\) (br s, \(1 \mathrm{H}), 7.98\) (d, \(J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.34 (d, \(J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\)), 4.97 (s, 1H), 4.95 (\(\mathrm{s}, 1 \mathrm{H}\)), 3.94 \((\mathrm{s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) 167.5, 145.2, 134.0, 135.3, 129.5, 128.4, 114.4, 75.6, 68.5, 21.6, 19.2. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)306.0771, measured 306.0772.

\(4 \mathbf{l}\left(72 \%\right.\) yield, two steps): \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.13\) (br s. \(1 \mathrm{H}), 7.97\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.62 (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.36 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31\) (d, \(J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}\), \(3 \mathrm{H}), \quad 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,145.1\), \(144.5,138.4,135.2,133.9,130.0,129.4,128.4,127.4,117.3,56.5,51.0,21.6,21.5\), 19.8. HRMS: m/z (ESI) calculated [M+Na] 459.1019 , measured 459.1012 .

4m (\(86 \%\) yield, two steps): \({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 9.25\) (br s, \(1 \mathrm{H}), 7.97\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.65 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 7.34 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33\) (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=\) \(14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.00\) \((\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,145.0,144.5,139.1\), \(135.5,135.4,130.1,129.4,128.6,127.1,116.6,55.4,50.4,21.6,21.5,19.9,11.6\). HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 473.1175\), measured 473.1158 .

\section*{Scheme S10}

The compounds \(\mathbf{4 n} \mathbf{n} \mathbf{4 0}\) were synthesized from \(\mathbf{S 1 8}-\mathbf{S 1 9}{ }^{\text {S15 }}\) respectively, according to the same procedure as that of \(\mathbf{4 h}\) (see above).

4n: \({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}\), 2H), 7.34 (d, \(J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), 4.68 (\(\mathrm{s}, 1 \mathrm{H}\)), 4.58 (\(\mathrm{s}, 1 \mathrm{H}\)), 2.44 (\(\mathrm{s}, 3 \mathrm{H}), 2.41(\mathrm{t}, J=8.1\) \(\mathrm{Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) \(170.8,145.1,143.3,135.4,129.5,128.3,110.8,34.4,31.7,22.3,21.6\). HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)290.0821, measured 290.0824.

40: \({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 8.92\) (br s, 1 H), \(7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}\), \(2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H})\), \(1.47(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.6,145.0,141.2\), 135.2, 129.4, 128.5, 114.8, 47.8, 43.1, 25.1, 23.5, 21.6. HRMS: m/z (EI) calculated \([M]^{+}\)295.1242, measured 295.1239.

\section*{Product characterized data:}

\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.89\) \((\mathrm{m}, 1 \mathrm{H}), 5.78(\mathrm{dt}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=6.6 \mathrm{~Hz}\), \(2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,144.5\), \(136.2,132.1,129.2,128.3,123.7,42.1,35.1,24.9,21.6\). Anal. Calcd. for \(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}\) : C, 58.85; H, 5.70; N. 5.28. Found: C, 58.82; H, 5.71; N. 5.26.

\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84\) (ddd, \(J=16.8,10.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\) \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,145.0,135.7,135.6,129.3,128.5,117.6,61.8,30.4,25.8\), 21.6 .

\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.83\) \((\mathrm{dt}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(2.78(\mathrm{dd}, J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}\). \(3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,144.5\), \(138.1,136.3,129.1,128.4,122.3,42.1,42.0,30.7,21.6,20.8 . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)280.1002, measured 280.1010 .

\({ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.81\) (ddd, \(J=16.8,10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H})\), \(1.99(\mathrm{dd}, J=17.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 172.8,145.0,135.6,135.5,129.4,128.4,117.4,69.2,38.3,33.2,21.7,19.3\). HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)280.1002, measured 280.1007.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86\) \((\mathrm{m}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=11.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}\), \(1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 235(\mathrm{~m} .1 \mathrm{H}), 1.32-1.17(\mathrm{~m}, 9 \mathrm{H})\), \(0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,144.4,137.0\), 136.3, 129.1, 128.5, 122.7, 42.1, 40.0, 35.5, 34.9, 31.6, 26.0, 22.3, 21.6, 14.0. HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 336.1628\), measured 336.1633.

