Supplementary Data for:

Terminal Alkyne Activation by Frustrated and Classical Lewis Acid/Phosphine Pairs

Meghan A. Dureen and Douglas W. Stephan*

General considerations: All manipulations were performed on a double manifold N_{2} /vacuum line with Schlenk-type glassware or in an N_{2}-filled M-Braun or Vac Atmospheres glove box. Solvents (Aldrich) were dried using an Innovative Technologies solvent system. NMR spectra were obtained on a Bruker Avance 400 MHz spectrometer and spectra were referenced to residual solvent $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or externally ($\left.{ }^{11} \mathrm{~B}: \mathrm{BF}_{3} \mathrm{OEt}_{2},{ }^{19} \mathrm{~F}: \mathrm{CFCl}_{3},{ }^{27} \mathrm{Al}: \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\right)$. NMR solvents were purchased from Cambridge Isotopes, dried over CaH_{2} or $\mathrm{Na} /$ benzophenone, vacuum distilled prior to use and stored over $4 \AA$ molecular sieves in the glovebox. $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was generously provided by Nova Chemicals. $(\mathrm{PhMe}) \cdot \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{Ph}_{3} \mathrm{P} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ were prepared following literature methods (see citations in paper). $t \mathrm{Bu}_{3} \mathrm{P}$ and $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{P}$ were purchased from the Strem Chemical Co and used as received.

