Supplementary Data for:

Terminal Alkyne Activation by Frustrated and Classical Lewis Acid/Phosphine Pairs

Meghan A. Dureen and Douglas W. Stephan*

General considerations: All manipulations were performed on a double manifold N₂/vacuum line with Schlenk-type glassware or in an N₂-filled M-Braun or Vac Atmospheres glove box. Solvents (Aldrich) were dried using an Innovative Technologies solvent system. NMR spectra were obtained on a Bruker Avance 400 MHz spectrometer and spectra were referenced to residual solvent (¹H, ¹³C) or externally (¹¹B: BF₃OEt₂, ¹⁹F: CFCl₃, ²⁷Al: Al(NO₃)₃) . NMR solvents were purchased from Cambridge Isotopes, dried over CaH₂ or Na/benzophenone, vacuum distilled prior to use and stored over 4Å molecular sieves in the glovebox. B(C₆F₅)₃ was generously provided by Nova Chemicals. (PhMe)·Al(C₆F₅)₃ and Ph₃P·B(C₆F₅)₃ were prepared following literature methods (see citations in paper). *t*Bu₃P and (*o*-C₆H₄Me)₃P were purchased from the Strem Chemical Co and used as received.

Synthesis of $[tBu_3PH][PhC \equiv CB(C_6F_5)_3]$ (1), $[tBu_3PH][PhC \equiv CAl(C_6F_5)_3]$ (2) E-((o- $C_6H_4Me)_3P$)C(Ph)=C(H)Al(C_6F_5)_3 (4) These compounds were prepared in a similar fashion and thus only one preparation is detailed. A solution of PhC=CH (75 mg, 1.5 mmol) and tBu_3P (303 mg, 1.5 mmol) in toluene (10 mL) was cooled to -35 °C, at which point B(C_6F_5)_3 (767 mg, 1.5 mmol) was added in one portion and the solution was shaken, not stirred, until all of the borane had dissolved and a yellowish oil separated from the toluene layer. This toluene layer was decanted and the oil dried under reduced pressure to afford a yellowish solid. Recrystallization from PhCl (2 mL) afforded a colourless,

crystalline solid (805 mg, 75%), layering of the supernatant PhCl with pentane (3 mL) afforded an additional 75 mg of product for an overall yield of 82%.¹H NMR (CD₂Cl₂): 7.32 (m, 2H, *o*-Ph), 7.21 (tt, 2H, ${}^{3}J_{H-H}=7$ Hz, ${}^{4}J_{H-H}=1$ Hz, *m*-Ph), 7.15 (tt, 1H, ${}^{3}J_{H-H}=7$ Hz, ${}^{4}J_{H-H}=1$ Hz, *p*-Ph), 4.80 (d, 1H, ${}^{1}J_{H-P}=428$ Hz, ${}^{1}Bu_{3}PH$), 1.52 (d, 27H, ${}^{3}J_{H-P}=16$ Hz, ${}^{1}Bu_{3}PH$). ${}^{11}B$ NMR(CD₂Cl₂): -20.78 (s). ${}^{13}C{}^{1}H$ NMR(CD₂Cl₂), partial: 148.85 (dm, ${}^{1}J_{C-F}=245$ Hz, *o*-*C*₆F₅), 138.88 (dm, ${}^{1}J_{C-F}=248$ Hz, *p*-*C*₆F₅), 137.18 (dm, ${}^{1}J_{C-F}=241$ Hz, *m*-*C*₆F₅), 131.80, 128.62, 128.19 (s, *ipso*-Ph), 126.64, 37.98 (d, ${}^{1}J_{C-P}=27$ Hz, PCMe₃), 30.25 (s, PCMe₃). ${}^{19}F$ NMR (CD₂Cl₂): -132.73 (d, 6F, ${}^{3}J_{F-F}=25$ Hz, *o*-C₆F₅), -163.94 (t, 3F, ${}^{3}J_{F-F}=20$ Hz, *p*-C₆F₅), -167.45 (d, 6F, ${}^{3}J_{F-F}=19$ Hz, *m*-C₆F₅). ${}^{31}P$ { $}^{1}H$ } NMR(CD₂Cl₂): 61.49. C, H analysis calc for C₃₈H₃₃BF₁₅P (816.443): C, 55.90; H, 4.07. Found: C, 55.88; H, 4.18. X-Ray quality crystals were grown by slow cooling of a solution in chlorobenzene.

