Supporting Information For:

"A Polymerase Chain Reaction, Nuclease Digestion, and Mass Spectrometry Based Assay for the CGG Trinucleotide Repeat Status of the *Fragile X Mental Retardation 1* Gene"

Eric D. Dodds, Flora Tassone, Paul J. Hagerman, and Carlito B. Lebrilla

In order to allow more rapid calculation of CGG intensity ratios based on mass spectrometry (MS) data, a software utility was designed using IGOR Pro (version 6, WaveMetrics, Lake Oswego, OR, USA). The program, dubbed the CGG Oligonucleotide Recomposition Tool (CORT), carried out four major functions: import of MS peak lists; search of the peak lists for small oligonucleotide (ONT) masses; calculation of metrics related to CGG repeat status based on mass to charge ratio (m/z) and relative abundance data; and compilation of reports.

The graphical user interface of the CORT software package is shown in Figure S1. CORT was designed to import mass and intensity (M/I) tables saved in tab delimited text file

CORT_Panel	
CORT: CGG Oligonucleotide Recomposition	<u>n Tool</u>
Load and Specify Mass / Intensity Table(s) Load Single M/I Table Load Multiple M/I Tables Processing Scope: Batch Select M/I Table(s)	Specify N-Mers for Inclusion Image: Dinucleotides Image: Dinucleotides
Specified M/I Table(s): <pre><<not specified="">></not></pre>	Set Processing Options
	Non-CGG ONTs for Normalization: Subset ONTs
Report Saving and Execution	Mass Resolution: Monoisotopic
Save Report(s) as Text File(s): Yes Set Path	Mass Error Tolerance: 10.00 ppm 💌
Reinitialize Recompose	Apply Correction for Isotopomer Overlap: Yes 💌
18	

Figure S1. User interface of the CGG Oligonucleotide Recomposition Tool (CORT) with all controls and options displayed.

format. Once loaded, the M/I tables were searched for experimental m/z values matching known m/z values of singly deprotonated ONTs to within a user specified mass error tolerance. The mass error tolerance could be set in terms of Daltons (Da) or parts per million (ppm). Another operator defined parameter allowed the peak lists to be searched for either monoisotopic masses (appropriate for high resolution MS data) or average masses (appropriate for low resolution MS data). Because interest was limited to relatively short ONTs composed of only the four DNA nucleotides (NTs), it was possible to exhaustively search the peak lists for all possible small ONT compositions. The number of possible ONT compositions was determined as the number of combinations of n items (*i.e.*, the four DNA NTs) sampled x times (*i.e.*, the number of NTs comprising the ONT) with replacement.

$$\binom{n}{x} = \frac{(n+x-1)!}{x!(n-1)!}$$
[Equation S1]

According to this relationship, there were 10 possible dinucleotide compositions (Table S1), 20 possible trinucleotide compositions (Table S2), 35 possible tetranucleotide compositions (Table S3), and 56 possible pentanucleotide compositions (Table S4). The observation of all possible ONT compositions was not anticipated, since only a specific collection of ONT digestion products could result from the PCR amplicons of interest. Nonetheless, since the total number of small ONTs was finite (only 121 possible compositions for 2-mers through 5-mers), an all-inclusive search was implemented in order to provide maximum extensibility

Dinucleotide Composition	Monoisotopic [M-H] ⁻ (m/z)	Average [M-H] ⁻ (m/z)	
C ₂	595.09603	595.377	
C ₁ T ₁	610.09569	610.389 619.402 625.401 634.414	
C ₁ A ₁	619.10726		
T ₂	625.09536		
A ₁ T ₁	634.10693		
C ₁ G ₁	635.10218	635.402 643.427	
A ₂	643.11849		
T ₁ G ₁	650.10184	650.414	
A ₁ G ₁	659.11341	659.427	
G ₂	675.10832	675.427	

Table S1. Compositions of all possible DNA dinucleotides and corresponding mass to charge ratios.

