Supporting Information

Radical-scavenging Activity and Mechanism of Resveratrol-oriented

Analogues: Influence of the Solvent, Radical and Substitution

Ya-Jing Shang, Yi-Ping Qian, Xiao-Da Liu, Fang Dai, Qiang Liu, Xian-Ling Shang, Wen-Qiang Jia, Jian-Guo Fang,* and Bo Zhou*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China E-mail: bozhou@lzu.edu.cn

Table of Contents

Title	Page
1. Preparative methods for <i>trans</i> -stilbenes	S2-S4
2. ¹ H, ¹³ C NMR spectrum of resveratrol analogues	S5-S32
3. ¹ H, ¹³ C and 2D NMR, HRMS (ESI) spectrum of dimers	\$33-\$60
4. HPLC analysis on a chiral OD column	S61

1 General parallel procedure for preparation of *trans*-stilbenes

Witting-Horner reaction: The corresponding methoxybenzylhalide (5.0 mmol) was heated in a flame-dried three necked flask with an excess of triethyl phosphate (9.5 mL, 5.5 mmol). After 4-6 h the mixture was cooled to room temperature and purified by distillation under high vacuum to yield pale oils.

To a solution of diethyl benzylphosphonate (10 mmol) in anhydrous DMF (10 mL) at 0 0 C, sodium hydride (2.80 g, 50 mmol) was added, and the resulting solution was stirred under nitrogen for 2-3 h. A solution of the corresponding methoxy-protected benzaldehyde (10 mmol) in anhydrous DMF was added, and the mixture was stirred under nitrogen overnight at room temperature. The solution was poured into ice-water, the precipitate was filtered off and was further purified by silica gel chromatography (ethyl acetate/petroleum ether) to yield solid. This procedure gave exclusively the *trans*-isomer.

Perkin reaction: Under nitrogen, 4-trifluoromethylbenzaldehyde (2 mmol), 4-hydroxyphenyl-acetic acid (1 equiv.), 1.62 mL of acetic anhydride (1.8 equiv.) and triethylamine (0.7 equiv.) were refluxed at 150 $^{\circ}$ C for 10 h, cooled at room temperature. Excess triethylamine was distilled off under high vacuum; the residue diluted in 10% NaOH during 30min, extracted with ethyl acetate (3×30 mL), washed with brine, dried over Na₂SO₄ and concentrated. The residue was purified by silica gel chromatograph and eluted with ethyl acetate-petroleum ether to give acid.

To a quinoline solution (4 mL) of acid (1 mmol) and copper power (6 mmol) were added, and the resulting solution was stirred under nitrogen for 2-3 h at 230-240 0 C. Excess quinoline was distilled off under high vacuum. The residue was diluted in 0.5 N HCl in ethyl acetate, extracted with ethyl acetate (3×30mL), washed with brine, and dried over Na₂SO₄. The residue was purified by silica gel chromatograph and eluted with ethyl acetate-petroleum ether to give white solid (4-hydroxy-4'-trifluoromethyl-*trans*-stilbene).

Methoxy deprotection: A mixture of methoxy protection *trans*-stilbenes (5 mmol) and pyridine·HCl was heated under nitrogen (180-200 0 C, 3-6 h). Excess pyridine·HCl was distilled off under high vacuum; the residue was mixed with 1 N HCl, extracted

with ether, washed with brine, and dried over Na_2SO_4 . The residue was purified by silica gel chromatograph and eluted with ethyl acetate-petroleum ether to yield white crystals.

Resveratrol: ¹H NMR (300 MHz, (CD₃)₂CO): δ 6.26 (t, J = 1.8 Hz, 1H), 6.54 (d, J = 1.8 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H), 6.89, 6.99 (d, J = 16.5 Hz, each 1H), 7.40 (d, J = 9.0 Hz, 2H); MS-EI (m/z): 228 [M⁺].

3,5-DHS: ¹H NMR (300 MHz, (CD₃)₂CO): δ 6.33 (t, *J* = 2.4 Hz, 1H), 6.61 (d, *J* = 1.5 Hz, 2H), 7.10 (s, 2H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 2H); MS-EI (*m*/*z*): 212 [M⁺].

4-HS: ¹H NMR (300 MHz, (CD₃)₂CO): δ 6.84 (d, J = 8.7 Hz, 2H), 7.08, 7.15 (d, J = 16.5 Hz, each 1H), 7.23 (dd, J = 7.8, 2 Hz, 1H), 7.34 (t, J = 8.1 Hz, 2H), 7.45 (d, J = 8.7 Hz, each 1H), 7.53 (d, J = 7.5 Hz, 2H); MS-EI (*m*/*z*): 196 [M⁺].

3,4-DHS: ¹H NMR (300 MHz, (CD₃)₂CO): δ 6.81 (d, J = 8.1 Hz, 1H), 6.91 (dd, J = 8.4, 1.8 Hz, 1H), 7.00 (s, 1H), 7.07, 7.12 (d, J = 16.2 Hz, each 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.51 (d, J = 7.8 Hz, 2H); MS-EI (*m*/*z*): 212 [M⁺].