(2): 61 mg (91%), ¹H NMR (CD₂Cl₂): 7.45 (m, 2H, *o*-Ph), 7.36 (m, 1H, *p*-Ph), 7.27 (m, 2H, *p*-Ph), 4.94 (d, 1H, ¹ J_{H-P} = 426 Hz, ^{*i*}Bu₃PH), 1.60 (d, 27H, , ³ J_{H-P} = 16 Hz, ^{*i*}Bu₃PH). ¹³C{¹H} NMR (CD₂Cl₂), partial: 150.45 (dm, ¹ J_{C-F} = 230 Hz, *o*-C₆F₅), 140.71 (dm, ¹ J_{C-F} = 246 Hz, *p*-C₆F₅), 136.86 (dm, ¹ J_{C-F} = 246 Hz, *m*-C₆F₅), 131.80, 128.62, 128.19, 126.64, 38.18 (d, ¹ J_{C-P} = 27 Hz, PCMe₃), 30.45 (s, PCMe₃). ¹⁹F NMR (CD₂Cl₂): -121.81 (s, br, 6F, *o*-C₆F₅), -158.576 (t, 3F, ³ J_{F-F} = 20 Hz, *p*-C₆F₅), -164.44 (m, 6F, *m*-C₆F₅). ²⁷Al NMR (CD₂Cl₂): 105.18. ³¹P{¹H} NMR (CD₂Cl₂): 61.76. C, H analysis calc for C₃₈H₃₃F₁₅AlP (832.614): C, 54.82; H, 4.00. Found: C, 54.58; H, 4.18. X-Ray quality crystals of (**2**) (C₆H₅Cl) were grown by slow cooling of a solution in chlorobenzene.

(3): 423 mg, 75%, ¹H NMR (C₂D₂Cl₄, 385K): 8.18 (d, 1H, ³ J_{H-P} = 40 Hz, =C-*H*), 7.85 (dd, 3H, J_{H-P} = 14 Hz, ³ J_{H-H} = 7 Hz), 7.67 (t, 3H, ³ J_{H-H} J = 8 Hz), 7.49 (t, 2H, ³ J_{H-H} = 7 Hz), 7.33 (dd, 3H, J_{H-P} = 8 Hz, ³ J_{H-H} = 8 Hz), 7.08 (t, 1H, ³ J_{H-H} = 7 Hz, *p*-Ph), 6.93 (m, 4H, Ph), 1.80 (s, 9H,

PC₆H₄Me). ¹¹B NMR (C₂D₂Cl₄, 385K): -13.55 (d, ${}^{3}J_{B-P} = 16$ Hz). ¹⁹F NMR (C₂D₂Cl₄, 385K): -128.83 (d, 6F, ${}^{3}J_{\text{F-F}} = 22$ Hz, $o-C_{6}F_{5}$), -160.14 (t, 3F, ${}^{3}J_{\text{F-F}} = 20$ Hz, $p-C_{6}F_{5}$), -164.34 (d, 6F, ${}^{3}J_{\text{F-F}}$ = 19 Hz, m-C₆F₅). ³¹P {¹H} NMR (C₂D₂Cl₄, 385K): 31.09 (q, ³J_{P-B} = 16 Hz). ¹H NMR (CD₂Cl₂, 215K): (Ratio of minor : major = 1: 1.7) 8.49 (d, 1 H, ${}^{3}J_{H-P}$ = 39 Hz, C=C-H, minor isomer), 8.41 (m, 1H, major isomer), 8.06 (dd, 1H, $J_{H-P} = 12$ Hz, ${}^{3}J_{H-H} = 8$ Hz, minor isomer) 7.84 (d,1H, ${}^{3}J_{\text{H-P}} = 36$ Hz, C=C-H major isomer), 7.78 – 6.33 (m, 16H of minor isomer, 14H of major isomer), 6.45 (d, ${}^{3}J_{H-H} = 8$ Hz, major isomer), 2.55 (s, 3H, $o-C_{6}H_{4}Me$ of minor isomer), 2.34 (s, 3H, $o-C_6H_4Me$ of major isomer), 1.73 (s, 3H, $o-C_6H_4Me$ of minor isomer), 1.68 (s, 3H, o-C_6H_4Me of minor isomer), 1.68 (s, 3H, o-C_6H_4Me of min C_6H_4Me of minor isomer), 1.58 (s, 3H, o- C_6H_4Me of major isomer), 0.55 (s, 3H, o- C_6H_4Me of major isomer). ¹¹B NMR (CD₂Cl₂, 215K): -15.35 (s), -15.75 (s). ¹⁹F NMR (CD₂Cl₂, 215K): -132.75 (s, br, $o-C_6F_5$), -161.60 (m, br, $p-C_6F_5$), -165.77 (s, br, $m-C_6F_5$), 166.23 (s, br, $m-C_6F_5$). ³¹P {¹H} NMR (CD₂Cl₂, 215K): (Ratio of minor : major 1: 1.75) 30.52 (s, br, major), 27.05 (s, br, minor). ³¹P {¹H} NMR (THF-*d*₈, 215K): (Ratio of minor : major 1: 2.15) 30.80 (s, br, major), 27.41 (s, br, minor). C, H analysis calc for C₄₇H₂₇BF₁₅P (918.495): C, 61.46; H, 2.96. Found: C, 61.89; H, 3.12. X-Ray quality crystals of (3) (C_6H_5Br) were grown by slow cooling of a solution in bromobenzene.

