Probing side-chain dynamics of a ribosome-bound nascent chain using methyl NMR spectroscopy

Shang-Te Danny Hsu,[†] Lisa D. Cabrita,[†] Paola Fucini, ^{\perp} John Christodoulou[†] [‡] ^{*} and Christopher M. Dobson[†]

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 IEW, United Kingdom,

Institute of Structural and Molecular Biology, Research Department of Structural and Molecular Biology, UCL, University of London WC1E 6TB, United Kingdom, Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universitaet Frankfurt am Main, D-60438 Frankfurt am Main, Germany

RECEIVED DATE (automatically inserted by publisher); E-mail: j.christodoulou@ucl.ac.uk

Material and Methods

The Ig₂-RNC samples (70S ribosome concentrations of 10 μ M as determined by the absorbance at 260 nm; 1 A₂₆₀ = 24 picomole) were prepared in binding buffer (10 mM HEPES, pH 7.6, 140 mM NH₄Cl. 6 mM MgCl₂, 0.05 mM spermine, 2 mM spermidine and 2 mM DTT) as described previously¹. NMR data were recorded using Bruker 700MHz and 900MHz spectrometers, both equipped with triple resonance cryogenic probeheads. 10% D₂O was present in all NMR samples as a lock solvent. All NMR data were acquired at 283 K with a variable temperature control unit to maintain the sample temperature. The acquisition parameters for 1H-X SOFAST-HMQC² are detailed in Table S1. All spectra were processed using NMR Pipe³ and analyzed using Sparky (http://www.cgl.ucsf.edu/home/sparky).

References

1. Hsu, S.-T. D.; Fucini, P.; Cabrita, L. D.; Launay, H.; Dobson, C. M.; Christodoulou, J., Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. *Proc Natl Acad Sci U S A* **2007**, 104, (42), 16516-21.

2. Schanda, P.; Kupce, E.; Brutscher, B., SOFAST-HMQC experiments for recording twodimensional heteronuclear correlation spectra of proteins within a few seconds. *Journal of Biomolecular NMR* **2005**, 33, (4), 199-211.

3. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *Journal of Biomolecular NMR* **1995**, 6, (3), 277-293.

[†] University of Cambridge

[‡] University College London [⊥] Johann Wolfgang Goethe Universitaet Frankfu

Johann Wolfgang Goethe-Universitaet Frankfurt am Main

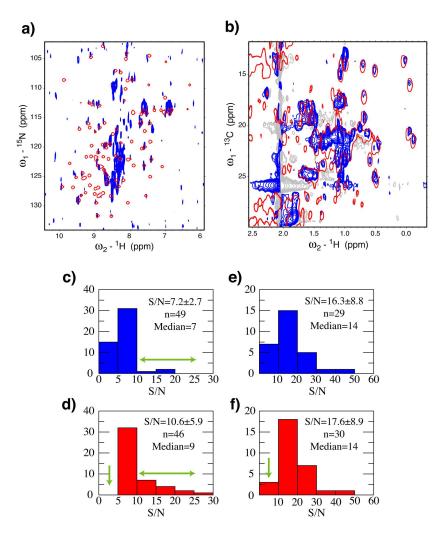

	Spectral width (Hz)		X- nucleus carrier frequency (Hz)	Relaxation delay (ms)	¹ H excitation shape pulse (PC9) ¹		¹ H inversion shape pulse (R-SNOB)		Number of complex points		Number of transients per increment	Total experimental time (hours)
X-nucleus	F2 (¹ H)	F1 (X)	_ ()		Pulse length (μs)	Offset (Hz)	Pulse length (μs)	Offset (Hz)	F2 (¹ H)	F1 (X)		
¹⁵ N (amide)	10776	2918	10762	300	1900	3300	650	3300	1024	32	1024	7.5
¹³ C (methyl) ¹³ C	12626	4979	3961	400	2200	-4250	480	-4250	1024	16	800	3.5
(aromatic)	8091	5659	29423	400	2200	2700	650	2700	800	12	512	

Table S1. Data acquisition parameters for ¹H-X SOFAST-HMQC spectroscopy

³

¹ The total flip angle of the ¹H excitation pulse (PC9) was optimized to be 120^o using an isolated ddFLN5 sample. The setting has been used throughout the whole measurements as the limited sample concentrations and life -time of the RNC samples prohibited detailed optimization procedures.

