Palladium-catalyzed Enantioselective α-arylation and α-vinylation of Oxindoles Facilitated by an Axially Chiral P-Stereogenic Ligand

Alexander M. Taylor, Ryan A. Altman, and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Supporting Information

Further reports of the enantioselective α-arylation and α-vinylation of ketone enolates:
(a) Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1261.
(b) Chieffi, A.; Kamikawa, K.; Åhman, J.; Fox, J. M.; Buchwald, S. L. Org. Lett. 2001, 3, 1897.
(c) Åhman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 1918.

Further reports of the enantioselective formation of 3,3-disubstituted oxindoles with quaternary carbon centers:
(a) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590.
(b) Trost, B. M.; Brennan, M. K. Org. Lett. 2006, 8, 2027.
(c) Arao, T.; Kondo, K.; Aoyama, T. Chem. Pharm. Bull. 2006, 54, 1743.
(d) Arao, T.; Sato, K.; Kondo, K.; Aoyama, T. Chem. Pharm Bull. 2006, 54, 1576.
(e) Arao, T.; Kondo, K.; Aoyama, T. Tet. Lett. 2006, 47, 1417.
(e) Trost, B. M.; Frederiksen, M. U. Angew. Chem., Int. Ed. 2005, 44, 308.
(f) Hills, I. D.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 41, 3921.
(g) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704.
(h) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402.

Further reports of the enantioselective formation of 3,3-disubstituted oxindoles bearing heteroatoms:
(a) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488.
(b) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164.
(c) Shibata, N.; Ishimaru, T.; Suzuki, E.; Kirk, K. L. J. Org. Chem. 2003, 68, 2494.

General Reagent Information

3-methyloxindole was purchased from Aldrich and used as delivered. 1,3-dimethyloxindole, 3-benzyl-1methyloxindole, and 5-methoxy-1,3-dimethyloxindole were prepared as previously described. ${ }^{1,2,3}$ 1-(4-methoxyphenyl)-3-methyloxindole was prepared as described below. TMEDA• PdMe_{2} was prepared as previously described ${ }^{4}$ and stored at $4{ }^{\circ} \mathrm{C}$. $\mathrm{NaO}^{t} \mathrm{Bu}$ was purchased from Aldrich Chemical Co. and stored in a N_{2} glovebox. Small portions ($\sim 1 \mathrm{~g}$) were removed from the glove box in glass vials, weighed in the air, and stored in a desiccator filled with anhydrous calcium sulfate. Ligand 1 was synthesized as previously described. ${ }^{5}$ All reagents were weighed in air with no use of a glove box. All other reagents, including aryl and vinyl bromides, were purchased from Aldrich Chemical Co., Alfa Aesar, or TCI America and used as received, with the exception of β bromostyrene, which was passed through silica gel before use, and 2,5-dimethylaniline, which was distilled before use. Cyclohexane was purchased from Aldrich Chemical Co. in a Sure-Seal bottle and degassed by sparging with Argon prior to use.

General Analytical Information

All new compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR spectroscopy, melting point (where applicable), optical rotation (where applicable), HPLC, GC, and elemental analysis. Gas chromatographic analyses were performed on a Hewlett-Packard 6890 gas chromatograph with an FID detector and a $25 \mathrm{~m} \times 0.20 \mathrm{~mm}$ capillary

[^0]column with cross-linked methyl siloxane as the stationary phase. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are included for all compounds and were recorded on a Bruker 400 MHz or a Varian 500 MHz instrument. All ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) downfield of TMS and were referenced to the signal for CHCl_{3} (7.26 ppm). All ${ }^{13} \mathrm{C}$ NMR spectra were reported in ppm relative to residual $\mathrm{CHCl}_{3}(77.0 \mathrm{ppm})$ and were obtained with ${ }^{1} \mathrm{H}$ decoupling. Infrared spectra were recorded on a Perkin-Elmer Model 2000 FT-IR using KBr plates (thin film). Optical rotations were measured on a Jasco P-1010 polarimeter using a Na lamp (589 nm) at $21-22{ }^{\circ} \mathrm{C}$. (The concentration of the samples is given in g $100 \mathrm{~mL}^{-1}$.) HPLC analyses were carried out on an Agilent 1100 Series system with Daicel Chiralcel ${ }^{\circledR}$, Chiralpak ${ }^{\circledR}$, or Regis Technologies, Inc. WHELK columns ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) in hexanes $/ i \operatorname{PrOH}$ mixtures. The HPLC spectra of all compounds were compared to those of corresponding authentic racemic compounds. Representative HPLC traces are included for several compounds from these studies. Elemental analyses were performed by Atlantic Microlab Inc., Norcross, GA. Melting points were obtained on a Mel-Temp capillary melting point apparatus. The yields reported in table 1 and figure 2 refer to isolated yields and represent an average of two independent runs. Reported compounds are estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR and GC analysis and/or combustion analysis.

