Supporting Information

Probing the Surface Glass Transition Temperature of
Polymer Films via Organic Semiconductor Growth
Mode, Microstructure, and Thin-Film Transistor
Response.

Choongik Kim, Antonio Facchetti, * Tobin J. Marks*

Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208

Correspondence and requests for materials should be addressed to A.F. (a-facchetti@northwestern.edu) or T.J.M (t-marks@northwestern.edu).

Experimental Section

Reagents and Materials. Pentacene (P5, Aldrich) was used after purification by multiple gradient vacuum sublimation, while α -sexithiophene (α -6T, Aldrich) was used as received. The (**DFHCO-4T**),¹ α,ω-diperfluorohexylcarbonylquarterthiophene semiconductors α,ω - $(\mathbf{DFH-4T})^2$ 5.5'-bis(4-n-perfluorooctylphynyl)-2,2'diperfluorohexylquarterthiophene $(\mathbf{DFO}\mathbf{-PTTP})^3$ bithiophene and N,N'-bis(n-octyl)-1,7and N,N'-bis(n-octyl)-1,6dicyanoperylene-3,4:9,10-bis-(dicarboximide) (**PDI-8CN**₂)⁴ were available in our laboratory. Polystyrene (PS1, $M_n = 280 \text{ kg/mol}$; PS2, $M_n = 13 \text{ kg/mol}$; PS3, $M_n = 4 \text{ kg/mol}$), poly(4methylstyrene) (PMS, $M_n = 72 \text{ kg/mol}$), poly(methyl methacrylate) (PMMA1, $M_n = 15 \text{ kg/mol}$; PMMA2, $M_n = 45$ kg/mol), poly(t-butylstyrene) (PTBS, $M_n = 32$ kg/mol), and poly(4vinylphenol) (PVP, M_n = 20 kg/mol) were purchased from Aldrich and used without further purification. Poly(2-vinylpyridine) (P2VP, M_v = 200 kg/mol) was purchased from Scientific Polymer Products and was used after drying the as-received material in a vacuum oven at ~110 °C to remove residual monomer. Dioctylphthalate (DOP) (99%, Aldrich) was used as received. Heavily doped p-type Si wafers with a 300 nm thick thermally grown SiO₂ layer (p⁺-Si/SiO₂) or n-type Si wafers with native oxide (n⁺-Si) (Montco Silicon Tech) were used as device substrates. The calorimetric bulk T_g values for the present dielectric polymers were determined by differential scanning calorimetry (DSC; Mettler Toledo DSC822e, second heat, onset method, 10 $K \min^{-1}$).

Polymer Film Fabrication and Characterization. Pentacene-based TFTs were fabricated on heavily doped p-type Si wafers with a 300 nm thick thermally grown SiO₂ layer (PS1, 70 mg/mL, was also fabricated on heavily doped n-type Si wafers with a native oxide layer). All substrates were cleaned by sonication in ethanol (200 proof) for 3 min, followed by oxygen plasma treatment for 5 min (20W, 0.5 Torr). PS1 (5, 20, 30, 50, 70 mg/mL in

anhydrous toluene), PS2 (10, 30 mg/mL in anhydrous toluene), PS3 (5, 20 mg/mL in anhydrous toluene), PMS (5 mg/mL in anhydrous toluene), PVA (30 mg/mL in millipore water), P2VP (3, 5, 20 mg/mL in 1,1,2-trichloroethane), PMMA1 (5, 10, 40 mg/mL in anhydrous toluene), PMMA2 (20 mg/mL in anhydrous toluene), PTBS (10 mg/mL in anhydrous toluene), PVP (20 mg/mL in anhydrous THF), and DOP-doped (4 wt%) PS1 (6, 25 mg/mL in anhydrous toluene) were all spin-coated onto the substrates at 2000–5000 rpm in air, and the resulting films dried in a vacuum oven at 80 – 90 °C overnight.⁵ Bilayer polymer films (PS1/P2VP) on 300 nm SiO₂ substrates with top layers of PS1 (5 mg/mL in anhydrous toluene) were spin-coated directly onto the P2VP (5, 20, 40 mg/mL in 1,1,2-trichloroethane) films, since toluene is a nonsolvent for P2VP.³⁹ Oxygen plasma-treated polymer films (PS1/2- and PVP-OXY) were prepared by exposure to an O₂-plasma for 10 s. The present polymer films afford very smooth morphologies with root-mean-square (RMS) roughnesses of ~ 0.3 nm except in the case of bilayer polymer films where the RMS roughness is ~ 0.5 nm, as characterized by tapping-mode AFM using a Si cantilever. All film thicknesses were measured by profilometer (Tencor, P10).

