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Abstract 

This supporting information includes several sections that enhance the understanding of the 

material presented in the paper: (1) A novel analytic solution of the concentration profiles during 

alternating applied current and controlled voltage is derived to verify the FEM simulations.  (2)  

The FEM simulation parameters are provided for alternating applied current and controlled 

voltage.  (3) The equations for the calculation of the breakpoint during the reverse current step 

are presented both for the normal pulse and “triple pulse” methods.  (4) Table S1 presents the 

values of trelax needed to achieve 1% relative boundary concentration errors for each of the 

restoration methods.  (5) Table S2 presents the number of pretreatment cycles needed to achieve 

less than 1% relative boundary concentration errors for each of the restoration methods 

 

Analytic solution for alternating applied current and voltage 

We have derived an analytic solution for a single cycle of applied current and controlled 

voltage.  In order to derive this solution, we neglected the resistive voltage drop inside the 

membrane, as was done previously in the models for pulsed amperometry.
21, 22

  Note that with 

the assumption of zero resistance, the concentrations return immediately to their original values 

at the membrane-solution interfaces, requiring an infinite initial current.  The first part of the 

solution is for a simple current step, for which we described the solution in a previous paper:
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From Fourier series theory, we can get a solution for the voltage step with the initial value 

CL,1(x,t1), where t1 is the time of the initial current pulse: 
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Finally, after substituting Eq. S1 into Eq. S3 and integrating, we get the solution after the 

controlled voltage step (t > t1): 
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It is possible to derive the solutions for additional cycles of current and voltage pulses, but 

each cycle adds an additional two nested summations, so that the computational time increases 

exponentially and is impractical for more than several cycles.  Therefore, we have used the 

analytic solution only to verify the results of the finite element method for a single 

current/voltage cycle. 

 

FEM simulation parameters: 

In order to eliminate discontinuities in the boundary concentrations when neglecting rohm, instead 

of specifying a step in concentration at the boundary, Eq. 3 or 6 was used with a negligible rohm = 

5.4 x 10
-4

 (Rohm=0.2 Ωcm
2
).  Parameters used in the equations, unless otherwise specified, were 

k=1, n=1, d=0.01 cm, D=2x10
-8

 cm
2
/s, C°=10 mM, and I1=600 nA/cm

2
.  Time steps were 

controlled automatically by Comsol Multiphysics, although to minimize errors when changing 

from applied current to controlled voltage, time steps were forced to occur every Rohm×t1×10
-6

 

seconds for Rohm×t1×10
-6

 < t1 < Rohm×t1×10
-4

.  In addition, time steps were forced to occur at least 

every 0.005*t1 seconds during the applied current step.  The 96 spatial elements were chosen to 

be more closely spaced near the boundaries of the membrane, with a spacing of 5×10
-5

 cm at the 

boundaries and a maximum spacing of 10
-3

 cm in the center.  With these parameters, 

concentration change errors were less than 0.1%. 
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Reverse current breakpoint equations: 

For relatively short times (less than ~60 min for typical membranes), the maximum time (τ2 – 

t1) that a given reverse current can be applied was derived previously
24

 as: 
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    (S5a and b) 

Eq. S5b is expressed in terms of the ordinary chronopotentiometric breakpoint τ1 for current 

I1, which is easily obtained experimentally by applying current I1 until a breakpoint is 

observed.
7,9

 This equation was solved using Matlab for τ2, which is the optimal t2 for t2 ≥ τ2.  

Next, to find the optimal combination of I2 and t2, I2 was varied and t2 was calculated from Eq. 

S5.   

From our simulations for short times (t1 ≤ 10 s), we found two limiting cases: 

(1) For breakpoint measurements, where the initial current is applied until the breakpoint 

time (i.e., t1 = τ1), the optimal program is with  

fcharge = 1 – (a×trelax + b)
-1

 if trelax ≤ 10       (S6) 

where a=14.9 and b=17.8. 

(2) For measurements when the initial current time is much less than the breakpoint (t1 < 

60×τ1 for <0.5% error in optimal fcharge), the optimal program is for Eq. S6 with a=21.7 and 

b=26.0.  

When τ1 <  t1 < 60×τ1, the optimal value for fcharge will be between these two limiting cases.  

From the calculated value for fcharge, one can calculate I2 and t2 from Eqs. 7 and S6 for any given 

I1 and t1.  The values for a and b given above are optimal for minimizing the maximum error in 

the boundary concentrations at the end of each initial applied current pulse over 100 cycles. 

In some cases, the experimenter may not want to determine first the breakpoint τ1 or 

numerically solve Eq. S5.  To simplify the calculations and experiments, one can solve Eq. S5b 

with t1 = τ1 and fcharge = 1 to get a conservative estimate of I2 as I2 = -2.383×I1, for use instead of 

Eq. S6.   

For the triple pulse method, the optimal fcharge is given by Eq. S6 with a = 5.988 and b = 

9.992 for t1 = τ1, and a = 7.148 and b = 12.391 for t1 << τ1.  The breakpoint during the reverse 

current step can be calculated from Eq. S7: 
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Again, to simplify the calculations and experiments, one can solve Eq. S7b with t1 = τ1 and 

fcharge = 1 to get a conservative estimate of I2 as I2 = -1.828×I1, for use instead of Eq. S7. 

 

 

Table S1: Value of trelax required to achieve a maximum ±1% error in boundary concentrations 

for 100 cycles 

 

Regular 
Pulse 

Triple 
Pulse 

Zero Current 2500 2500 

Zero Current Differential Voltage 14 22 

Reverse Current (optimal fcharge) 6.7 12 

Reverse Current Differential Voltage (optimal fcharge) 3.3 6.0 

Reverse Current (fcharge=1) 11 21 

Reverse Current Differential Voltage (fcharge=1) 3.5 6.4 

Controlled voltage  (rohm<0.2) 14 26 

 

 

Table S2:  Number of required pretreatment cycles necessary to make repeated pulsed 

potentiometric experiments with less than 1% error. Applied pulse width t
1
=1 s  

 
t
relax

 

 1 4 10 40 

Reverse current (fcharge=1) 22 3 0 0 

Reverse current with ∆V as analytical signal (fcharge=1) 2 0 0 0 

Controlled Voltage (rohm=5.4 x 10
-4

) 51 9 1 0 

Controlled Voltage (rohm=0.054) 53 10 1 0 

Controlled Voltage (rohm=0.54) 68 18 3 0 

Controlled Voltage (rohm=5.4) 96 78 42 3 

 

 