Synthesis of starting material

1-(4-methoxyphenyl)-3-methyloxindole (Table 2) A Schlenk tube was charged with 3-methyloxindole ($2.94 \mathrm{~g}, 20$ mmol, 1 equiv), 4 -iodoanisole ($5.62 \mathrm{~g}, 24 \mathrm{mmol}, 1.2$ equiv), CuI ($191 \mathrm{mg}, 1 \mathrm{mmol}, 0.05$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($5.53 \mathrm{~g}, 40$ $\mathrm{mmol}, 2$ equiv), and a stirbar before being sealed with a rubber septum. The vessel was evacuated and purged with argon (this sequence was repeated two additional times) before the addition of N, N-dimethylcyclohexane-1,2diamine ($315 \mu \mathrm{~L}, 2 \mathrm{mmol}, 0.1$ equiv) and 1,4-dioxane (20 mL , [oxindole] $=1 \mathrm{M}$). The rubber septum was replaced with a glass stopper under positive argon pressure, and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 20 h . Following cooling, the mixture was diluted with EtOAc, filtered through a pad of silica gel, and concentrated in vacuo. The residue was purified by column chromatography with a Biotage. The title compound was isolated as a white solid $(3.21 \mathrm{~g}, 63 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{q}, J=7.6,15.16 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 178.1,158.9,144.2,130.3,127.8,127.6,127.0,127.6,127.6,123.6$, $122.6,114.8,109.0,55.4,40.6,15.6 \mathrm{ppm}$. IR (neat, cm^{-1}): 3053.2, 2971.0, 2933.9, 2837.9, 1718.8, 1611.5, 1586.3, 1514.1, 1484.6, 1464.7, 1375.8, 1329.3, 1298.8, 1249.9, 1209.1, 1173.9, 1102.1, 1061.8, 1032.0. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}: \mathrm{C}, 75.87$; H, 5.97. Found: C, 75.98 ; H, 5.95. M. P.: $80^{\circ} \mathrm{C}$.

Experimental procedures for examples described in Figure 1, Table 1, and Figure 2

General procedure: All reactions were conducted in disposable resealable glass vials fitted with Teflon-lined screw caps. One of these tubes, equipped with a magnetic stir bar, was charged with the oxindole ($0.75 \mathrm{mmol}, 1.5$ equiv), TMEDA $\cdot \mathrm{PdMe}_{2}(5.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 4 \mathrm{~mol} \%)$, ligand $1(9.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 4 \mathrm{~mol} \%), \mathrm{NaO}^{t} \mathrm{Bu}(96 \mathrm{mg}, 1.0 \mathrm{mmol}$, 2 equiv) and, when applicable, solid aryl bromide ($0.5 \mathrm{mmol}, 1.0$ equiv) before being sealed with the teflon-lined screw cap. The vessel was evacuated and backfilled with argon (this sequence was repeated two additional times) before the aryl bromide or vinyl bromide was added via syringe through the septum (when applicable). Cyclohexane $(1 \mathrm{~mL}$, [aryl halide] $=0.5 \mathrm{M})$ was added immediately via syringe through the septum, and the reaction was stirred in an oil bath at the temperature described for 24 h . The reaction vessel was then cooled to room temperature, and dodecane $(100 \mu \mathrm{~L})$ was added as an internal standard. The crude reaction was diluted with EtOAc ($\sim 1 \mathrm{~mL}$), filtered through a Si-gel plug, eluted with EtOAc ($\sim 3 \mathrm{~mL}$), and analyzed by GC. ${ }^{6}$ Following concentration in vacuo, the

[^1] Following workup, a small amount ($\sim 5 \%$) of the neutral starting material oxindole was observed in the filtrate (GC,
mixture was purified with a Biotage SP4 (silica-packed SNAP-10g, SNAP-25g, or 25+M columns; EtOAc/hexanes) to provide the product described.

3-(3-methoxyphenyl)-1,3-dimethylindolin-2-one (Figure 1) The reaction was conducted according to the general procedure to afford the title compound as a clear oil $(103 \mathrm{mg}, 77 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.34(\mathrm{dt}, J=$ $1.3,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dt}, J=1,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 3 \mathrm{H}), 6.8$ (ddd, $J=0.8,2.5,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 179.1,159.5,143.0,142.3,134.6$, $129.4,128.0,124.0,122.7,118.9,113.1,111.9,108.2,55.0,52.0,26.3,23.6 \mathrm{ppm}$. IR (neat, cm^{-1}): 2968.0, 2934.7, $2834.8,1715.5,1611.6,1582.3,1492.5,1470.6,1432.5,1373.6,1344.8,1292.3,1256.6,1160.0,1102.6,1043.1$, 1024.1. Enantiomeric excess: 97%, Chiralcel OD-H column, $10 \%{ }^{i} \operatorname{PrOH}, 90 \%$ hexanes; $\mathrm{t}_{\text {minor }}=9.738 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $8.356 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-110.5^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right)$.