Device Fabrication and Characterization. The organic semiconductors were vacuum-deposited at ~ 5 × 10⁻⁶ Torr (500 Å, ~ 0.5 Å/s for pentacene, ~ 0.3 Å/s for the other semiconductors) at preset deposition temperatures (T_D) of 25 – 90 °C. For post-annealing experiments, pentacene films were deposited on the various polymer gate dielectrics at 25 °C and were annealed on a hot plate under nitrogen at various annealing temperatures (T_A). Thin films of pentacene were analyzed by X-ray diffraction (θ /2 θ and ω scan) in a slit-configuration using Ni-filtered Cu Kα radiation (Rigaku ATXG) and by AFM (JEOL-5200 Scanning Probe Microscope) in the tapping mode. For OTFT/MIS (metal-insulator-semiconductor) device fabrication, top-contact electrodes (~ 50 nm) were deposited by evaporating gold (< 1 × 10⁻⁶

Torr) through a shadow mask with channel length (L) and width (W) defined as 100 μ m and 5000 μ m, respectively.

Electrical Measurements. The capacitances of the present dielectric films were measured on MIS structures using a Signaton probe station equipped with a digital capacitance meter (Model 3000, GLK Instruments) and an HP4192A impedance analyzer (Figure S12). All OTFT measurements were carried out under vacuum (1 × 10⁻⁵ Torr) using a Keithly 6430 subfemtoammeter and a Keithly 2400 source meter, operated by a local Labview program with GPIB communication. Mobilities (μ) were calculated in the saturation regime using the standard relationship: $\mu_{\text{sat}} = (2I_{\text{DS}}L)/[WC_{\text{i}}(V_{\text{G}}-V_{\text{T}})^2]$, where I_{DS} is the source-drain saturation current, C_{i} is the gate dielectric capacitance (per area), V_{G} is the gate voltage, and V_{T} is the threshold voltage. The latter can be estimated as the x intercept of the linear section of the plot of V_{G} vs. $(I_{\text{DS}})^{1/2}$.

- (1) Yoon, M.-H.; Dibenedetto, S. A.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348-1349.
- (2) Facchetti, A.; Mushrush, M.; Yoon, M.-H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. *J. Am. Chem. Soc.* **2004**, *126*, 13859-13874.
- (3) Facchetti, A.; Letizia, J.; Yoon, M.-H.; Mushrush, M.; Katz, H. E.; Marks, T. J. *Chem. Mater.* **2004**, *16*, 4715-4727.
- (4) Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. *Angew. Chem. Int. Ed.* **2004**, *43*, 6363-6366.
- (5) Kim, C.; Facchetti, A.; Marks, T. J. Adv. Mater. **2007**, *19*, 2561-2566.
- (6) Sze, S. M. Semiconductor Devices: Physics and Technology **1981**, 2nd edition; Wiley: New York.

Table S1. Field-Effect Mobility $(\mu_{sat}, \text{ cm}^2/\text{V}\cdot\text{s})^a$, Current On/Off Ratio $(I_{on}:I_{off})$, Threshold Voltage (V_T, V) data for Pentacene TFTs fabricated on the Indicated Bilayer Gate Dielectrics and on c-SiO₂ as a Function of Pentacene Film Deposition Temperature (T_D) .