\({ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.82\) (ddd, \(J=17.2,10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=8.0,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{dd}, J=\) \(17.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.15(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.9,145.0,135.9,135.7,129.4,128.4,117.2,67.3,38.4\), 36.7, 33.6, 31.5, 26.4, 22.4, 21.6, 13.9. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 336.1628 , measured 336.1633.

The compound 2 d is difficult to isolate from the mixture of 2d and 3d. 2d: \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H})\), \(5.71(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dq}, J=16.8,2.4 \mathrm{~Hz}\), \(1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H})\), \(1.68(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=0.66 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2\), \(144.5,136.3,135.8,129.2,128.4,124.0,42.4,41.6,37.6,32.6,21.6,19.2,19.0\). HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 308.1315\) measured 308.1318.

\({ }^{1}{ }^{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.81\) (ddd, \(J=16.8,9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.7,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{dd}, J=17.7\), \(3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}\), \(3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,145.0,136.6,135.8,129.3,128.6\), 117.1, 64.9, 44.3, 33.9, 30.8, 21.7, 19.6, 18.8. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 308.1315 measured 308.1314 .

\(2 f\)
The compound \(2 \mathbf{2 f}\) is difficult to isolate from the mixture of \(\mathbf{2 f}\) and \(\mathbf{3 f}\). \(\mathbf{2 f}:{ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H})\), \(5.52(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}\), \(3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 171.6,144.5,142.7,136.3,129.1,128.5\), 120.3, 47.9, 42.0, 34.8, 29.2, 23.5, 21.7. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 294.1158, measured 294.1155 .

\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.73\) (ddd, \(J=17.2,10.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(4.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}\), \(1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.4,144.9\), 135.5, 133.4, 129.3, 128.5, 119.0, 72.0, 44.8, 37.3, 28.2, 23.4, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)294.1158, measured 294.1155.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 7 \mathrm{H}), 5.98(\mathrm{~m}\), \(1 \mathrm{H}), 5.75\) (d, \(J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62\) (dd, \(J=6.6,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\) (dd, \(J=6.6,17.1\) \(\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.11 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}\), \(\mathrm{J}=12.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})\). \({ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,144.5,137.8,136.2,133.7,129.2,128.5\), 128.4, 127.7, 127.6, 124.8, 73.1, 72.5, 42.1, 38.0, 36.6, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)386.1421, measured 386.1428 .

\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 7 \mathrm{H}), 5.86\) (ddd, \(\mathrm{J}=17.2,10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77\) (d, \(J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=17.6\), \(8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, \mathrm{J}=17.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.5,144.9,137.5,135.8,135.6\), 129.4, 128.6, 128.4, 127.9, 127.6, 117.3, 73.2, 70.4, 64.2, 42.1, 38.4, 33.6, 21.7. HRMS: m/z (ESI)
calculated \([\mathrm{M}+\mathrm{H}]^{+}\)386.1421, measured 386.1425 .

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.85\) \((\mathrm{m}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J=12.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s} .2 \mathrm{H}), 2.02\) \((\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,144.5\), 136.4, 129.7, 129.1, 128.7, 126.8, 47.2, 47.1, 39.2, 36.6, 28.6, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 308.1315\), measured308.1316.

\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.86\) (ddd, \(J=17.2,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=1.04 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.11(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97\) (dd, \(J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}\)), 1.72 (dd, \(J=14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})\). \({ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,144.6,138.6,136.4,129.1,129.0,116.2\), 57.6, 47.2, 42.4, 31.0, 30.7, 28.7, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 330.1134 , measured 330.1136 .