² Only applied to [13C/15N-A/F]-70S ribosome

Figure S1. Comparison of ribosome-bound nascent chain spectra at the backbone and side-chain levels. Overlaid ¹H-¹⁵N correlation spectra of the backbone amide region (**a**) and ¹H-¹³C correlation spectra in the methyl region (**b**) of ddFLN5 as a ribosome-bound nascent chain (blue) and in isolation (red). Histograms of the signal-to-noise ratio (S/N) of resolve amide cross-peaks in the ¹H-¹⁵N correlation spectra of ddFLN5 as a ribosome-bound nascent chain (**c**) and released by incubating the RNCs with puromycin (**d**). Histograms of the S/N of resolved side-chain methyl cross-peaks in the ¹H-¹³C correlation spectra of ddFLN5 as a ribosome-bound nascent chain (**e**) and released by incubating the RNCs with puromycin (**f**). Changes in the distributions of S/N ratio are highlighted by green arrows.

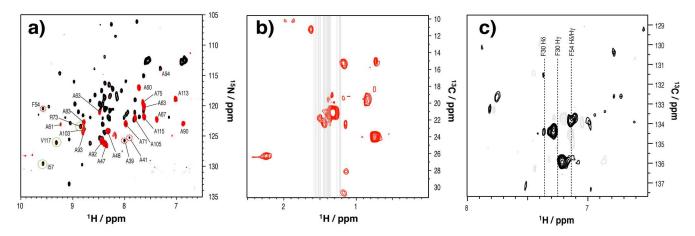


Figure S2. Selective stable isotope labeling of intact ribosomes for NMR analysis. (a) Overlaid ¹H-¹⁵N SOFAST-HMQC spectra of the 70S ribosome from *E. coli* with uniform ¹⁵N labeling (black) and selective ¹³C and ¹⁵N labeling for alanine and phenylalanine residues, designated as [¹³C/¹⁵N-A/F]-70S (red). The resolved crosspeaks correspond to the C-terminal domain of the ribosomal protein L7/L12 (residues 40-120, designated as L7/L12-CTD). All 19 expected alanine resonances from the L7/L12-CTD (an additional 9 alanines are present in the N-terminal domain of L7L12, L7/L12-NTD but are invisible due to the direct attachment of the methyl to the ribosome) have been identified in the uniformly labeled sample while those of A39 and A41 are missing in the selectively labeled spectrum (indicated in dashed red circles). Similarly, the crosspeak of F54 is present in the uniformly ¹⁵N labeled spectrum but missing in the selectively labelled one. The other phenylalanine residue, F30, is located in the linker region, which has not been identified in the spectrum. Detailed examination reveals that a supplement of ¹³C/¹⁵N labeled amino acids during ribosome biogenesis can lead to very limited amino acid scrambling, leading to the presence of weak ¹⁵N resonances for I57, R73 and V117 in the selectively labeled spectrum (indicated in green circles). (b) ¹H-¹³C SOFAST-HMQC spectrum of $[^{13}C/^{15}N-A/F]$ -70S with selective excitation proton resonances in the methyl region. The same sample was used to record the ¹H-¹⁵N correlations as shown in (**a**). The ¹H resonances of 28 alanine side-chain Hβ of L7/L12 have been previously assigned using ¹⁵N-labeled L7/L12 in isolation, as indicated by grey lines (BMRB entry 4429); assignments of the corresponding ¹³C resonances, however, are currently unavailable. Assuming that the structure of the L7/L12-CTD is not affected by the attachment to the ribosome and that minimal amino acid scrambling is present in this NMR sample, the additional crosspeaks with much large chemical shift dispersions along both the ¹H and ¹³C dimensions may well correspond to alanine methyl groups in other regions of the 70S ribosome. Methyl NMR in combination with selective labeling therefore affords additional information that cannot be probed at the backbone level. (b) ¹H-¹³C SOFAST-HMQC spectrum of [¹³C/¹⁵N-A/F]-70S with selective excitation proton resonances in the aromatic region. Three well-resolved crosspeaks are present with ¹H chemical shifts that are similar, but not identical, to the previously assigned values (indicated by dashed line with corresponding assignments). Assuming that the observed crosspeaks correspond to F30 and F54 of L7/L12 as expected from the highly dynamic nature of this part of the ribosome, the results suggest that the chemical shifts of aromatic side-chains are more sensitive to the attachment to the ribosome, in comparison to the corresponding backbone amide ¹H-¹⁵N correlations (**a**) and alanine methyl ¹H-¹³C correlations (b).