(4): 73 mg, 84%, ¹H NMR (C₂D₂Cl₄, 385K): 8.05 (d, 1H, ³ J_{H-P} = 43 Hz, =C-*H*), 7.79 (s, br, 3H), 7.70 (t, 3H, ³ J_{H-H} = 8 Hz), 7.51 (t, 2H, ³ J_{H-H} = 7 Hz), 7.38 (dd, 3H, J_{H-P} = 7 Hz, ³ J_{H-H} = 7 Hz), 7.10 (t, 1H, ³ J_{H-H} = 7 Hz, *p*-Ph), 6.98 (m, 4H, Ph), 1.88 (s, 9H, PC₆H₄*Me*). ¹⁹F NMR (C₂D₂Cl₄, 385K): -119.35 (s, br, 6F, *o*-C₆F₅), -155.63 (t, 3F, ³ J_{F-F} = 19 Hz, *p*-C₆F₅), -161.93 (m, 6F, *m*-C₆F₅). ²⁷Al NMR (C₂D₂Cl₄, 385K): 116.52 (s, br). ³¹P {¹H} NMR (C₂D₂Cl₄, 385K): 26.13 (s, br). C, H analysis calc for C₄₇H₂₇F₁₅AlP (934.665): C, 60.40; H, 2.91 Found: C, 59.93 ; H, 3.38. X- Ray quality crystals of (4) (CH₂Cl₂) were grown by slow evaporation of a solution in dichloromethane.

Synthesis of E-(Ph₃P)C(Ph)=C(H)B(C₆F₅)₃ (5) Phenyl acetylene (0.3 mL, 23 mmol) was added in one portion to a slurry of $Ph_3P \cdot B(C_6F_5)_3$ (100 mg, 0.13 mmol) in chlorobenzene (3 mL). After 15 min. of stirring the solution became clear and yellow, and was stirred for an additional 2 h at which point the solvent was removed under reduced pressure and the resulting powder washed with a 10:1 mixture of pentane and chlorobenzene to afford an off-white powder (98 mg, 87%). ¹H NMR (CD₂Cl₂): 8.32 (d, 1H, ${}^{3}J_{H-P} = 36$ Hz, C=C-H), 7.75 (td, 3H, ${}^{3}J_{H-H} = 8$ Hz, ${}^{5}J_{\text{H-p}} = 2$ Hz, *p*-*Ph*P), 7.56 (td, 6H, ${}^{3}J_{\text{H-H}} = 8$ Hz, ${}^{4}J_{\text{H-p}} = 6$ Hz, *m*-*Ph*P), 7.39 (m, 6H, *o*-*Ph*P). ¹¹B NMR (CD₂Cl₂): -16.27 (d, ${}^{3}J_{B-P} = 14$ Hz). ¹³C 148.09{¹H} NMR (CD₂Cl₂) partial: (dm, ${}^{1}J_{C-F}$ = 236 Hz, $o-C_6F_5$), 138.44 (dm, ${}^{1}J_{C-F}$ = 242 Hz, $m-C_6F_5$), 136.45 (dm, ${}^{1}J_{C-F}$ = 246 Hz, $p-C_6F_5$), 134.57 (d, ${}^{3}J_{C-P} = 10$ Hz, *m-PhP*), 134.42 (d, ${}^{4}J_{C-P} = 3$ Hz, *p-PhP*), 129.62 (d, ${}^{2}J_{C-P} = 12$ Hz, *o*-*PhP*), 129.25 (d, ${}^{3}J_{C-P} = 5$ Hz, *o-PhC*), 127.94 (d, ${}^{4}J_{C-P} = 2$ Hz, *m-PhC*), 127.80 (d, ${}^{5}J_{C-P} = 2$ Hz, *p-PhC*), 119.47 (d, ${}^{1}J_{C-P} = 86$ Hz, P-C=C). ${}^{19}F$ NMR (C₆D₅Br): -130.55 (d, 6F, J = 23 Hz, o- $C_{6}F_{5}$, -160.80 (t, 3F, J = 21 Hz, p- $C_{6}F_{5}$), -165.13 (d, 6F, J = 20 Hz, m- $C_{6}F_{5}$). ³¹P {¹H} NMR (CD₂Cl₂): 25.23 (q, ${}^{3}J_{P-B} = 15$ Hz). C, H analysis calc for C₄₇H₂₇BF₁₅P (876.414): C, 60.30; H, 2.42. Found: C, 60.65; H, 2.72.