Trinucleotide Composition	Monoisotopic [M-H] ⁻ (m/z)	Average [M-H] ⁻ (m/z)
C ₃	884.14240	884.562
C ₂ T ₁	899.14207	899.574
C_2A_1	908.15363	908.587
C ₁ T ₂	914.14173	914.586
$C_1A_1T_1$	923.15330	923.599
C_2G_1	924.14855	924.587
T ₃	929.14140	929.598
C_1A_2	932.16487	932.612
A ₁ T ₂	938.15296	938.611
$C_1T_1G_1$	939.14821	939.599
A ₂ T ₁	947.16453	947.624
$C_1A_1G_1$	948.15978	948.612
T_2G_1	954.14788	954.611
A ₃	956.17610	956.637
$A_1T_1G_1$	963.15945	963.624
C_1G_2	964.15470	964.612
A_2G_1	972.17101	972.637
T ₁ G ₂	979.15436	979.624
A ₁ G ₂	988.16593	988.637
G ₃	1004.16084	1004.637

Table S2. Compositions of all possible DNA trinucleotides and corresponding mass to charge ratios.

and flexibility. Once tabulated, the mass and intensity values were used to calculate the total intensity of ONTs derived from the CGG repeat region (Table 1 of the main article) relative to the total intensity of a normalizing set of non-repeat ONTs. The CGG repeat intensity ratio, R_{f} , was then calculated according to:

$$R_f = \frac{\sum r_i}{\sum f_i}$$
 [Equation S2]

where r_i represents the relative abundance of the *i*-th ONT mass arising from the CGG repeat region, and f_j represents the relative abundance of the *j*-th ONT arising from the flanking region. The subscript *f* in R_f denotes that the CGG signals were normalized to all flanking ONT signals (*i.e.*, all observed products from benzonase digestion of the flanking region). Alternatively, the ratio R_s was calculated according to:

$$R_{s} = \frac{\sum r_{i}}{\sum s_{k}}$$
 [Equation S3]

where s_k represents the relative abundance of the *k*-th ONT from a selected subset of non CGG ONTs. This selected subset of normalizing signals is listed in Table 2 of the main article. These were chosen due to their high intensity (compared to other flank derived ONT

Tetranucleotide Composition	Monoisotopic [M-H] ⁻ (m/z)	Average [M-H] ⁻ (m/z)
C ₄	1173.18877	1173.747
C ₃ T ₁	1188.18844	1188.759
C ₃ A ₁	1197.20000	1197.772
C ₂ T ₂	1203.18810	1203.771
$C_2A_1T_1$	1212.19967	1212.784
C ₃ G ₁	1213.19492	1213.772
C ₁ T ₃	1218.18777	1218.783
C_2A_2	1221.21124	1221.797
$C_1A_1T_2$	1227.19934	1227.796
$C_2T_1G_1$	1228.19458	1228.784
T ₄	1233.18743	1233.795
$C_1A_2T_1$	1236.21090	1236.809
$C_2A_1G_1$	1237.20615	1237.797
A ₁ T ₃	1242.19900	1242.808
$C_1T_2G_1$	1243.20325	1243.796
C ₁ A ₃	1245.22247	1245.822
A_2T_2	1251.21057	1251.821
$C_1A_1T_1G_1$	1252.20582	1252.809
C_2G_2	1253.20107	1253.797
T_3G_1	1258.19392	1258.808
A ₃ T ₁	1260.22214	1260.834
$C_1A_2G_1$	1261.21739	1261.822
$A_1T_2G_1$	1267.20548	1267.821
$C_1T_1G_2$	1268.20073	1268.809
A ₄	1269.23370	1269.847
$A_2T_1G_1$	1276.21705	1276.834
$C_1A_1G_2$	1277.21230	1277.822
T_2G_2	1283.20040	1283.821
A ₃ G ₁	1285.22862	1285.847
$A_1T_1G_2$	1292.21197	1292.834
C ₁ G ₃	1293.20722	1293.822
A_2G_2	1301.22353	1301.847
T ₁ G ₃	1308.20688	1308.834
A ₁ G ₃	1317.21845	1317.847
G ₄	1333.21336	1333.847

Table S3. Compositions of all possible DNA tetranucleotides and corresponding mass to charge ratios.

compositions) and appropriate distribution across the mass range of interest. In addition, the two ratios above were calculated using weighting factors $w_{i,j,k}$ such that the intensity of each ONT was multiplied by the number of NTs comprising the ONT. Thus, the intensity of a tetranucleotide was given twice the weight of a dinucleotide. The repeat intensity ratios with weighting, $R_{f(w)}$ and $R_{s(w)}$, were thus defined as shown below.

