Supporting Information

Further studies at neuropeptide S position 5: discovery of novel neuropeptide S receptor antagonists

Remo Guerrini ${ }^{\S *}$, Valeria Camarda ${ }^{\#}$, Claudio Trapella ${ }^{\S}$, Girolamo Calo'", Anna Rizzi", Chiara Ruzza ${ }^{\#}$, Stella Fiorini ${ }^{\S}$, Erika Marzola ${ }^{\S}$, Rainer K. Reinscheid ${ }^{\text {II }}$, Domenico Regoli ${ }^{\#}$, and Severo Salvadori ${ }^{\S}$.

Table of Contents:
S2: analytical properties of the $\left[X^{5}\right]$ NPS analogues

Table 1. analytical properties of the $\left[X^{5}\right]$ NPS analogues

no	Abbreviated names	${ }^{\text {a }} \mathrm{t}_{\mathrm{r}}$		${ }^{\text {b }} \mathrm{MH}^{+}$	
		I	II	calculated	found
	hNPS	9.59	13.06	2188.5	2188.2
	[D-Val ${ }^{5}$]hNPS	9.92	13.92	2230.6	2230.8
1	[D-Ile ${ }^{5}$]hNPS	8.44	13.84	2244.6	2245.6
2	[D-allo-Ile ${ }^{5}$]hNPS	8.60	13.92	2244.6	2244.8
3	[D-Thr ${ }^{5}$]hNPS	8.03	13.15	2232.6	2233.4
4	[D-allo-Thr ${ }^{5}$]hNPS	7.88	13.30	2232.6	2233.4
5	[D-Nva ${ }^{5} \mathrm{hNPS}$	8.44	13.27	2230.6	2231.6
6	[cyclohexyl-D-Gly ${ }^{5}$]hNPS	8.87	14.61	2270.7	2271.2
7	[D-Cha ${ }^{5} \mathrm{hNPS}$	9.62	15.85	2284.7	2285.2
8	[D-Phg ${ }^{5}$]hNPS	8.36	13.91	2264.6	2265.2
9	[tBu-D-Gly ${ }^{5}$]hNPS	8.66	13.16	2244.7	2245.2
10	[D-Pen $\left.{ }^{5}\right] \mathrm{hNPS}$	8.41	13.41	2260.2	2262.6
11	[tBu-D-Ala ${ }^{5}$] hNPS	8.44	13.62	2258.7	2259.6

${ }^{a} t_{r}$ is the retention time determined by analytical HPLC. Retention time I was obtained using a Nucleodur C_{18} column ($4.6 \times 100 \mathrm{~mm}, 2 \mu \mathrm{~m}$ particle size) with the solvent system A ($10 \%, \mathrm{v} / \mathrm{v}$, acetonitrile in $0.1 \% \mathrm{TFA}$) and solvent system B (60%, v / v, acetonitrile in $0.1 \% \mathrm{TFA}$). The column was perfused at a flow rate of $0.6 \mathrm{~mL} / \mathrm{min}$ using a linear gradient from 0% to 70% B over 25 min .

Retention time II was obtained using a Hypersil BDS C ${ }_{18}$ column ($4.6 \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size) with solvent system $\mathrm{A}\left(35 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}(\mathrm{pH} 2.1)\right)$ and solvent system $\mathrm{B}\left(59 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}\right.$ $(\mathrm{pH} 2.1)$-acetonitrile $(60: 40 \mathrm{v} / \mathrm{v})$). The column was perfused at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ with a linear gradient from 5\% to 65% B over 25 min

[^0]
[^0]: ${ }^{\mathrm{b}}$ The mass ion $\left(\mathrm{MH}^{+}\right)$was obtained by electro spray mass spectrometry.