Synthesis of $\left[t \mathrm{Bu}_{3} \mathrm{PH}\right]\left[\mathrm{PhC} \equiv \mathbf{C B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] \quad(1), \quad\left[t \mathrm{Bu} \mathbf{u}_{3} \mathrm{PH}\right]\left[\mathrm{PhC} \equiv \mathrm{CAl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] \quad$ (2) $\quad E-((o-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{P}\right) \mathrm{C}(\mathrm{Ph})=\mathbf{C}(\mathbf{H}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \quad(3), \quad E-\left(\left(\boldsymbol{o}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{3} \mathrm{P}\right) \mathrm{C}(\mathrm{Ph})=\mathbf{C}(\mathbf{H}) \mathrm{Al}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \quad$ (4) These compounds were prepared in a similar fashion and thus only one preparation is detailed. A solution of $\mathrm{PhC} \equiv \mathrm{CH}(75 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $t \mathrm{Bu}_{3} \mathrm{P}(303 \mathrm{mg}, 1.5 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was cooled to $-35^{\circ} \mathrm{C}$, at which point $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(767 \mathrm{mg}, 1.5 \mathrm{mmol})$ was added in one portion and the solution was shaken, not stirred, until all of the borane had dissolved and a yellowish oil separated from the toluene layer. This toluene layer was decanted and the oil dried under reduced pressure to afford a yellowish solid. Recrystallization from $\mathrm{PhCl}(2 \mathrm{~mL})$ afforded a colourless,
crystalline solid ($805 \mathrm{mg}, 75 \%$), layering of the supernatant PhCl with pentane (3 mL) afforded an additional 75 mg of product for an overall yield of $82 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.32(\mathrm{~m}, 2 \mathrm{H}, o-$ $\mathrm{Ph}), 7.21\left(\mathrm{tt}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1 \mathrm{~Hz}, m-\mathrm{Ph}\right), 7.15\left(\mathrm{tt}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1 \mathrm{~Hz}, p-\right.$ Ph), $4.80\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{\mathrm{H}-\mathrm{P}}=428 \mathrm{~Hz},{ }^{t} \mathrm{Bu}_{3} \mathrm{PH}\right), 1.52\left(\mathrm{~d}, 27 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=16 \mathrm{~Hz},{ }^{t} B u_{3} \mathrm{PH}\right) .{ }^{11} \mathrm{~B}$ $\operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-20.78(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$, partial: $148.85\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}, o-\right.$ $\left.C_{6} \mathrm{~F}_{5}\right), 138.88\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=248 \mathrm{~Hz}, p-C_{6} \mathrm{~F}_{5}\right), 137.18\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241 \mathrm{~Hz}, m-C_{6} \mathrm{~F}_{5}\right), 131.80$, 128.62, 128.19 (s , ipso- Ph), 126.64, $37.98\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=27 \mathrm{~Hz}, \mathrm{PCMe}_{3}\right), 30.25\left(\mathrm{~s}, \mathrm{PCMe}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-132.73\left(\mathrm{~d}, 6 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}=25 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-163.94\left(\mathrm{t}, 3 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}=20 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $167.45\left(\mathrm{~d}, 6 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}=19 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 61.49 . \mathrm{C}, \mathrm{H}$ analysis calc for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{BF}_{15} \mathrm{P}$ (816.443): C, $55.90 ; \mathrm{H}, 4.07$. Found: C, $55.88 ; \mathrm{H}, 4.18$. X-Ray quality crystals were grown by slow cooling of a solution in chlorobenzene.
(2): $61 \mathrm{mg}(91 \%),{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.45(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph}), 7.36(\mathrm{~m}, 1 \mathrm{H}, p-\mathrm{Ph}), 7.27(\mathrm{~m}, 2 \mathrm{H}, p-$ $\mathrm{Ph}), 4.94\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=426 \mathrm{~Hz},{ }^{t} \mathrm{Bu} u_{3} \mathrm{PH}\right), 1.60\left(\mathrm{~d}, 27 \mathrm{H},,^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=16 \mathrm{~Hz},{ }^{t} B u_{3} \mathrm{PH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$, partial: $150.45\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=230 \mathrm{~Hz}, o-C_{6} \mathrm{~F}_{5}\right), 140.71\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}, p-C_{6} \mathrm{~F}_{5}\right)$, $136.86\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}, m-C_{6} \mathrm{~F}_{5}\right), 131.80,128.62,128.19,126.64,38.18\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{P}}=27 \mathrm{~Hz}\right.$, $\left.\mathrm{PCMe}_{3}\right), 30.45(\mathrm{~s}, \mathrm{PCMe} 3) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-121.81\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-158.576\left(\mathrm{t}, 3 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}\right.$ $\left.=20 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-164.44\left(\mathrm{~m}, 6 \mathrm{~F}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) .{ }^{27} \mathrm{Al}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 105.18 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: 61.76. C, H analysis calc for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~F}_{15} \mathrm{AlP}$ (832.614): C, 54.82; H, 4.00. Found: C , 54.58; H, 4.18. X-Ray quality crystals of (2) $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right)$ were grown by slow cooling of a solution in chlorobenzene.
(3) : $423 \mathrm{mg}, 75 \%,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right): 8.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=40 \mathrm{~Hz},=\mathrm{C}-H\right), 7.85(\mathrm{dd}, 3 \mathrm{H}$, $\left.J_{\mathrm{H}-\mathrm{P}}=14 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}\right), 7.67\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}} \mathrm{J}=8 \mathrm{~Hz}\right), 7.49\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}\right), 7.33(\mathrm{dd}, 3 \mathrm{H}$, $\left.J_{\mathrm{H}-\mathrm{P}}=8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right), 7.08\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}, p-\mathrm{Ph}\right), 6.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 1.80(\mathrm{~s}, 9 \mathrm{H}$,
$\left.\mathrm{PC}_{6} \mathrm{H}_{4} M e\right) .{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right):-13.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{B}-\mathrm{P}}=16 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right):-$ $128.83\left(\mathrm{~d}, 6 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}=22 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-160.14\left(\mathrm{t}, 3 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}=20 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-164.34\left(\mathrm{~d}, 6 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}\right.$ $\left.=19 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right): 31.09\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{B}}=16 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 215K): (Ratio of minor : major $=1: 1.7) 8.49\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=39 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-H\right.$, minor isomer), $8.41\left(\mathrm{~m}, 1 \mathrm{H}\right.$, major isomer), $8.06\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{P}}=12 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, minor isomer) $7.84(\mathrm{~d}, 1 \mathrm{H}$, ${ }^{3} J_{\mathrm{H}-\mathrm{P}}=36 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{H}$ major isomer), $7.78-6.33$ ($\mathrm{m}, 16 \mathrm{H}$ of minor isomer, 14 H of major isomer), $6.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right.$, major isomer), $2.55\left(\mathrm{~s}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} M e\right.$ of minor isomer), $2.34(\mathrm{~s}$, $3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$ of major isomer), $1.73\left(\mathrm{~s}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ of minor isomer), $1.68(\mathrm{~s}, 3 \mathrm{H}, o-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$ of minor isomer), $1.58\left(\mathrm{~s}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ of major isomer), $0.55\left(\mathrm{~s}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{4} M e\right.$ of major isomer). ${ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 215 \mathrm{~K}\right):-15.35(\mathrm{~s}),-15.75$ (s). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 215 \mathrm{~K}\right)$: 132.75 (s, br, $o-\mathrm{C}_{6} \mathrm{~F}_{5}$), -161.60 (m, br, $p-\mathrm{C}_{6} \mathrm{~F}_{5}$), -165.77 (s, br, $m-\mathrm{C}_{6} \mathrm{~F}_{5}$), 166.23 (s, br, $m-\mathrm{C}_{6} \mathrm{~F}_{5}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 215 \mathrm{~K}\right)$: (Ratio of minor : major 1: 1.75) 30.52 (s, br, major), 27.05 (s, br, minor). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $d_{8}, 215 \mathrm{~K}$): (Ratio of minor : major 1: 2.15) 30.80 (s, br, major), 27.41 (s, br, minor). C, H analysis calc for $\mathrm{C}_{47} \mathrm{H}_{27} \mathrm{BF}_{15} \mathrm{P}$ (918.495): C, 61.46; H, 2.96. Found: C, 61.89; H, 3.12. X-Ray quality crystals of $(\mathbf{3}) \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right)$ were grown by slow cooling of a solution in bromobenzene.
(4): $73 \mathrm{mg}, 84 \%,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right): 8.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=43 \mathrm{~Hz},=\mathrm{C}-H\right), 7.79(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H})$, $7.70\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right), 7.51\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}\right), 7.38\left(\mathrm{dd}, 3 \mathrm{H}, J_{\mathrm{H}-\mathrm{P}}=7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}\right)$, $7.10\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}, p-\mathrm{Ph}\right), 6.98(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 1.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{Me}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right.$, $385 \mathrm{~K}):-119.35\left(\mathrm{~s}, \mathrm{br}, 6 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-155.63\left(\mathrm{t}, 3 \mathrm{~F},{ }^{3} J_{\mathrm{F}-\mathrm{F}}=19 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.93(\mathrm{~m}, 6 \mathrm{~F}, m-$ $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right) .{ }^{27} \mathrm{Al}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right): 116.52$ (s, br). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 385 \mathrm{~K}\right): 26.13$ (s, br). C, H analysis calc for $\mathrm{C}_{47} \mathrm{H}_{27} \mathrm{~F}_{15}$ AlP (934.665): C, 60.40; H, 2.91 Found: C, 59.93 ; H, 3.38. X-