 $R_{f(w)} = \frac{\sum w_i r_i}{\sum w_j f_j}$ [Equation S4] $R_{s(w)} = \frac{\sum w_i r_i}{\sum w_k s_k}$ [Equation S5]

Pentanucleotide Composition	Monoisotopic $[M-H]^{-}$ (m/z)	Average [M-H] ⁻ (m/z)		
C ₅	1462.23514	1462.932		
C_4T_1	1477.23481	1477.944		
C ₄ A ₁	1486.24638	1486.957		
C ₃ T ₂	1492.23447	1492.956		
C ₃ A ₁ T ₁	1501.24604	1501.969		
C ₄ G ₁	1502.24129	1502.957		
	1507,23414	1507.968		
C ₂ A ₂	1510.25761	1510.982		
$C_2A_1T_2$	1516.24571	1516.981		
$C_2T_1G_1$	1517,24096	1517.969		
C4T4	1522 23381	1522.980		
$C_2A_2T_1$	1525,25728	1525.994		
$C_2A_1G_1$	1526,25252	1526 982		
	1531 24537	1531 993		
CoToGo	1532 24062	1532 981		
	1534 26884	1535.007		
T_	1537 23347	1537 992		
	1540 25697	1541 006		
C_A.T.G.	1540.23074	15/1 00/		
	15/2 2/7//	1541.774		
	1542.24744	1547.005		
	1540.24504	1547.003		
	1547.24029	1550 010		
	1549.20031	1550.019		
$C_2A_2G_1$	1550.20578	1551.007		
A_2I_3		1550.018		
$C_1A_1I_2G_1$	1550.25180	1557.006		
	1557.24710	1557.994		
	1558.28008	1559.032		
	1562.23995	1563.005		
	1504.20817			
$C_1A_2I_1G_1$	1505.20342	1500.019		
$C_2A_1G_2$		1507.007		
	1571.25152	1572.018		
	1572.24077	1573.006		
	1573.27974	1574.044		
$C_1A_3G_1$	1574.27499	1575.032		
$A_2I_2G_1$	1580.26309	1581.031		
$C_1A_1I_1G_2$	1581.25834	1582.019		
	1502.25359			
	1582.29131			
	1587.24644			
	1507.2/400	1570.044		
	1590.26991	1591.032		
A ₁ I ₂ G ₂	1596.25800	1597.031		
	1597.25325	1598.019		
		1599.057		
A ₂ I ₁ G ₂	1605.26957	1606.044		
	1606.26482	1607.032		
	1012.25292			
A3G2	1614.28114	1615.057		
A ₁ I ₁ G ₃	1621.26449	1622.044		
C_1G_4	1622.25973	1623.032		
A ₂ G ₃	1630.27605	1631.057		
	1637.25940	1638.044		
A ₁ G ₄	1646.27097	1647.057		
G ₅	1662.26588	1663.057		

 Table S4. Compositions of all possible DNA pentanucleotides and corresponding mass to charge ratios.

Upon completion of the calculations, two types of reports were generated (Figure S2): a detailed report for each sample which provided compositions, masses, and intensities of all matched ONT signals; and a simple batch report which listed the sums of CGG and non CGG ONT intensities and the corresponding R values for each sample. While the report tables could be maintained within the IGOR experiment file, the reports could also be exported as tab delimited text files at the option of the user. The reports provided by CORT were generated such that both the weighted and unweighted values of R were given side by side,

☐ EDD121107_001_RPT:EDD121107_001_STR,									
	R0 CC						(D)		
Row	ONT Composition	Act	xctual Mass (m/z) Observed Mass (m/z) Mass Error (ppm) Relative Abundance Weighted A				Weighted Abundance		
			0	1	2	3	4		
0	CC		595.0960	595.0945	-2.6	4.07	8.14	-	•
1	CT		610.0957	610.0958	0.2	7.23	14.46		-
2	CG		635.1022	635.1022	-0.0	30.26	60.53		
3	TG		650.1019	650.1017	-0.2	8.88	17.76		
4	AG	659.1134		659.1133	-0.2	18.38	36.76		
5	GG		675.1083	675.1076	-1.1	14.63	29.26		
6	CCG		924.1486	924.1488	0.3	50.96	152.88		
7	CAG		948.1598	948.1581	-1.8	23.28	69.84		
8	CGG		964.1547	964.1544	-0.3	97.04	291.13		
9	AGG		988.1660	988.1624	-3.6	33.59	100.77		
10	CATG		1252.2058	1252.2028	-2.4	24.91	99.64	-	-
•								•	H