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.26\) \((\mathrm{s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})\), \(1.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,144.4,142.3,136.0,129.1\), 128.6, 116.8, 50.1, 37.8, 36.6, 23.0, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 280.1002, measured 280.1007.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), \(7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.29\) \((\mathrm{s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~m}\), \(3 \mathrm{H}), 2.41\) (s, 3H), 2.08 (dd, \(J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}\)), 1.92 (m, 1H), 0.88 (d, \(J=6.6 \mathrm{~Hz}\) \(2 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.5,144.5,141.0,136.0,129.1,128.6\),
117.4, 50.0, 44.8, 44.6, 29.1, 21.6, 21.0. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\) 294.1158, measured 294.1159.

\({ }^{1} \mathrm{H}\) NMR \(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=6.6\) \(\mathrm{Hz}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.07(\mathrm{dd}, J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}\), \(J=13.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}(75\) \(\mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 172.1,144.7,144.6,141.4,136.1,129.3,128.8,128.7,126.9,126.3\), 117.7, 50.0, 45.0, 44.8, 40.6, 21.7. HRMS: m/z (ESI) calculated [M+H] 356.1315, measured 356.1327 .

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.84(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.36\) (s, 1H), \(5.19(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}\), \(1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=5.1 \mathrm{~Hz} 2 \mathrm{H}), 2.61(\mathrm{dd}, J=14.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46\) (dd, J \(=14.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,144.4\), 138.5, 135.7, 129.0, 128.7, 119.0, 73.6, 56.1, 49.8, 42.7, 41.8, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)310.1108, measured 310.1114.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31\) \((\mathrm{s}, 1 \mathrm{H}), 5.16,(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}\), \(3 \mathrm{H}), 3.00(\mathrm{dd}, J=14.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 173.0,171.0,144.7,139.6,135.7,129.2,128.7,118.1,52.3,49.7\), 39.2, 38.3, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)360.0876, measured 360.0874 .

\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.30\) (s, 1H), \(5.08(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H})\). \({ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,144.5,140.4,136.0,129.0,128.7,117.7\), 50.9, 50.0, 49.9, 32.2, 28.3, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 308.1315\), measured 308.1321.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.38\) (s, 1H), 5.18, (s, 1H), \(4.73(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.0(\mathrm{~s}, 3 \mathrm{H})\), \(2.82(\mathrm{~s}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}\), \(3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,144.3,139.2,135.6,128.9,128.8\), 119.0, 73.7, 49.6, 49.3, 48.3, 47.8, 24.2, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\) 346.1084, measured 346.1093.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.29\) \((\mathrm{s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~m}\), \(4 \mathrm{H}), 1.28(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,144.4,141.0,136.1\), 129.0, 128.6, 117.6, 50.0, 48.9, 48.8, 43.1, 37.8, 23.8, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)334.1471, measured 334.1463 .

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.27\) \((\mathrm{s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 1.36-1.11\) \((\mathrm{m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,144.4,140.1,136.0,129.0,128.7\), 117.3, 50.2, 48.2, 47.3, 36.3, 34.7, 25.6, 21.6, 21.2., HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 348.1628\), measured 348.1638 .

5j
\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.43\) \((\mathrm{s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 171.1,144.9,141.2,135.8,129.3,128.5,118.6,74.3,72.4\), 48.2, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+}\)304.0614, measured 304.0623.

\({ }^{1} \mathrm{H}\) NMR (\(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26\) (d, \(J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})\), \(2.39(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 167.9,145.0,144.3,138.3,135.5\), 135.0, 130.1, 129.4, 128.6, 127.1, 120.2, 53.6, 52.9, 48.9, 21.7, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 457.0862\), measured 457.0850.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\)), \(7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30\) \((\mathrm{m}, 4 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J\) \(=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})\). \({ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR \(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,144.9,144.2,139.4,136.4,135.6,130.1\), \(129.4,128.5,126.9,119.0,57.7,48.8,48.6,21.7,21.6,15.9\). HRMS: \(\mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+} 449.1199\), measured 449.1205.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15\) \((\mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta 170.3,144.9,137.9,135.8,129.3,128.6,112.8,51.3,34.3,27.3,21.6\). HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 288.0665\), measured 288.0671 .