4,4'-DHS: ¹H NMR (300 MHz, (CD₃)₂CO): § 6.82 (d, J = 8.7 Hz, 4H), 6.96 (s, 2H), 7.39 (d, J = 8.7 Hz, 4H), 8.50 (s, OH); MS-EI (*m*/*z*): 212 [M⁺].

3-MeO-4-HS: ¹H NMR (400 MHz, CDCl₃): § 8.55 (d, J = 6.4 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 6.8 Hz, 2H), 6.88, 7.26 (d, J = 16.4 Hz, each 1H), 6.92 (d, J = 8.4 Hz, 2H), 3.85 (s, OCH₃); MS-EI (m/z): 226 [M⁺].

4'-MeO-4-HS: ¹H NMR (400 MHz, (CD₃)₂CO) : δ 8.40 (s, OH), 7.46 (dd, *J* = 8.8, 2.0 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H), 7.55 (d, *J* = 8.8Hz, 2H), 7.00 (s, 2H), 6.90 (*J* = 8.8 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 3.80 (s, OCH₃); MS-EI (*m/z*): 226 [M⁺].

4'-Me-4-HS: ¹H NMR (400 MHz, (CD₃)₂CO): δ 8.44 (s, OH), 7.43 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.00, 7.10 (d, *J* = 16.7 Hz, each 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 2.31 (s, CH₃); MS-EI (m/z): 210 [M⁺].

4'-NO₂-4-HS: ¹H NMR (400 MHz, (CD₃)₂CO): δ 8.67 (s, OH), 8.21 (dd, J = 7.2, 1.6 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 7.20, 7.46 (d, J = 16.7 Hz, each 1H), 6.89 (dd, J = 6.8, 2.0 Hz, 2H); MS-EI (*m*/*z*): 241 [M⁺].

4'-CF₃-4-HS: ¹H NMR (400 MHz, CDCl₃): δ 7.58 - 7.57 (m, 4H), 7.43 (d, *J* = 8.4 Hz, 2H), 6.97, 7.13 (d, *J* = 16.4 Hz, each 1H), 6.85 (d, *J* = 8.4 Hz, 2H), 4.92 (s, OH); MS-EI (*m*/*z*): 264 [M⁺].

2 ¹H, ¹³C NMR spectrum of resveratrol analogues

Resveratrol

S10

4'-Me-4-HS

4'-NO₂-4-HS

Supporting Information

3 ¹H, ¹³C, 2D NMR, HRMS (ESI) spectrum of dimer

NMR data for resveratrol dimer

Н	δ _H (mult., <i>J</i> Hz)	С	δ _C
		C-1	131.7
H-2, 6	7.24 (d, 8.0)	C-2, 6	128.5
H-3, 5	6.84 (d, 8.0)	C-3, 5	116.1
		C-4	158.4
H-7	5.48 (d, 8.0)	C-7	94.2
H-8	4.62 (d, 8.0)	C-8	57.7
		C-9	145.1
H-10, 14	6.19 (d, 2.0)	C-10, 14	107.4
		C-11, 13	159.7
H-12	6.25 (d, 2.0)	C-12	102.4
		C-1'	132.5
H-2'	7.25 (d, 8.0)	C-2'	123.9
H-3'	6.88 (d, 8.0)	C-3'	110.1
		C-4'	160.5
		C-5'	132.1
H-6'	7.45 (d, 2.0)	C-6'	128.5
H-7'	7.08 (d, 16.0)	C-7'	127.2
H-8'	6.92 (d, 16.0)	C-8'	129.1
		C-9'	140.7
H-10', 14'	6.53 (d, 2.0)	C-10', 14'	105.7
		C-11',13'	159.5
H-12'	6.25 (d, 2.0)	C-12'	102.7

¹H-NMR spectrum of resveratrol dimer

¹³C-NMR spectrum of resveratrol dimer

¹H, ¹H COSY spectrum of resveratrol dimer

¹H, ¹³C HMBC spectrum of resveratrol dimer

¹H, ¹³C HMQC spectrum of resveratrol dimer

HRMS (ESI) spectrum of resveratrol dimer

NMR data for 3,4-DHS dimer

Н	δ _H (mult., <i>J</i> Hz)	С	δ _C
		C-1	128.1
H-2	6.77 (d, 2.0)	C-2	115.4
		C-3	145.6
		C-4	146.2
H-5	6.68 (d, 8.0)	C-5	117.9
H-6	6.51 (d, 8.0)	C-6	120.6
H-7	4.92 (d, 8.0)	C-7	81.1
H-8	5.05 (d, 8.0)	C-8	81.3
		C-9	137.7
H-10, 14	7.26 (m)	C-10, 14	128.8
H-11, 13	7.23 (m)	C-11, 13	128.9
H-12	7.25 (m)	C-12	129.2
		C-1'	132.1
H-2'	7.27 (d, 2.4)	C-2'	115.6
		C-3'	145.2
		C-4'	144.8
H-5'	6.97 (d, 8.0)	C-5'	115.5
H-6'	7.17 (d, 8.0)	C-6'	120.9
H-7'	7.19 (d, 16.0)	C-7'	127.9
H-8'	7.13 (d, 16.0)	C-8'	128.1
		C-9'	138.6
H-10', 14'	7.57 (d, 7.8)	C-10', 14'	127.1
H-11', 13'	7.35 (d, 7.8)	C-11', 13'	129.5
H-12'	7.24 (d, 7.8)	C-12'	129.4

