Supporting Information Section

Origin of the $\alpha-, \beta-,(\alpha \beta)$-, and "slow" dielectric processes in poly(ethyl methacrylate). K. Mpoukouvalas, G. Floudas* and G. Williams*
A. Derivation of the expressions for the ratio \mathfrak{R} of the constant volume and constant pressure apparent activation energies

Case 1. $W=Y, X \neq Z$
e.g. $V P / V T$, Eq.(6) of the text, is obtained as follows.

We start by writing $\tau=\tau(T, V), \tau=\tau(T, P)$ with $V=V(T, P)$ giving

$$
\begin{align*}
(\partial \ln \tau / \partial V)_{P} & =(\partial \ln \tau / \partial T)_{V}(\partial T / \partial V)_{P}+(\partial \ln \tau / \partial V)_{T} \tag{S.1}\\
(\partial \ln \tau / \partial T)_{P} & =(\partial \ln \tau / \partial T)_{V}+(\partial \ln \tau / \partial V)_{T}(\partial V / \partial T)_{P} \tag{S.2}
\end{align*}
$$

hence

$$
\begin{align*}
& V P / V T=(\partial \ln \tau / \partial V)_{P} /(\partial \ln \tau / \partial V)_{T}=1+\left((\partial \ln \tau / \partial T)_{V}(\partial T / \partial V)_{P} /(\partial \log \tau / \partial V)_{T}\right) \\
& =1-(\partial V / \partial T)_{\tau} /(\partial V / \partial T)_{P} \tag{S.3}
\end{align*}
$$

Using Eq.(S.2) to replace $(\partial \ln \tau \partial \partial)_{T}$ on the right hand side of Eq.(S.3) gives

$$
\begin{equation*}
V P / V T=(1-\mathfrak{R})^{-1} \tag{S.4}
\end{equation*}
$$

Eqs.(S3) and (S4) correspond to Eq.(6) of the text. Eq.(7) follows from the definition of \mathfrak{R} while Eq.(8) is obtained by a procedure similar to that used to derive Eq.(6).

Case 2. $W=Z, X=Y$
e.g. $P T / T P$ Eq.(11) is obtained by writing $\tau=\tau(T, P)$

$$
\begin{equation*}
(\partial \ln \tau / \partial T)_{V}=(\partial \ln \tau / \partial T)_{P}+(\partial \ln \tau / \partial P)_{T}(\partial P / \partial T)_{V} \tag{S.5}
\end{equation*}
$$

$$
\begin{align*}
P T / T P & \left.=\left[(\partial \ln \tau / \partial T)_{V}-(\partial \ln \tau / \partial T)_{P}\right)\right] /\left((\partial \ln \tau / \partial T)_{P}(\partial P / \partial T)_{V}\right) \\
& =-(1-\mathfrak{R}) /(\partial P / \partial T)_{V}=-(\partial T / \partial P)_{\tau} \tag{S.6}
\end{align*}
$$

Eq.(9) and (10) of the text are obtained by a similar procedure, writing $\tau=\tau(T, V)$ and $\tau=\tau(P, V)$ respectively.

Case 3. $W=Z, X \neq Y$ e.g. $T P / V T$, Eq.(12) is obtained from Eq.(7) and (9) as

$$
\begin{equation*}
(T V / V T) /(T V / T P)=(\partial V / \partial T)_{P}(1-\mathfrak{R})^{-1} \tag{S.7}
\end{equation*}
$$

In a similar manner Eq.(7) and Eq.(11) give TV/PT (Eq.13); Eq.(8) and (10) give $P T / V P$, Eq.(14); Eq.(8) and (11) give $P V / T P$ Eq.(15); Eq.(6) and (9) give $V P / T V$ (Eq.(16) while Eq.(6) and (10) give $V T / P V$ (Eq.17).

Case 4. $W \neq X, Y \neq Z$

e.g. Eq.(18)-(20) may be confirmed as follows; e.g. for Eq.(20) using Eq.(8) and (17)

$$
\begin{equation*}
(P T / V T)=(P T / P V)(P V / V T)=(\partial V / \partial P)_{T} \tag{S.8}
\end{equation*}
$$

A further set of equations of the form $\mathfrak{R}=(1+\lambda)^{-1}$ may be obtained from the generalized Arrhenius equation $\tau=\tau_{0} \exp [Q(T, P) / R T]$. It is easy to show that

$$
\begin{align*}
T P=-\frac{Q}{R T^{2}}\left[1-T(\partial \ln Q / \partial T)_{P}\right] & ; \quad T V=-\frac{Q}{R T^{2}}\left[1-T(\partial \ln Q / \partial T)_{V}\right] \\
P T=\frac{1}{R T}(\partial Q / \partial P)_{T} & ; V T=\frac{1}{R T}(\partial Q / \partial V)_{T} \tag{S.9a-d}
\end{align*}
$$

From Eq. 7 we write

$$
\begin{equation*}
\mathfrak{R}=T V / T P=\frac{1-T(\partial \ln Q / \partial T)_{V}}{1-T(\partial \ln Q / \partial T)_{P}}=\frac{A}{1+\lambda_{a}} \tag{S.10}
\end{equation*}
$$

where $A=1-T(\partial \ln Q / \partial T)_{V}$ and $\lambda_{a}=-T(\partial \ln Q / \partial T)_{P}$. Two further relations for \mathfrak{R} are obtained by a similar method, giving

$$
\begin{equation*}
\mathfrak{R}=\left[1+\lambda_{b} / A\right]^{-1} \quad ; \quad \mathfrak{R}=\left[1+\lambda_{c} / A\right]^{-1} \tag{S.11a,b}
\end{equation*}
$$

where $\lambda_{b}=T(\partial \ln Q / \partial P)_{T}(\partial P / \partial T)_{V}$ and $\lambda_{c}=-T(\partial \ln Q / \partial V)_{T}(\partial V / \partial T)_{P}$.
For the case $Q=Q(V)$ then $\mathrm{A}=1$. Roland and coworkers proposed that $Q=Q(V)=C / V^{\gamma}$ may be applied to the α-process in glass-forming materials. ${ }^{34,35}$ For this case $(d \ln Q / d \ln V)=-\gamma$ giving $\lambda_{a}=\lambda_{b}=\lambda_{c}=T \alpha_{P} \gamma$, so $\mathfrak{R}=\left[1+T \alpha_{P} \gamma\right]^{-1}$.

