Supporting Information Section

Origin of the α-, β-, (αβ)-, and "slow" dielectric processes in poly(ethyl methacrylate). K. Mpoukouvalas, G. Floudas* and G. Williams*

A. Derivation of the expressions for the ratio \Re of the constant volume and constant pressure apparent activation energies

<u>Case 1. $W = Y, X \neq Z$ </u> e.g. *VP/VT*, Eq.(6) of the text, is obtained as follows. We start by writing $\tau = \tau(T, V), \tau = \tau(T, P)$ with V = V(T, P) giving

$$(\partial \ln \tau / \partial V)_P = (\partial \ln \tau / \partial T)_V (\partial T / \partial V)_P + (\partial \ln \tau / \partial V)_T$$
(S.1)

$$(\partial \ln \tau / \partial T)_P = (\partial \ln \tau / \partial T)_V + (\partial \ln \tau / \partial V)_T (\partial V / \partial T)_P \tag{S.2}$$

hence

$$\begin{aligned} VP/VT &= (\partial \ln \tau / \partial V)_P / (\partial \ln \tau / \partial V)_T = 1 + ((\partial \ln \tau / \partial T)_V (\partial T / \partial V)_P / (\partial \log \tau / \partial V)_T) \\ &= 1 - (\partial V / \partial T)_\tau / (\partial V / \partial T)_P \end{aligned}$$

Using Eq.(S.2) to replace $(\partial \ln \tau / \partial V)_T$ on the right hand side of Eq.(S.3) gives

$$VP/VT = (1 - \Re)^{-1}$$
 (S.4)

Eqs.(S3) and (S4) correspond to Eq.(6) of the text. Eq.(7) follows from the definition of \Re while Eq.(8) is obtained by a procedure similar to that used to derive Eq.(6).

Case 2. W = Z, X = Y

e.g. *PT/TP* Eq.(11) is obtained by writing $\tau = \tau(T, P)$

$$(\partial \ln \tau / \partial T)_{V} = (\partial \ln \tau / \partial T)_{P} + (\partial \ln \tau / \partial P)_{T} (\partial P / \partial T)_{V}$$
(S.5)

$$PT/TP = [(\partial \ln \tau / \partial T)_V - (\partial \ln \tau / \partial T)_P)]/((\partial \ln \tau / \partial T)_P (\partial P / \partial T)_V)$$
$$= -(1 - \Re)/(\partial P / \partial T)_V = -(\partial T / \partial P)_{\tau}$$
(S.6)

Eq.(9) and (10) of the text are obtained by a similar procedure, writing $\tau = \tau(T, V)$ and $\tau = \tau(P, V)$ respectively.

Case 3. $W = Z, X \neq Y$ e.g. *TP/VT*, Eq.(12) is obtained from Eq.(7) and (9) as

$$(TV/VT)/(TV/TP) = (\partial V/\partial T)_{P}(1-\Re)^{-1}$$
(S.7)

In a similar manner Eq.(7) and Eq.(11) give TV/PT (Eq.13); Eq.(8) and (10) give PT/VP, Eq.(14); Eq.(8) and (11) give PV/TP Eq.(15); Eq.(6) and (9) give VP/TV (Eq.(16) while Eq.(6) and (10) give VT/PV (Eq.17).

Case 4. $W \neq X, Y \neq Z$ e.g. Eq.(18)-(20) may be confirmed as follows; e.g. for Eq.(20) using Eq.(8) and (17)

$$(PT/VT) = (PT/PV)(PV/VT) = (\partial V / \partial P)_T$$
(S.8)

A further set of equations of the form $\Re = (1 + \lambda)^{-1}$ may be obtained from the generalized Arrhenius equation $\tau = \tau_0 \exp[Q(T, P)/RT]$. It is easy to show that

$$TP = -\frac{Q}{RT^2} [1 - T(\partial \ln Q / \partial T)_P] \qquad ; \quad TV = -\frac{Q}{RT^2} [1 - T(\partial \ln Q / \partial T)_V]$$
$$PT = \frac{1}{RT} (\partial Q / \partial P)_T \qquad ; \quad VT = \frac{1}{RT} (\partial Q / \partial V)_T \qquad (S.9a-d)$$

From Eq.7 we write

$$\Re = TV/TP = \frac{1 - T(\partial \ln Q/\partial T)_V}{1 - T(\partial \ln Q/\partial T)_P} = \frac{A}{1 + \lambda_a}$$
(S.10)

where $A = 1 - T(\partial \ln Q / \partial T)_V$ and $\lambda_a = -T(\partial \ln Q / \partial T)_P$. Two further relations for \Re are obtained by a similar method, giving

$$\Re = [1 + \lambda_b / A]^{-1}$$
; $\Re = [1 + \lambda_c / A]^{-1}$ (S.11a,b)

where $\lambda_p = T(\partial \ln Q / \partial P)_T (\partial P / \partial T)_V$ and $\lambda_c = -T(\partial \ln Q / \partial V)_T (\partial V / \partial T)_P$.