🗮 Sun	🗒 SummaryReport:BatchSummaryStr, 💿 💿 💌									
R0 EDD121107_001										
Row	M/I Table Name	CGG Sum (u)	Non-CGG Sum (u)	R (u)	CGG Sum (w)	Non-CGG Sum (w)	R (w)			
		0	1	2	3	4	5			
0	EDD121107_001	258.63	127.82	2.0234	788.59	385.43	2.0460	A		
1	EDD121107_002	287.15	175.47	1.6365	845.92	529.72	1.5969			
2	EDD121107_003	311.74	161.94	1.9251	949.76	488.06	1.9460			
3	EDD121107_004	296.66	181.77	1.6321	887.36	541.83	1.6377			
4	EDD121107_005	275.95	119.96	2.3004	857.05	369.45	2.3198			
5	EDD121107_006	275.16	132.49	2.0769	858.24	408.80	2.0994			
6	EDD121107_007	275.26	129.18	2.1308	865.80	403.01	2.1484			
7	EDD121107_008	156.74	72.13	2.1731	469.18	223.06	2.1034			
8	EDD121107_009	287.19	147.65	1.9450	856.47	436.83	1.9606			
9	EDD121107_010	285.15	159.16	1.7916	847.48	480.46	1.7639			
10	EDD121107 011	282.62	161.79	1.7468	826.53	473.24	1.7465	-		
•										

Figure S2. Excerpts from an individual sample report (upper panel) and a batch summary report (lower panel) generated by CORT.

While the option to calculate R_f or R_s was provided as a user-defined parameter. For all results shown in the main article, $R_{s(w)}$ was calculated according to Equation S5.

In the range of dinucleotides through pentanucleotides, each ONT composition corresponded to a unique mass. However, an examination of Tables S1 through S4 revealed a number of cases in which the monoisotopic mass *A* of a particular ONT coincided with an A+1 or A+2 isotopomer of different ONT composition. The simplest example of this is encountered with the dinucleotide compositions A_1T_1 (monoisotopic m/z 634.1069; [A+1] isotopomer m/z 635.1103) and C_1G_1 (monoisotopic m/z 635.1022). In this case, the intensity of the C_1G_1 monoisotopic A peak would be inflated by the overlap from the A_1T_1 A+1 peak. Another example of isotopomer overlap is illustrated in Figure S3, wherein the tetranucleotides $C_1A_1T_1G_1$ and C_2G_2 overlap in a similar manner. Indeed, this is the case for any two ONT compositions related by a CG for AT substitution. Correction of the C_2G_2A peak intensity was accomplished according to:

$$I_{C_2G_2(c)} = I_{C_2G_2(u)} - I_{C_1A_1T_1G_1}F$$
 [Equation S6]

where $I_{C_2G_2(c)}$ is the corrected monoisotopic C_2G_2 intensity, $I_{C_2G_2(u)}$ is the uncorrected monoisotopic C_2G_2 intensity, $I_{C_1A_1T_1G_1}$ is the monoisotopic intensity of $C_1A_1T_1G_1$, and *F* is a

Figure S3. Example of isotopomer overlap involving the tetranucleotide compositions $C_1A_1T_1G_1$ and C_2G_2 .

correction factor derived from the expected relative intensities of the *A* and *A*+1 isotopomers of $C_1A_1T_1G_1$. In the case of the $C_1A_1T_1G_1$ ONT, the intensity of the *A*+1 peak was predicted to be 48.8% of the *A* peak intensity based on elemental composition and the natural abundance of elemental isotopes.

The option to subtractively correct for all such isotopomer overlaps according to Equation S6 was incorporated into CORT and was provided as a user defined setting. All *F* correction factors were obtained by simulating the isotopomer distributions for each overlap contributing ONT at a mass resolution of 30,000 using the Varian IonSpec Exact Mass Calculator (version 8, Lake Forest, CA). In practice, the isotopomer overlap correction was not found to significantly affect the values of *R* because most of the AT type signals were of much lower abundance than the CG type signals. However, in other potential applications, isotopomer overlap correction could be crucial to obtaining meaningful relative intensity data.

Other operator selectable options in CORT include the ability to import and / or process single peak lists or peak list batches, and the option to independently include or exclude any particular ONT length from the calculations.