B. Further Dielectric Data

Additional dielectric loss data are provided for PEMA ($M_{\mathrm{w}}=2.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$) under "isothermal" conditions at $383.15 \mathrm{~K}\left(T \gg T_{\mathrm{g}}\right)$ (in Figure S 1). The spectra show the separation of the $\alpha \beta$-process to α - and β-processes that are well resolved at elevated pressures. Figure S2, comprises the temperature normalized dielectric strengths ($T \Delta \varepsilon$) for the three processes at all temperatures investigated as a function of applied pressure. The complementary in the dielectric strengths of the α - and β-processes can be seen. In Figure S3, the experimentally obtained ratio of activation energies, obtained from the $\tau(\rho)$ representation using Eq. (6), is shown for each of the relaxation processes. This is made by coupling the relaxation times measured under "isobaric" $\tau(T)$ and "isothermal" $\tau(P)$ conditions with the equation of state $V(T, P)$.

Figure S1. Dielectric loss curves for PEMA ($M_{\mathrm{w}}=2.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$) under "isothermal" conditions at $T=383.15 \mathrm{~K}$. The curves are at (squares): 0.1 , (circles): 30 , (up triangles): 60 , (down triangles): 90, (rhombus): 120, (left triangles): 150, (right triangles): 180, (polygons): 210, (stars): 240 and (pentagons): 270 MPa .

Figure S2. Pressure dependence of the dielectric strength $T \Delta \varepsilon$ of PEMA $\left(M_{\mathrm{w}}=2.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}\right)$, corresponding to the three processes as follows: β - (open symbols), α - (filled symbols) and $\alpha \beta$ -
process (half-filled symbols) at the different temperatures investigated: (pentagons): 323.15, (polygons): 333.15 , (squares): 343.15 , (circles): 353.15 , (up triangles): 363.15 , (down triangles): 373.15, (rhombus): 383.15 , (left triangles): 393.15 and (right triangles): 403.15 K .

α-process

Figure S3a. (Top): Dependence of the "isothermal" (solid lines) and "isobaric" (dashed lines) relaxation times of PEMA ($M_{\mathrm{w}}=2.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$) on density. The "isothermal" and "isobaric" lines, are the result of the fits to the modified VFT equation (Eq. 28) to the α-process. The different "isotherms" are: (squares): 343.15, (circles): 353.15, (up triangles): 363.15, (down triangles): 373.15 , (rhombus): 383.15 and (left triangles): 393.15 K . In all cases the "isobaric" data at $P=0.1 \mathrm{MPa}$ are shown with open squares. (Bottom): Ratio \mathfrak{R}, of the constant-volume activation energy ($\Delta E^{\#}$) to the enthalpy of activation $\left(\Delta H^{\#}\right)$ for the α-process plotted against density. The "isobars" are now shown with open symbols: (squares): 0.1, (circles): 10, (up triangles): 20, (down triangles): 30, (rhombus): 40, (left triangles): 50, (right triangles): 60, (polygons): 90 and (stars): 120 MPa .

Figure S3b. (Top): Dependence of the "isothermal" (solid lines) and "isobaric" (dashed lines) relaxation times of PEMA ($M_{\mathrm{w}}=2.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$) on density corresponding to the ($\alpha \beta$)-process. The "isothermal" and "isobaric" lines, are the result of the fits to the modified VFT equation (Eq. 28). The different "isotherms" are: (squares): 383.15, (circles): 393.15, (up triangles): 403.15, (down triangles): 413.15 and (rhombus): 423.15 K . In all cases the "isobaric" data at $P=0.1 \mathrm{MPa}$ are shown with open squares. (Bottom): Ratio \mathfrak{R}, of the constant-volume activation energy $\left(\Delta E^{\#}\right)$ to the enthalpy of activation $\left(\Delta H^{\#}\right)$ for the $(\alpha \beta)$-process plotted against density. The "isobars" are now shown with open symbols that correspond to: (squares): 0.1, (circles): 30, (up triangles): 60 , (down triangles): 90, (rhombus): 120, (left triangles): 150 and (right triangles): 180 MPa .

Figure S3c. (Top): Dependence of the "isothermal" (solid lines) and "isobaric" (dashed lines) relaxation times of PEMA ($M_{\mathrm{w}}=2.0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$) on density. The "isothermal" and "isobaric" lines, are the result of the fits to the modified VFT equation (Eq. 28) to ion mobility process. The different "isotherms" are: (squares): 383.15, (circles): 393.15, (up triangles): 403.15, (down triangles): 413.15 and (rhombus): 423.15 K . In all cases the "isobaric" data at $P=0.1 \mathrm{MPa}$ are shown with open squares. (Bottom): Ratio \mathfrak{R}, of the constant-volume activation energy ($\Delta E^{\#}$) to the enthalpy of activation $\left(\Delta H^{\#}\right)$ for the ion mobility process plotted against density. The "isobars" are now shown with open symbols: (squares): 0.1, (circles): 30, (up triangles): 60, (down triangles): 90, (rhombus): 120, (left triangles): 150, (right triangles): 180 and (polygons): 210 MPa .