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.16\) \((\mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\)

NMR (75 MHz, \(\left.\mathrm{CDCl}_{3}\right) \delta 175.9,144.6,136.1,135.9,129.3,128.4,113.8,52.3,43.0\), 41.0, 25.8, 21.6. HRMS: m/z (ESI) calculated \([\mathrm{M}+\mathrm{Na}]^{+} 316.978\), measured 316.0977.

\({ }^{1} \mathrm{H}\) NMR (\(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=\) \(5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) \(\delta 175.4,142.3,114.9,51.2,47.9,47.7,31.4,28.5 . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}\) (ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)154.1226, measured 154.1220 .

\({ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=13.5\) \(\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=13.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.19\) \((\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}\) NMR (\(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) \(\delta 176.5,53.3,49.2,48.6,33.8,31.2,30.8,24.3,20.6 . \mathrm{HRMS}:\) \(\mathrm{m} / \mathrm{z}\left(\right.\) ESI) calculated \([\mathrm{M}+\mathrm{H}]^{+}\)156.1383, measured 156.1378 .
(S1) Boys, M. L.; Schretzman, L. A.; Chandrakumar, N. S.; Tollefson, M. B.; Mohler, S. B.; Downs, V. L.; Penning, T. D.; Russell, M. A.; Wendt, J. A.; Chen, B. B.; Stenmark, H. G. Bio. Med. Chem. Lett. 2006, 16, \(839-844\).
(S2) Nishida, A.; Kawahara, N.; Nishida, M.; Yonemitsu, O. Tetrahedron. 1996, 52, 9713-9734
(S3) De La Mare, H. E.; Kochi, J. K.; Rust, F. F. J. Am. Chem. Soc. 1963, 85, 1437-1449.
(S4) Liu, C.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem. Eur. J. 2004, 24, 6343-6352.
(S5) Cahiez, G.; Alami, M. Tetrahedron. 1989, 45, 4163-4176.
(S6) Randad, R. S.; Kulkarni, G. H. Synth. Commun. 1985, 15, 311-319.
(S7) Beckwith, A. L. J.; Easton, C. J.; Lawrence, T.; Serelis, A. K. Austra. J. Chem. 1983, 36, 545-556.
(S8) Beckwith, A. L. J.; Bowry, V. W.; Moad, G. J. Org. Chem. 1988, 53, 1632-1641.
(S9) Stella, L.; Raynier, B.; Surzur, J. M. Tetrahedron. 1981, 37, 2843-2854.
(S10) Eliel et al. Org. Synth. 1970, 50, 43.
(S11) Fernández-Mateos, A.; Teijón, P. H.; Burón, L. M.; Clemente, R. R.; González, R. R. J.
Org. Chem. 2007, 72, 9973-9982.
(S12) Tori, M.; Toyoda, N.; Sono, M. J. Org. Chem. 1998, 63, 306 - 313.
(S13) Anderson, G. W.; Halverstadt, I. F.; Miller, W. H.; Roblin, R. O. J. Am. Chem. Soc. 1945, 67, 2197.
(S14) (a) Oh, T.; Wrobel, Z.; Rubenstein, S. M. Tetrahedron Lett. 1991, 32, 4647 - 4650. (b) Tamura, O.; Mitsuya, T.; Huang, X.; Tsutsumi, Y.; Hattori, S.; Ishibashi, H. J. Org. Chem. 2005, 70, 10720-10725.
(S15) Donaldson, W. A.; Hossain, M. A.; Cushnie, C. D. J. Org. Chem. 1995, 60, 1611 - 1618.