Ray quality crystals of (4) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were grown by slow evaporation of a solution in dichloromethane.

Synthesis of $\boldsymbol{E}-\left(\mathbf{P h}_{\mathbf{3}} \mathbf{P}\right) \mathbf{C}(\mathbf{P h})=\mathbf{C}(\mathbf{H}) \mathbf{B}\left(\mathbf{C}_{\mathbf{6}} \mathbf{F}_{\mathbf{5}}\right)_{\mathbf{3}} \mathbf{(5)}$ Phenyl acetylene ($0.3 \mathrm{~mL}, 23 \mathrm{mmol}$) was added in one portion to a slurry of $\mathrm{Ph}_{3} \mathrm{P} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(100 \mathrm{mg}, 0.13 \mathrm{mmol})$ in chlorobenzene (3 mL). After 15 min . of stirring the solution became clear and yellow, and was stirred for an additional 2 h at which point the solvent was removed under reduced pressure and the resulting powder washed with a 10:1 mixture of pentane and chlorobenzene to afford an off-white powder $(98 \mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 8.32\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=36 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-H\right), 7.75\left(\mathrm{td}, 3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8\right.$ $\left.\mathrm{Hz},{ }^{5} J_{\mathrm{H}-\mathrm{p}}=2 \mathrm{~Hz}, p-P h \mathrm{P}\right), 7.56\left(\mathrm{td}, 6 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{p}}=6 \mathrm{~Hz}, m-P h \mathrm{P}\right), 7.39(\mathrm{~m}, 6 \mathrm{H}, o-P h \mathrm{P})$. ${ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-16.27\left(\mathrm{~d},{ }^{3} J_{\mathrm{B}-\mathrm{P}}=14 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} 148.09\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ partial: (dm, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}$ $\left.=236 \mathrm{~Hz}, o-C_{6} \mathrm{~F}_{5}\right), 138.44\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242 \mathrm{~Hz}, m-C_{6} \mathrm{~F}_{5}\right), 136.45\left(\mathrm{dm},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246 \mathrm{~Hz}, p-C_{6} \mathrm{~F}_{5}\right)$, $134.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{P}}=10 \mathrm{~Hz}, m-P h \mathrm{P}\right), 134.42\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{P}}=3 \mathrm{~Hz}, p-P h \mathrm{P}\right), 129.62\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}}=12 \mathrm{~Hz}, o-\right.$ $P h \mathrm{P}), 129.25\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{P}}=5 \mathrm{~Hz}, o-P h \mathrm{C}\right), 127.94\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{P}}=2 \mathrm{~Hz}, m-P h \mathrm{C}\right), 127.80\left(\mathrm{~d},{ }^{5} J_{\mathrm{C}-\mathrm{P}}=2 \mathrm{~Hz}\right.$, $p-P h C), 119.47\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{P}}=86 \mathrm{~Hz}, \mathrm{P}-C=\mathrm{C}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right):-130.55(\mathrm{~d}, 6 \mathrm{~F}, \mathrm{~J}=23 \mathrm{~Hz}, o-$ $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right),-160.80\left(\mathrm{t}, 3 \mathrm{~F}, \mathrm{~J}=21 \mathrm{~Hz}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-165.13\left(\mathrm{~d}, 6 \mathrm{~F}, \mathrm{~J}=20 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 25.23\left(\mathrm{q},{ }^{3} J_{\mathrm{P}-\mathrm{B}}=15 \mathrm{~Hz}\right) . \mathrm{C}, \mathrm{H}$ analysis calc for $\mathrm{C}_{47} \mathrm{H}_{27} \mathrm{BF}_{15} \mathrm{P}$ (876.414): C, 60.30; H , 2.42. Found: C, 60.65; H, 2.72.