Gate Diel.	$T_g^{\ b}$	d								$T_D(^{\circ}C)$	ı					
	(°C)	(nm)		25	35	40	45	50	55	60	65	70	75	80	85	90
c-SiO ₂			μ	0.23				0.20		0.18		0.20		0.18		0.24
	1175		$(I_{on}:I_{off})$	(10^8)				(10^8)		(10^8)		(10^7)		(10^8)		(10^6)
			V_T	-22				-22		-24		-23		-25		-14
			μ	0.65				0.68	0.66	0.42	0.05	0.05	0.02	0.01		
		20	$(I_{\text{on}}:I_{\text{off}})$	(10^6)				(10^5)	(10^6)	(10^6)	(10^5)	(10^6)	(10^7)	(10^6)		
			V_T	-17				-22	-14	-23	-30	-21	-27	-24		
			μ					0.65	0.59	0.40	0.10	0.05				
		150	$(I_{\text{on}}:I_{\text{off}})$					(10^6)	(10^6)	(10^5)	(10^6)	(10^6)				
PS1	103	400	V_T					-38	-42	-40	-43	-42				
P31	103		μ					0.67	0.59	0.44	0.10	0.06				
			$(I_{on}:I_{off})$					(10^6)	(10^6)	(10^6)	(10^7)	(10^5)				
			V_T					-66	-66	-61	-78	-80				
		800 ^c	μ					0.68	0.57	0.38	0.10	0.08				
			$(I_{on}:I_{off})$					(10^6)	(10^7)	(10^6)	(10^6)	(10^6)				
			V_T					-81	-77	-86	-89	-81				
PS1-	103	150	μ									0.17				
OXY			$(I_{on}:I_{off})$									(10^4)				
			V_T									-23				
		24	μ	0.54		0.47	0.45	0.34	0.04	0.05	0.007	0.004				
PS2	94		$(I_{\text{on}}:I_{\text{off}})$	(10^4)		(10^5)	(10^5)	(10^4)	(10^7)	(10^5)	(10^6)	(10^7)				
			V_T	-18		-22	-24	-16	-17	-22	-22	-36				
PS2-			μ									0.16				
OXY	94	80	$(I_{\text{on}}:I_{\text{off}})$									(10^4)				
			V_T									-21				
			μ	0.32	0.18	0.08	0.006	0.004	0.006	5x10 ⁻						
		10	$(I_{\text{on}}:I_{\text{off}})$	(10^6)	(10^5)	(10^5)	(10^7)	(10^6)	(10^7)	(10^3)						
PS3	83		V_T	-28	-16	-18	-32	-33	-32	-44						
			μ	0.34	0.17	0.20	0.02	0.04	0.005	0.003						
		50	$(I_{on}:I_{off})$	(10^6)	(10^5)	(10^5)	(10^4)	(10^7)	(10^5)	(10^6)						
			V_T	-25	-28	-29	-28	-27	-36	-37						

^a Carrier mobilities calculated in saturation within the charge carrier concentration range of $3-4 \times 10^{12}$ cm⁻². Standard deviations are typically < 10%; otherwise a mobility range is given. ^b From DSC data. ^c These films fabricated directly on Si substrates without a thermal oxide coating.

Table S1. Field-Effect Mobility $(\mu_{sat}, \text{cm}^2/\text{V}\cdot\text{s})^a$, Current On/Off Ratio $(I_{on}:I_{off})$, Threshold Voltage (V_T, V) data for Pentacene TFTs fabricated on the Indicated Bilayer Gate Dielectrics and

on c-SiO₂ as a Function of Pentacene Film Deposition Temperature (T_D) .

Gate Diel.	<i>T_g</i> (°C)	d (nm)	unction						$T_D(^{\circ}C)$	/				
			•	25	45	50	55	60	65	70	75	80	85	90
			μ							0.34				
PVP	171	100	$(I_{\text{on}}:I_{\text{off}})$							(10^7)				
			V_T							-20				
PVP- OXY			μ							0.15				
	171	100	$(I_{\text{on}}:I_{\text{off}})$							(10^4)				
			V_T	0.15		0.14	0.14	0.16	0.16	-14	0.12	0.000	0.001	
		10	μ	0.15 (10^3)		0.14 (10^5)	0.14 (10^4)	0.16 (10^4)	0.16 (10^4)	0.15 (10^4)	0.12 (10^4)	0.008 (10^6)	0.001 (10^6)	
		10	$(I_{ m on}:I_{ m off})$ V_T	(10°) -9		(10°) -19	-21	(10°) -19	(10°) -16	-15	-13	(10°) -19	-25	
			μ	0.18		-19 0.14	-21 0.14	0.14	-16 0.17	-13 0.16	-13 0.16	0.06	0.005	2x10 ⁻⁶
PMMA	86	20	μ $(I_{\text{on}}:I_{\text{off}})$	(10^4)		(10^5)	(10^4)	(10^4)	(10^4)	(10^4)	(10^4)	(10^4)	(10^7)	(10^4)
1 1/11/1/1	00	20	V_T	-11		-22	-21	-24	-19	-16	-14	-18	-26	-34
			μ	0.17		0.15	0.15	0.15	0.16	0.17	0.10	0.008	0.004	$2x10^{-7}$
		100	$(I_{\text{on}}:I_{\text{off}})$	(10^4)		(10^5)	(10^4)	(10^4)	(10^4)	(10^4)	(10^4)	(10^5)	(10^6)	(10^2)
			V_T	-25		-25	-24	-29	-24	-31	-24	-28	-23	-14
			μ	0.73		0.63	0.65	0.58	0.56	0.25	0.15	3x10 ⁻⁵		
PMS	107	20	$(I_{\text{on}}:I_{\text{off}})$	(10^5)		(10^6)	(10^5)	(10^5)	(10^5)	(10^5)	(10^5)	(10^4)		
			V_T	-18		-20	-30	-31	-30	-24	-26	-23		
			μ	0.59					0.63	0.49	0.07 -0.17	0.001 -0.27	0.04 -0.22	0.04
PTBS	137	30	$(I_{\text{on}}:I_{\text{off}})$	(10^4)					(10^6)	(10^5)	$(10^8 - 10^6)$	$(10^7 - 10^6)$	$(10^8 - 10^6)$	(10^8)
			V_T	-7					-24	-9	-27 / -19	-34 / -24	-22 / -15	-30
			μ	0.08		0.09	0.08	0.08	0.02	0.02	5x10 ⁻⁴	4x10 ⁻⁶	-	
		8	$(I_{\text{on}}:I_{\text{off}})$	(10^5)		(10^5)	(10^5)	(10^5)	(10^5)	(10^5)	(10^3)	(10^1)		
			V_T	-21		-26	-27	-26	-25	-21	-28	-25		
			μ	0.07		0.07	0.08	0.06	0.01	0.01	$5x10^{-4}$	2x10 ⁻⁶		
P2VP	103	12	$(I_{\text{on}}:I_{\text{off}})$	(10^5)		(10^5)	(10^5)	(10^5)	(10^5)	(10^5)	(10^3)	(10^1)		
			V_T	-21		-25	-25	-23	-21	-20	-25	-15		
			μ	0.08		0.07	0.09	0.08	0.02	0.02	$1x10^{-3}$	$1x10^{-7}$		
		70	$(I_{\text{on}}:I_{\text{off}})$	(10^5)		(10^5)	(10^5)	(10^5)	(10^4)	(10^4)	(10^6)	(10^1)		
			V_T	-30		-31	-29	-29	-25	-22	-21	-51		

