Partitioning of Poly(amidoamine) Dendrimers between n-Octanol and Water Supporting Information

Environmental Science and Technology

ES9003747

Jyotsnendu Giri¹, Mamadou S. Diallo*¹, William A. Goddard III¹, Nathan Dalleska²,

Xiangdong Fang³ and Yongchun Tang³

¹Materials and Process Simulation Center

Division of Chemistry and Chemical Engineering

California Institute of Technology, Pasadena, CA

²Environmental Science and Engineering

Division of Engineering and Applied Science

California Institute of Technology, Pasadena, CA

³Power, Environmental and Energy Research Center

Division of Chemistry and Chemical Engineering

California Institute of Technology, Pasadena, CA

*Corresponding Author:

Beckman Institute MC 139-74

California Institute of Technology, Pasadena, CA, 91125

Phone: 626 395 2730

Fax: 626 585 0918

 $\label{thm:conditional} Table \ S1: \ Selected \ Physicochemical \ Properties \ of the \ Gx-NH_2\ PAMAM\ Dendrimers \\ Evaluated \ in \ This \ Study$

Generation	^a N _{Terminal}	bM _{wth} (Da)	^c R _H (nm)
G0	4	517	0.96
G1	8	1430	1.18
G2	16	3256	1.47
G3	32	6909	1.86
G4	64	14215	2.44
G5	128	28826	3.12
G6	256	58048	3.81
G8	1024	233383	4.76

 $[^]aN_{Terminal}$: Number of terminal groups. $^bM_{wth}$: Theoretical molar mass. cR_H : Hydrodynamic radius. Data are taken from Reference [30]

Table S2: Selected Physicochemical Properties of the G4-X and G3.5 PAMAM Dendrimers Evaluated in This Study.

Generation	Terminal Group	^a N _{Terminal}	^b M _{wth} (Da)
4	^c Amine	64	14215
4	^c Amidoethanol	64	14277
4	^c Succinamic acid	64	20619
3.5	^c Sodium carboxylate	64	26252
4	^c Tris(hydroxymethyl)	64	
	aminomethane		18121
4	^c Pyrrolidinone	64	22285
4	^d Amidoethylethanolamine	64	34492

^aN_{Terminal}: Number of terminal groups.

^bM_{wth}: Theoretical molar mass.

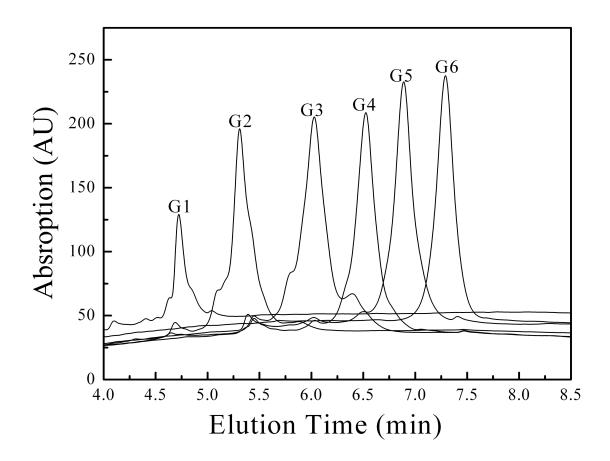
^cEthylenediamine core.

^dDiaminobutane core.

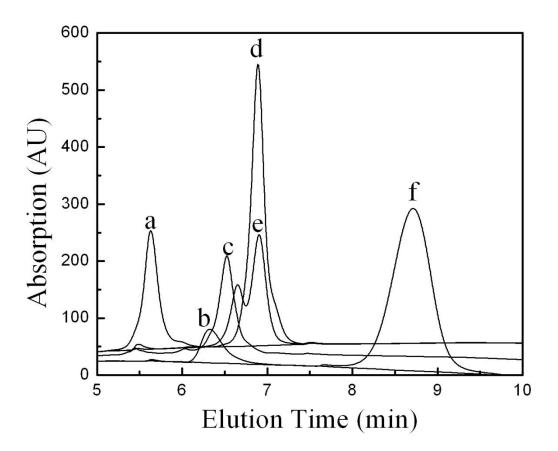
Table S3: Selected Physicochemical Properties of the G4-NH₂ PAMAM Dendrimers **Evaluated in This Study.**

^a Core	Terminal Group	${}^{b}N_{Terminal}$	$^{\rm c}{ m M}_{ m wth}({ m Da})$
EDA	Amine	64	14215
DAB	Amine	64	14277
DAH	Amine	64	20619
DAD	Amine	64	26252
Cyst	Amine	64	18121

^aEDA (Ethylene diamine); DAB (Diaminobutane); DAH (Diaminohexane); DAD (Diaminododecane) and Cyst (Cystamine).


bN_{Terminal}: Number of terminal groups.

cM_{wth}: Theoretical molar mass.