New Compound's Spectrum

\(989.7 \varepsilon —\)
\(087.98 —\)

08992
\(000 \angle 2\)

1a

9099レレ——
\(\varepsilon 9 Z 8 Z\)
96962
SOt 98
\(90 Z^{\circ} \angle \varepsilon 1\)

てらしらけレ

\(899^{\circ}\) に
\(0 ャ 862\)
979.07
cos Zt

\(89 \vdash 011\)


```

800`t

```
299ㄴし———
\(88+7 Z \cdots\)
としで9Z
90818
レガと
09がも
ع \(18 \%\)
\(699^{\circ} 0\)

2602レし
098.8 L

02962
ع 200 O し
LGGEL
\(8989 \varepsilon\)
いいらかし
\(999^{\circ} 011\)

1d

\(\cdot\)

\section*{919'し}
\(986.6 \longrightarrow\)
\(976.98 \longrightarrow\)

\(61+7 L\)
\(92 \varepsilon \varepsilon L\)
\(089.9 L\)
\(000 \angle L\)
\(02 \varepsilon \angle L\)

191001

\(029^{\circ} 12\)
06892

\(681.9 t\)

\(8 \vdash 0\) Gカレー—

161691

9708 L \(\qquad\)
28991
000 L
\(9 て や L\) \(\rightarrow\)

4a

\(\downarrow 8 \varepsilon 9 \varepsilon\)
\(6 \varepsilon \varsigma \cdot 9\)

レて60レー

\(86 \varepsilon 9 \varepsilon \downarrow\)

0 に゙ャカレー
z919t

606021

926:
\(16 \varepsilon 9 \varepsilon\)
609 ＇98

D 29.92
000 L

カャ60レー

6eしうヶレー～

\(\angle 9 Z^{\circ} \mathrm{L}\)
\(968 \% \longrightarrow\)
\(1862 \square\)

E69' \(\dagger\)
789 †
Gec.
z98

186 2
\(\dagger 962\)

4b

\(\longrightarrow \left\lvert\, \frac{\sum}{\square}\right.\)

\(\stackrel{i}{c}\)

\(96 ヵ て い\)

LZと 87 レ
9096てし
\(\downarrow \angle G 6 Z 1\)
28t9el

七てし．Gャレ

ELGOLI

\(820 \%\)
```

L6%レて
した8レて

```

289.92
\(00012 \cdots\)

6967 に
L98．9Z1
280닌
\(916: \angle\)
\(\dagger 0 \varepsilon 8 Z 1\)

\(\downarrow 8 \varepsilon \varepsilon\)

\(819 \%\)
\(692 \%\)
\(\angle \downarrow E L\)
\(1+62\)

\(06 て ゙ \downarrow い ~\)

\(88 \varepsilon 87\)
〈とか 6 と
18998．
8690 t
と06ヤカカー——
\(8 \vdash 8\) 89

81699

－

8162
\(\rightarrow t 62\)

16029

89Lとレ \(\qquad\)

\(28+9 \varepsilon 1\)
GEc゙した
\(8 ャ 09 \vdash 1\)

998691

6960
\(989^{\circ}\) ！
L \(16^{\circ} 1\)
0t＇て
\(9 カ t て \longrightarrow\)
t9 \({ }^{\circ} \downarrow\)
118 ＇

4f
\(\downarrow \varepsilon \varepsilon^{2} L\)

\(\square \bullet 62\)
\(\square \square 62\)
\(2 \angle 62\)

\(119: 1 t\)
\(18 t 6 t\)
\(7 \angle 991\)
000 L
92 セん

\(01 \varepsilon L\)
\(\angle \varepsilon \angle L\)
\(6262-\cdots\)
996

8119
129.92

000 LL
\(9 て も L\)

L9LGルー
```

890821
9 しで6てし
$7999 \varepsilon$
91G0t1

``` \(\qquad\)
```

209かもに

```

026891

80 よ゙けレー

しビ8てし
19ヶ6てし

899' \(\dagger\)