^a Carrier mobilities calculated in saturation within the charge carrier concentration range of $3-4 \times 10^{12}$ cm⁻². Standard deviations are typically < 10%; otherwise a mobility range is given. ^b From DSC data.

Table S2. Field-Effect Mobility $(\mu_{sat}, \text{cm}^2/\text{V}\cdot\text{s})^a$, Current On/Off Ratio $(I_{on}:I_{off})$, Threshold Voltage (V_T, V) data for Pentacene TFTs fabricated on the Indicated Multilayer and DOP-doped Polymer Gate Dielectrics and on c-SiO₂ as a Function of Pentacene Film Deposition Temperature (T_D) .

Gate	$T_g^{\ b}$	d		$T_D(^{\circ}\mathrm{C})$										
Diel.	(°C)	(nm)		25	45	50	55	60	65	70	75			
			μ	0.52	0.59	0.47	0.34	0.20	0.04	0.002	0.006			
		12/12	$(I_{\text{on}}:I_{\text{off}})$	(10^6)	(10^6)	(10^5)	(10^5)	(10^5)	(10^6)	(10^6)	(10^6)			
			V_T	-26	-27	-26	-26	-27	-31	-34	-44			
			μ	0.56	0.45	0.40	0.39	0.19	0.03	0.004	0.006			
PS1 /P2VP	103	12/65	$(I_{\rm on}:I_{\rm off})$	(10^6)	(10^5)	(10^5)	(10^5)	(10^5)	(10^6)	(10^7)	(10^7)			
71211			V_T	-27	-25	-26	-26	-27	-24	-33	-31			
		12/205	μ	0.44	0.39	0.32	0.31	0.18	0.03	0.004	0.0002			
			$(I_{\rm on}:I_{\rm off})$	(10^6)	(10^6)	(10^5)	(10^5)	(10^5)	(10^6)	(10^6)	(10^6)			
			V_T	-34	-34	-36	-36	-34	-34	-49	-52			
			μ	0.41	0.63	0.69	0.50	0.42	0.07	0.03	3x10 ⁻⁴			
		18	$(I_{\text{on}}:I_{\text{off}})$	(10^7)	(10^6)	(10^5)	(10^5)	(10^5)	(10^7)	(10^7)	(10^6)			
DOP	102		V_T	-23	-26	-26	-17	-24	-20	-27	-44			
(4 wt%)- doped PS1	103		μ	0.33	0.47	0.47	0.40	0.35	0.09	0.07	0.004			
-		80	$(I_{\text{on}}:I_{\text{off}})$	(10^6)	(10^5)	(10^6)	(10^5)	(10^5)	(10^5)	(10^5)	(10^4)			
			V_T	-28	-32	-32	-35	-32	-29	-28	-29			

^a Carrier mobilities calculated in saturation within the charge carrier concentration range of $3-4 \times 10^{12}$ cm⁻². Standard deviations are typically < 10%; otherwise a mobility range is given. ^b From DSC data.