For the case Q = Q(V) then A = 1. Roland and coworkers proposed that $Q = Q(V) = C/V^{\gamma}$ may be applied to the α -process in glass-forming materials.^{34,35} For this case $(d \ln Q/d \ln V) = -\gamma$ giving $\lambda_a = \lambda_b = \lambda_c = T \alpha_p \gamma$, so $\Re = [1 + T \alpha_p \gamma]^{-1}$.

B. Further Dielectric Data

Additional dielectric loss data are provided for PEMA (M_w =2.0x10³ g/mol) under "isothermal" conditions at 383.15 K (T>> T_g) (in Figure S1). The spectra show the separation of the $\alpha\beta$ -process to α - and β -processes that are well resolved at elevated pressures. Figure S2, comprises the temperature normalized dielectric strengths ($T\Delta\epsilon$) for the three processes at all temperatures investigated as a function of applied pressure. The complementary in the dielectric strengths of the α - and β -processes can be seen. In Figure S3, the experimentally obtained ratio of activation energies, obtained from the $\tau(\rho)$ representation using Eq. (6), is shown for each of the relaxation processes. This is made by coupling the relaxation times measured under "isobaric" $\tau(T)$ and "isothermal" $\tau(P)$ conditions with the equation of state V(T,P).

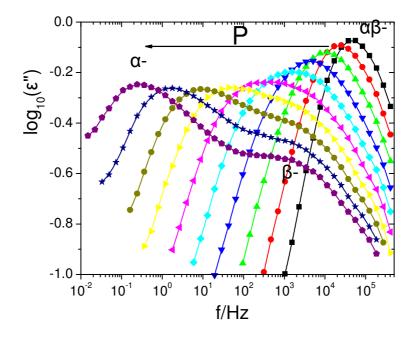


Figure S1. Dielectric loss curves for PEMA (M_w =2.0x10³ g/mol) under "isothermal" conditions at *T*=383.15 K. The curves are at (squares): 0.1, (circles): 30, (up triangles): 60, (down triangles): 90, (rhombus): 120, (left triangles): 150, (right triangles): 180, (polygons): 210, (stars): 240 and (pentagons): 270 MPa.

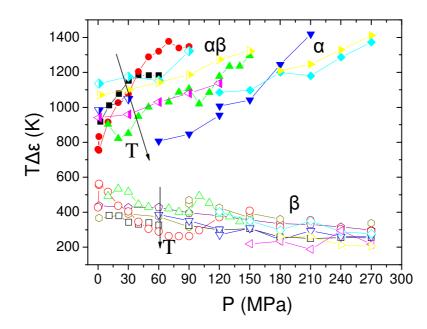


Figure S2. Pressure dependence of the dielectric strength $T\Delta\varepsilon$ of PEMA ($M_w=2.0x10^3$ g/mol), corresponding to the three processes as follows: β - (open symbols), α - (filled symbols) and $\alpha\beta$ -

process (half-filled symbols) at the different temperatures investigated: (pentagons): 323.15, (polygons): 333.15, (squares): 343.15, (circles): 353.15, (up triangles): 363.15, (down triangles): 373.15, (rhombus): 383.15, (left triangles): 393.15 and (right triangles): 403.15 K.