¹H-NMR spectrum of 3,4-DHS dimer

¹³C-NMR spectrum of 3,4-DHS dimer

¹H, ¹H COSY spectrum of 3,4-DHS dimer

¹H, ¹³C HMBC spectrum of 3,4-DHS dimer

¹H, ¹³C HMQC spectrum of 3,4-DHS dimer

HRMS (ESI) spectrum of 3,4-DHS dimer

NMR data for 4-HS dimer

Н	$\delta_{\rm H}$ (mult., J Hz)	С	δ _C
		C-1	132.4
H-2, 6	7.19 (d, 8.0)	C-2, 6	128.4
H-3, 5	6.83 (d, 8.0)	C-3, 5	116.1
		C-4	158.5
H-7	5.49 (d, 8.5)	C-7	94.2
H-8	4.63 (d, 8.5)	C-8	57.9
		C-9	142.5
H-10, 14	7.19 (d, 8.3)	C-10, 14	129.0
H-11	7.34 (t, d, 8.0, 1.5)	C-11, 13	129.6
H-12	7.21 (t, d, 8.0, 1.5)	C-12	129.2
H-13	7.21 (t, 8.0)		
		C-1'	131.7
H-2'	7.46 (d, 8.4)	C-2'	128.5
H-3'	6.88 (d, 8.4)	C-3'	110.2
		C-4'	160.4
		C-5'	131.6
H-6'	7.16 (d, 2.0)	C-6'	123.6
H-7'	7.13 (d, 16.4)	C-7'	127.6
H-8'	6.98 (d, 16.4)	C-8'	126.8
		C-9'	138.5
H-10', 14'	7.49 (t, d, 8.0, 2.0)	C-10', 14'	126.9
H-11', 13'	7.29 (t, d, 8.0, 2.0)	C-11', 13'	129.3
H-12'	7.14 (t, d, 8.0, 2.0)	C-12'	128.0

¹H-NMR spectrum of 4-HS dimer

¹³C-NMR spectrum of 4-HS dimer

¹H, ¹H COSY spectrum of 4-HS dimer

¹H, ¹³C HMBC spectrum of 4-HS dimer

¹H, ¹³C HMQC spectrum of 4-HS dimer

HRMS (ESI) spectrum of 4-HS dimer

NMR data for 4,4'-DHS dimer

Supporting Information

Н	$\delta_{\rm H}$ (mult., J Hz)	С	δ _C
		C-1	130.5
H-2, 6	7.24 (d, 8.4)	C-2, 6	128.4
H-3, 5	6.85 (d, 8.4)	C-3, 5	116.6
		C-4	157.9
H-7	5.43 (d, 8.8)	C-7	94.5
H-8	4.53 (d, 8.8)	C-8	57.5
		C-9	132.9
H-10, 14	7.05 (d, 8.8)	C-10, 14	130.3
H-11, 13	6.83 (d, 8.8)	C-11, 13	116.4
		C-12	157.6
		C-1'	132.4
H-2'	7.37 (d, 8.4)	C-2'	126.9
H-3'	6.87 (d, 8.4)	C-3'	110.2
		C-4'	158.5
		C-5'	133.4
H-6'	7.16 (bs)	C-6'	123.4
H-7'	6.97 (d, 18.4)	C-7'	126.6
H-8'	6.96 (d, 18.4)	C-8'	126.6
		C-9'	128.7
H-10', 14'	7.39 (d, 8.4)	C-10', 14'	128.1
H-11', 13'	6.80 (d, 8.4)	C-11', 13'	116.2
		C-12'	160.3

¹H-NMR spectrum of 4,4'-DHS dimer

¹³C-NMR spectrum of 4,4'-DHS dimer

¹H, ¹H COSY spectrum of 4,4'-DHS dimer

¹H, ¹³C HMBC spectrum of 4,4'-DHS dimer

¹H, ¹³C HMQC spectrum of 4,4'-DHS dimer

HRMS (ESI) spectrum of 4,4'-DHS dimer

Supporting Information

4 HPLC analysis on a chiral OD column

Compound 4,4'-DHS dimer HPLC analysis on a chiral OD column (retention time for the two enantiomers, 17.379 and 21.119 min; eluent *n*-hexane:isopropanol, V:V= 80:20).