Table S3. Field-Effect Mobility $(\mu_{sat}, \text{cm}^2/\text{V}\cdot\text{s})^a$, Current On/Off Ratio $(I_{on}:I_{off})$, Threshold Voltage (V_T, V) data for Post-annealed Pentacene TFTs Fabricated on the Indicated Gate Dielectrics and on c-SiO₂ as a Function of Annealing Temperature (T_A) .

Gate Diel.	$T_g^{\ b}$	d					T_A (°C)			
	(°C)	(nm)		25	70	90	100	110	130	160
			μ	0.39	0.41	0.41	0.24	0.23	0.04	0.009
c-SiO ₂	1175		$(I_{\text{on}}:I_{\text{off}})$	(10^6)	(10^5)	(10^5)	(10^4)	(10^4)	(10^5)	(10^5)
			V_T	-25	-20	-21	-17	-19	-23	-23
			μ	0.63	0.53	0.51	0.13	0.04	0.03	0.007
PS1	103	80	$(I_{\text{on}}:I_{\text{off}})$	(10^6)	(10^5)	(10^5)	(10^5)	(10^5)	(10^7)	(10^7)
			V_T	-32	-33	-37	-37	-39	-26	-28
			μ	0.27	0.24	0.23	0.11	0.09	0.03	0.004
PMMA2	108	60	$(I_{\text{on}}:I_{\text{off}})$	(10^4)	(10^4)	(10^4)	(10^4)	(10^6)	(10^6)	(10^7)
			V_T	-34	-33	-34	-35	-29	-29	-28
	•	•	μ	0.08	0.08	0.08	0.03	0.02	0.003	0.0001
P2VP	103	70	$(I_{\text{on}}:I_{\text{off}})$	(10^5)	(10^5)	(10^5)	(10^5)	(10^6)	(10^6)	(10^3)
			V_T	-33	-32	-13	-25	-20	-29	-22

^a Carrier mobilities calculated in saturation within the charge carrier concentration range of $3-4 \times 10^{12}$ cm⁻². Standard deviations are typically < 10%; otherwise a mobility range is given. ^b From DSC data.

Figure S1. Transfer plots of pentacene TFTs fabricated on PS2 (24 nm) and PS3 (10 nm) gate dielectrics at the indicated T_D s.

Figure S2. Transfer plots of pentacene TFTs fabricated on PMS (20 nm) and PTBS (30 nm) gate dielectrics at the indicated T_D s.

Figure S3. Field-effect mobilities of (A) DFH-4T, (B) DFHCO-4T, (C) α-6T, and (D) DFH-PTTP TFTs fabricated at the indicated T_D s on PS1 (20 nm) polymer gate dielectrics and on c-SiO₂.

Figure S4. XRD ($\theta/2\theta$ scan) data for 50 nm thick pentacene films grown on DOP(4 wt%)-doped PS1 (18 nm) and PS1/P2VP (12/12 nm) gate dielectrics at the indicated T_D s. The solid lines are drawn as guides to the eye.

Figure S5. AFM images $(5.0 \times 5.0 \ \mu\text{m}^2)$ of vacuum-deposited pentacene films $(1.5 - 50 \ \text{nm})$ grown on c-SiO₂ gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S6 AFM images $(5.0 \times 5.0 \ \mu\text{m}^2)$ of 50 nm thick pentacene films grown on c-SiO₂ gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S7. AFM images $(5.0 \times 5.0 \ \mu\text{m}^2)$ of 50 nm thick pentacene films grown on PS1 gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S8. AFM images $(5.0 \times 5.0 \ \mu\text{m}^2)$ of 50 nm thick pentacene films grown on P2VP (12 nm) gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S9. AFM images $(5.0 \times 5.0 \ \mu\text{m}^2)$ of 50 nm thick pentacene films grown on PMMA (10 nm) gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S10. AFM images $(5.0 \times 5.0 \ \mu \text{m}^2)$ of 50 nm thick pentacene films grown on PTBS (30 nm) gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S11. AFM images $(5.0 \times 5.0 \ \mu \text{m}^2)$ of 5 nm thick pentacene films grown on PS1 gate dielectrics at the indicated T_D s. The scale bars indicate 1 μ m.

Figure S12. Capacitance-frequency plot for bilayer polymer/ SiO_2 dielectrics measured on MIS structure (AC driving voltage = 0.1 V, DC bias offset = -10 V).