2862
0962

6898 \(\qquad\)
-

007 Gレし \(\qquad\)
\(\nabla \varepsilon \varepsilon 8 \mathrm{R}\)
06762
\(899 \mathrm{GE} \downarrow\)

SE8てもレーー
966 \(\dagger t レ\)
＋80．011

E9G＇\({ }^{2}\)
71991
000 K
9 なって

じロ゙ทレ
\(レ ー\)

86が6てし
\(66 Z^{\circ} 9 \varepsilon 1\)
\(6666 \varepsilon\) \(\qquad\)
\(00 Z 9 \vdash 1\)

209291

\(089^{\circ} 92\)
\(900 \%\)
\(\forall て \vdash L L\)

\(9660 \longrightarrow\)
ع10

とか9．レ

```

667\varepsilon —

```
\(298 \varepsilon\)

41
عเ9レレー
\[
\begin{aligned}
& 12661 — \\
& 929.12 \longrightarrow
\end{aligned}
\]
\[
8 \varepsilon+09
\]
\(06 \varepsilon 99\)

08991
\(000 \%\)

\(0 _\varepsilon \angle\)

عяg9に———
\(\varepsilon 9027\)
0ع9＇8Z
\(99 \varepsilon 6\) 亿
\(2800^{\circ} 0\) L
6した9とし
\(6 \angle t 9 \varepsilon\)
0016 Cl
909 が
\(0009 \vdash 1\)
に

\(9 \angle 9 \circ \square\)
\(8 \angle 9 \circ\)
\(\dagger\) たで
če\％
ZSEL
\(986:\)
\(t 962\)
\(\qquad\)

－
\(869^{\circ}\llcorner\) ——
L6Z＇ZZ
\(889^{\circ} 18\)
\(08 \varepsilon\) 七8
019.91
\(000 \%\)
\(9 て \vdash 1 /\)

19で8Z
\(98 \mathrm{~g}^{6} 6 \mathrm{~L}\)
\(9 \varepsilon \vdash \subseteq \varepsilon 1\)

ャ8でとャレ———
9909ヶし

281021 \(\qquad\)

091゙し
\(99 \vdash^{\circ}\) し \(\qquad\)

ャてでて \(\qquad\)
てかけて

\(4 n\)

て6t゙か
\(81 て ゙ 1\)
\(97 \varepsilon\) L
\(\varepsilon 9 \varepsilon \%\)
\(1062 —\)
9162
\(\qquad\)

802 \(\dagger\)
802
916.8

909 レて
\(\downarrow\) เGと
\(9 Z 1 . g て\)
\(\angle \nabla L \cdot \varepsilon\)
10817

\(+\angle 992\)
\(000 \%\)
\(9 Z \vdash L\)

ャレロャレレ

Z0G8Z1
1686て1
10298．
とででけレー
\(6 \angle 6 \nleftarrow \vdash\)－

869911

01912
\(9 \downarrow 8 \downarrow て\)
\(990^{\circ} \mathrm{G} \varepsilon\)
ャとじそ

90ع8てし
0とで6Z
gいてと
90Z981

96 がカレレ
\(69 \varepsilon \varepsilon \angle L \longrightarrow\)

\(1+802 \longrightarrow\)
\(6 \varepsilon \angle 0 \varepsilon\)

ゅてとててし
\(98+8 \mathrm{LL}\)
09 1．6Z

2b
\(92 \varepsilon 981\)
9908 し
\(し 6 巾 ゙ ゅ \downarrow\) \(\qquad\)
\(661 \cdot 2 L\)

68ะ6レ———
\(899^{\circ}\) に

\(1 \angle \varepsilon L レ\)
0926
0162
\(2 \angle \varepsilon 2 L\)