Figure S1: Experimental setup (slow stirring method) used to measure the logKow of PAMAM dendrimers.

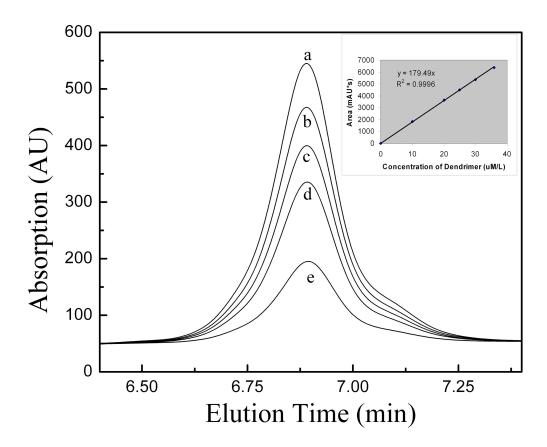

Figure S2: Typical chromatograms of $Gx-NH_2$ PAMAM dendrimers with ethylene diamine (EDA) core when injected separately. The injection volume is 25 μ l. The solvent flow rate is 2 mL/min with a gradient of 0-50% ACN (balance water) and UV detection at 210 nm.

Figure S3: Typical chromatograms of G4 PAMAM dendrimers with ethylene diamine core and different terminal groups when injected separately. a) Tris(hydroxymethyl) aminomethane, b) sodium carboxylate, c) amine, d) succinamic acid, e) amidoethylethanolamine and f) carbomethoxypyrrolidinone. The injection volume is 25 μ l. The solvent flow rate is 2 mL/min with the gradient of 0-50% ACN (balance water) within 15 min. The UV wavelength used for detection is 210 nm.

Figures S4: Typical chromatograms [with INSET calibration curve] used to estimate the logK_{ow} as illustrated on a G4 PAMAM dendrimer with succinamic acid terminal groups: a) dendrimer peak corresponding to an initial aqueous phase concentration of 36 μ M, b) dendrimer peak after equilibrium partitioning between the water and octanol phases, c) standard solution of concentration 30 μ M, d) standard solution of concentration 25 μ M, e) standard solution of concentration 20 μ M, f) standard solution of concentration 10 μ M. The injection volume is 25 μ l. The solvent flow rate is 2 mL/min with a gradient of 0-50% ACN (balance water) and UV detection at 210 nm.

Figure S5: Typical chromatograms of G4 PAMAM dendrimer with succinamic acid terminal groups: a) dendrimer peak corresponding to an initial aqueous phase concentration of 33.72 μM with integrated areas under the peak 6051 ± 6 (counts), b) dendrimer peak after equilibrium partitioning between the water and octanol phases corresponds to dendrimer concentration 33.34 μM with integrated areas under the peak 5985 ± 2 (counts). The injection volume is 25 μl. The solvent flow rate is 2 mL/min with a gradient of 0-50% ACN (balance water) and UV detection at 210 nm.

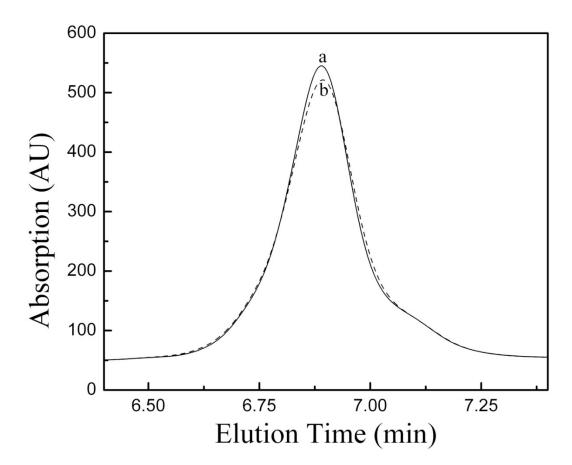


Figure S6: Partitioning of G6-NH $_2$ PAMAM dendrimer with ethylene diamine core at the octanol-water (O/W) interface. Note that the cloudiness at the O/W interface.

