Europium(III) complex probing distribution of functions grafted using molecular stencil patterning in 2D Hexagonal mesostructured porous silica

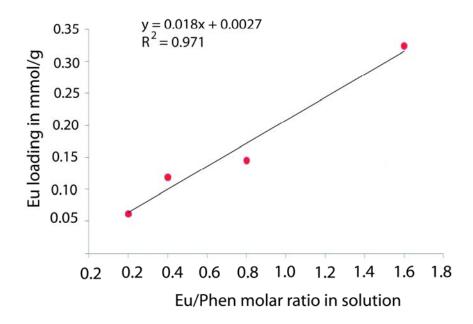
S. Abry, F. Lux, B. Albela, A. Artigas-Miquel, S. Nicolas, B. Jarry, G. Lemercier, L. Bonneviot

Laboratoire de Chimie, UMR n°5182, CNRS/ENS-Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.

E-mail:Laurent.bonneviot@ens-lyon.fr.

G. Lemercier

Université de Reims Champagne-Ardenne, CNRS, ICMR, Moulin de la Housse - BP 1039 - 51687 Reims Cedex 2, France.


P. Perriat

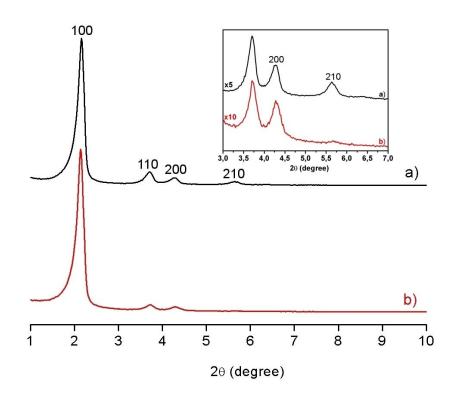
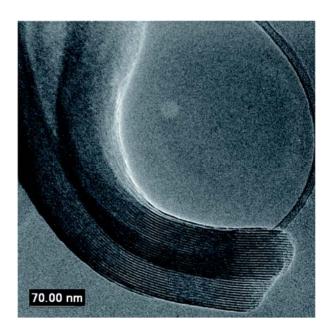
Université de Lyon, MATEIS, INSA- Lyon, CNRS 69621 Villeurbanne Cedex, France.

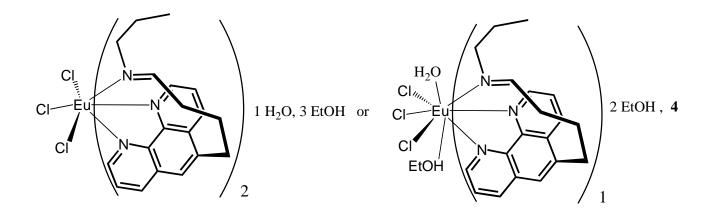
Table S1. Quantification of chemical species from elemental analysis reported in mmol.g⁻¹.

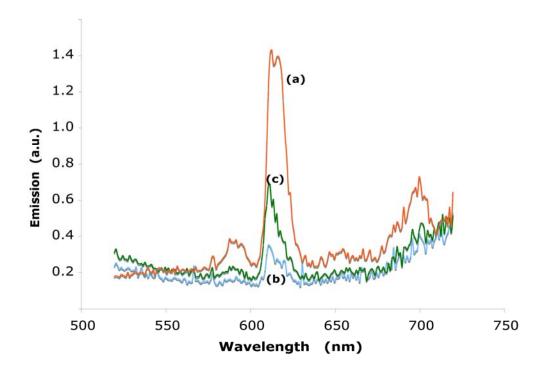
Materials	TMS ^[a]	APS	Phen	Eu
	± 10%	± 5%	±10%	±5%
LUS-PS	2.15			
LUS-PS-AP	1.83	1.50 ^[b]		
LUS-PS-Phen	1.59	0.46 ^[c]	$0.46^{[c]}$	
LUS-PS-Phen-Eu	1.38	$0.00^{[c]}$	0.43 ^[c]	0.12 ^[d]

[a] determined by integration of the IR peak at 850 cm $^{-1}$ and normalized to the intensity peak at 450 cm $^{-1}$; [b] determined elemental analysis of N; [c] from elemental analysis by C/N ratio considering C/N = 6.66 for the entire 1,10-phenanthroline-imino moiety and C/N = 3 for aminopropyl groups; [d] corresponds to Eu/Si_{inorg} = 0.009 in mole ratio.

Figure S1. Europium loading *vs* Eu/Phen molar ratio introduced in the solution.


Figure S2. Powder X-Ray diffractograms of a) as made LUS-1 and b) LUS-PS-Phen-Eu.


Figure S3. Nitrogen adsorption-desorption isotherms of (a) LUS-1 extracted in 6.10⁻² mol.L⁻¹ ammonium acetate ethanolic solution and (b) LUS-PS-Phen-Eu at 77 K.

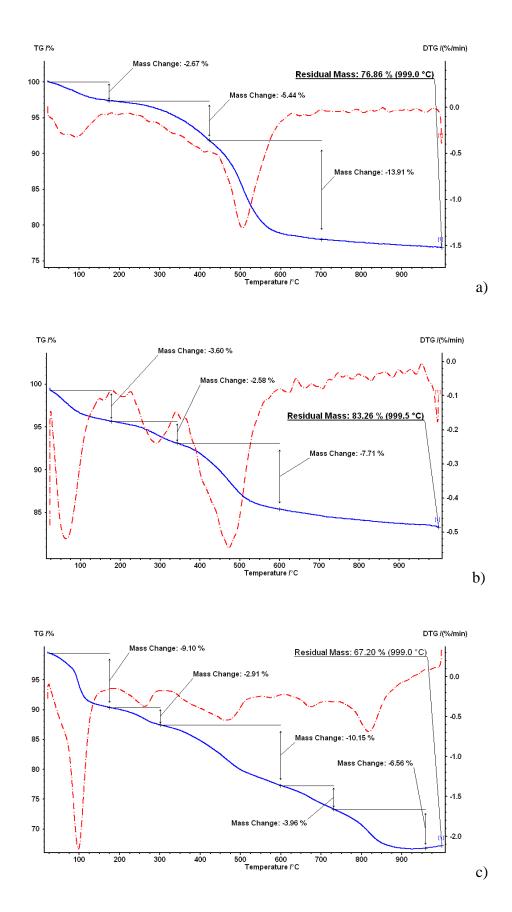

Figure S4. TEM picture of LUS-PS-Phen-Eu of two isolated fibers (zoom of the first picture in the bottom of Figure 3).

Figure S5. Tentative structures for the molecular complex **5** matching the empirical formula $EuC_{44}H_{62}N_6Cl_3O_4$ as the preferred, for $EuC_{38}H_{42}N_6Cl_3.1H_2O$, 3EtOH and assuming a mononuclear species (left hand side) with two "phen-imine-type" **4** inner sphere ligands and (right hand side) with one "phen-imine-type" inner sphere ligand and one outer sphere "phen-imine-type" molecule as in some of such type of complexes (see text).

Figure S6. Emission spectra of compounds LUS-PS-Phen-Eu (a), LUS-PS-AP-Eu(Phen)₂ (b) and LUS-PS-AP-EuCl₃ (c).

Figure S7. Thermal Gravimetric Analysis (TGA) of compounds LUS-PS-Phen-Eu (a), LUS-PS-AP-Eu(phen)₂ (b) and LUS-PS-AP-EuCl₃ (c).