\(66 \varepsilon 62\)
\(829981 \longrightarrow\)
\(646^{\circ} \downarrow\) カレ

ZLLZLL

996 ع
\({ }_{98 \varepsilon}^{019^{\circ} し て \longrightarrow}\)
896 GZ
Lg9＇ \(1 \varepsilon\)
\(188 . \downarrow\)
\(099 \cdot \varepsilon\)
\(0 \varepsilon 6.68\)

\(089: 92\)
\(000 \%\)
\(216 \%\)

889 てZ
96 ナ゙8て
\(860^{\circ} 6 乙\)
192．981
\(810 \angle \varepsilon\)
しカガカカー

かガでし

6
\(\rightarrow 76 \varepsilon\)
\(0+9^{\circ}\) に
としたても
ャ8と 97
と67レと \(\qquad\)
EGG＇\(\varepsilon\)
979.98

10788

\(9 \varepsilon \varepsilon<19\)
\(929: 92\)
\(906 \%\)

\(8 し て し い\) \(\qquad\)
\(Z \varepsilon+8 Z 1\)
\(9 \angle \varepsilon 6 Z 1\)
\(996^{\circ} \downarrow \vdash レ \longrightarrow\)

\(\downarrow 98 \downarrow 9\)

gてZとLレー

:

66181
19961
199．61

289
\(000 \%\)
\(9 て ゃ ん\)

090211

G998Z1 \(\qquad\)
教
\(9919 \varepsilon\)
989＇9と।

646 カャレー
\(800 \varepsilon \angle 1\) －

7
```

109`に

```
\(669.98 \cdots\)
乙10.88
ZLOZも
\(\varepsilon 9 \% 1\)

\(0 \varepsilon 9 \div\)
\(999 \varepsilon \varepsilon\)
とかっ \(8 \varepsilon\) ——

\(99 ャ て L 1\)

\(99 Z^{\circ} L\)
\(\varepsilon \angle Z \angle\)
\(3 f\)（minor）

ャ6でし
6882
0981
0981

819121
て9とでし

\(3 f\)
```

0\&9'LZ

```
カカカとを
しレて 88
\(90 \varepsilon 2 \varepsilon\)
\(608 \downarrow t\)

016811

E0G：82
ナにとてし
\(6 \triangleright \vdash \varepsilon \varepsilon 1\)
\(97 c 9 \varepsilon 1\)

عて6かヤレー

298211

996 ZZ
\(\varepsilon 7998 —\)
L1818

06009

71991
\(000 \%\)
\(92 ナ \mathrm{~L}\)

2089ルー

Lع0＇9el
88でてもし———
6 とがカャレ

209811

5b

\(0 L Z L \longrightarrow\)
\(86 Z L \longrightarrow\)

6881
\(198^{\circ}\)
```

2Z0.12—
990:6Z —

```
\(\angle L 9^{\circ}+\square \longrightarrow\)
078 'tb
0966

8 がてい

\(909^{\circ}\). \(\qquad\)

088 :
806 L
 \(=\)

\(089^{\prime 9}\)
\(000 \%\)
0でに

190981
てかけしかし
929 かった に一

\(\underset{+981}{1282}-\)

2006 L

\(9 Z L 9 \varepsilon 1\)
\(\downarrow \subset \mathcal{\circ} 8 \mathrm{~L}\)
688゙かヤレー

991021

\(92 \varepsilon 88\)
\(9 し て 6 \varepsilon\)

Z0EZ9
129.92

000 L
\(9 て も L\)

690811

2660
000 ع 21

to 9

888
z89 \(レ て\)
\(69 Z 82\)
06 して －
\(866.67 \longrightarrow\)
\(898.09 \longrightarrow\)

72991
\(000 \%\)
926 L

6以2い

66982
ع006Z
62098
0が0カレー
Gのがカーし
\(9081 / 2\)

```

Z20'0

```

\(\qquad\)
\(\begin{array}{ll}\varepsilon L \downarrow \\ 99 L\rangle & \cdots\end{array}\)