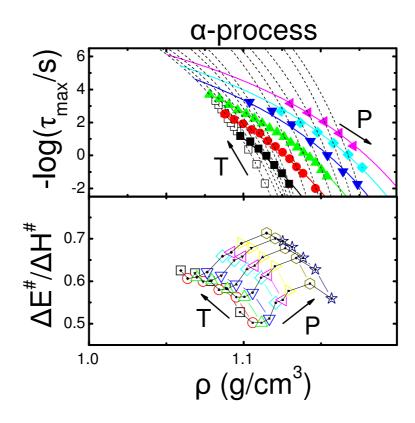


Figure S3a. (**Top**): Dependence of the "isothermal" (solid lines) and "isobaric" (dashed lines) relaxation times of PEMA (M_w =2.0x10³ g/mol) on density. The "isothermal" and "isobaric" lines, are the result of the fits to the modified VFT equation (Eq. 28) to the α -process. The different "isotherms" are: (squares): 343.15, (circles): 353.15, (up triangles): 363.15, (down triangles): 373.15, (rhombus): 383.15 and (left triangles): 393.15 K. In all cases the "isobaric" data at *P*=0.1 MPa are shown with open squares. (**Bottom**): Ratio \Re , of the constant-volume activation energy ($\Delta E^{\#}$) to the enthalpy of activation ($\Delta H^{\#}$) for the α -process plotted against density. The "isobars" are now shown with open symbols: (squares): 0.1, (circles): 10, (up triangles): 20, (down triangles): 30, (rhombus): 40, (left triangles): 50, (right triangles): 60, (polygons): 90 and (stars): 120 MPa.

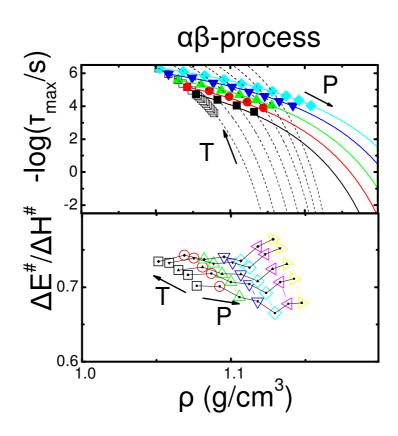


Figure S3b. (**Top**): Dependence of the "isothermal" (solid lines) and "isobaric" (dashed lines) relaxation times of PEMA (M_w =2.0x10³ g/mol) on density corresponding to the ($\alpha\beta$)-process. The "isothermal" and "isobaric" lines, are the result of the fits to the modified VFT equation (Eq. 28). The different "isotherms" are: (squares): 383.15, (circles): 393.15, (up triangles): 403.15, (down triangles): 413.15 and (rhombus): 423.15 K. In all cases the "isobaric" data at *P*=0.1 MPa are shown with open squares. (**Bottom**): Ratio \Re , of the constant-volume activation energy ($\Delta E^{\#}$) to the enthalpy of activation ($\Delta H^{\#}$) for the ($\alpha\beta$)-process plotted against density. The "isobars" are now shown with open symbols that correspond to: (squares): 0.1, (circles): 30, (up triangles): 60, (down triangles): 90, (rhombus): 120, (left triangles): 150 and (right triangles): 180 MPa.

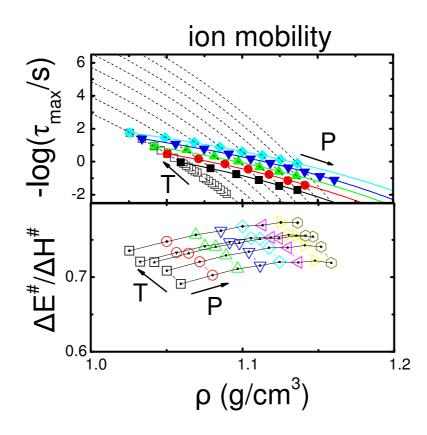


Figure S3c. (Top): Dependence of the "isothermal" (solid lines) and "isobaric" (dashed lines) relaxation times of PEMA (M_w =2.0x10³ g/mol) on density. The "isothermal" and "isobaric" lines, are the result of the fits to the modified VFT equation (Eq. 28) to ion mobility process. The different "isotherms" are: (squares): 383.15, (circles): 393.15, (up triangles): 403.15, (down triangles): 413.15 and (rhombus): 423.15 K. In all cases the "isobaric" data at *P*=0.1 MPa are shown with open squares. (**Bottom**): Ratio \Re , of the constant-volume activation energy ($\Delta E^{\#}$) to the enthalpy of activation ($\Delta H^{\#}$) for the ion mobility process plotted against density. The "isobars" are now shown with open symbols: (squares): 0.1, (circles): 30, (up triangles): 60, (down triangles): 90, (rhombus): 120, (left triangles): 150, (right triangles): 180 and (polygons): 210 MPa.