\(988 \%\)
\[
882
\]

7982

6LIG
\(1 \angle \varepsilon 9\)

\(-\infty\)

2ヶ06にし

\(\downarrow\) ャ9＇9とし——
8Ll＇6el
\(8 \downarrow\) ゼかヤレー

ع0102l \(\qquad\)

5h

\(9909 \square\)
\(+8 Z^{\circ} 9\)
\(9909 \square\)
5879
\(80{ }^{\circ} \dagger\) \(\qquad\)
-
-
\(897^{\circ} \mathrm{C}\) ———

1681
9981

\(96 Z\)

988 ——

5h
19921し \(\qquad\)
```

1E9：8Z
$\varepsilon 006 \mathrm{ZL}$

``` \(\qquad\)

910981 \(\qquad\)

60 がカレ
\(629 \%\) \(\qquad\)

ع90＇g \(\qquad\)
\(0129 \longrightarrow\)
\(997 \%\)
\(127 \%\)
\(867 \%\)
\(1782=\)
\(918 \%\)
－

\(5 i\)


```

L8\mp@subsup{1}{}{\circ}LZ
1699%

```
\begin{tabular}{l}
\(0 \varepsilon L \downarrow \varepsilon\) — \\
\(89 \%\) \\
\hline
\end{tabular}
เ62 \(2 t \sim \longrightarrow\)
\(991.09 —\)
\(+1992\)
266：9

288 W1
†L 82
0968 R1
Z 209 O
て900t1
ってがカカレー

992.9
¢Zっら

5j
1282
868 L

\(989^{\circ}\) L
tol 8 t

5j

1098 レレ

729821
\(9 ャ\) ど6Zレ
\(\angle t 89 \varepsilon 1\)
98レ゙レセレ——
レじカャレー
\(160^{\circ} \mathrm{LLL}\)
\(906 \varepsilon —\)
\(\angle 16 \varepsilon —\)
\(61 \varepsilon^{\bullet} \downarrow\) —

\(9 \varepsilon か ゙ て\)

－

6968 レレ
06892 し
20982L
\(66 \varepsilon 62\)
090 0el \(\qquad\)
61998 \(\qquad\)
GLE6E1
してでわった
ع06 \(\dagger t\)

6カガいし

\(\operatorname{ctg} \bullet Z\)
\(9 レ E \angle Z\)
\(\varepsilon \angle Z \downarrow \varepsilon \longrightarrow\)

897 LG

71991
\(000 \%\)
\(92+\mathrm{L}\)

088 てル

5m
\(919871 —\)
\(0 \varepsilon \varepsilon 6 Z 1 —\)
\(6 \angle L 9 \varepsilon 1\)
gl6 \(2 \varepsilon\) l
ع18かヤレー

292001
\(\qquad\)

5n
```

\diamondて\varepsilonて—
6てがて
ャてとて———
6でて

```

5009
9919
\(698 \%\)
9681

201． \(: \sim\)

5n

เャ8をレレ——
\(\qquad\)

\section*{ャ8L！}

ャロでて
\(\varepsilon 6 \varepsilon\) と
\(789 \varepsilon —\)
\(70 \angle \varepsilon —\)

816

\(1 L Z L\) \(\qquad\)

\(\downarrow 6 \mathrm{t} 8 \mathrm{z}\)
\(189 \%\)
G16 \(2 t\)
かG1．LG

28991
\(000 \%\)
\(9 て も L\)

ゅも6゙ゅル
\(08 て て \downarrow\) •

\(+209\) \(\qquad\)
\(0+902\)
てじもて
86108
10でしく
L18と
†198ャ
عgて＇6t \(\longrightarrow\)
ャレ゙とG

D 29.91
\(000 \%\)

```