3-(4-methoxyphenyl)-1,3-dimethylindolin-2-one (2, Table 1, entry 1$)^{7}$ The reaction was conducted according to the general procedure to yield the title compound as an oil that turned into an off-white solid on sitting (114 mg , 85%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35(\mathrm{td}, J=1.4,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dt}, J=3.4,3.4,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ $(\mathrm{dq}, J=0.5,1.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=1,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=3.2,3.2,9.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 179.5,158.6,143.1$, 134.8, $132.7 .127 .9,127.6,124.0,122.6,113.7,108.2,55.1,51.3,26.3,23.8 \mathrm{ppm}$. IR (neat, cm^{-1}): 2932.9, 1714.5, 1610.8, 1511.4, 1492.9, 1470.0, 1384.1, 1373.4, 1344.0, 1303.8, 1251.0, 1181.8, 1147.0, 1096.7, 1030.5. Enantiomeric excess: 95%, Chiralpak AD-H column, $10 \%{ }^{i} \operatorname{PrOH}, 90 \%$ hexanes; $\mathrm{t}_{\text {minor }}=11.324 \mathrm{~min}, \mathrm{t}_{\text {major }}=8.960 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{21}-$ 122.6° (c $0.34, \mathrm{CHCl}_{3}$). M. P.: $144{ }^{\circ} \mathrm{C}$.

NMR). In most cases, this oxindole was readily separated from the desired product by chromatography. When the two were not separable, however, the remaining starting material oxindole was oxidized in situ during the workup by opening the reaction vessel and stirring the crude mixture in air for 30 minutes before filtration through silica gel. The oxidized starting material was then no longer observed in the crude filtrate, which was otherwise treated as described above.
${ }^{7}$ Arao, T.; Sato, K.; Kondo, K.; Aoyama, T. Chem. Pharm Bull. 2006, 54, 1576.

```
Data File C:\CHEN32\2\DATA\AMT\AMT4-41-1.D
Sample Name: AMT4-ム1-1
=====m==m===m=m=m=m=m
Injection Date : 4/7/2009 2:37:48 PM
Inj Volume : 1 12l
Acg. Method : C:\CHEN32\1\METHODS\AMTSTANDARD.V
Last changed : 4/7/2009 2:33:46 PV by AMT
(modified after loading)
Analysis Method : C:\CHEM32\2\DATA\ANT\ANT4-41-1.D\DA.M (AMTSTANDARD.N)
Last changed : 6/17/2009 7:20:00 PM by ELLIOT
Sample Infc (modified azter laading)
```



```
Data File C:\CHEN32\2\DATA\AMT\AMT4-41-1.D
Sample Name: AMT4-61-1
Signal 4: DAD1 D, Sig=230,16 Ref=360,100
```



```
    Signal 5: DAD1 E, Sig=280,16 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU}=\mathrm{s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
(mAU)
\end{tabular} & Area \& \\
\hline 1 & 5.789 & 3 B & 0.2337 & 6908.16895 & 762.62616 & 49.9366 \\
\hline 2 & 6.941 & ヨB & 0.2586 & 6925.70947 & 648.27563 & 50.0634 \\
\hline
\end{tabular}
    Totals : 1.38339e4 1410.90179
```

 ** End of Report **
    ```
Data File C:\CHEM32\1\DATA\ANT\AMT4-64C.D
Sample Name: NMT4-64C
```



```
    Acq. Cperator : AHT
    Acq. Instrument : Instrument 1 Location: Vial 1
    Injection Date : 4/28/2009 11:22:04 AM
                            Inj Volume : 1 ul
    Acq. Kethcd : C:\CHEM32\1\METHODS\AMH.M
    Last changed : 4/28/2009 10:49:19 AM by QINGLE
    Analysis Method : C:\CHEM32\1\DATA\AMM\AMVT4-64C.D\DA.M (AMH.M)
    Last changed : 4/28/2009 11:35:56 AM by AK/T
    Sample Info : AD-H, 10s IPA 1 VL/MIN
```



```
\begin{tabular}{lclll} 
Sorted By & \(:\) & Signal & & \\
Vultiplier & \(\vdots\) & 1.0000 & & \\
Dilution & \(\vdots\) & 1.0000 & & \\
Sample Anount & \(\vdots\) & 1.00000 & [ng/ul] & (not used in calc.) \\
Use Multiplier \& Dilution Factor with & ISFDs &
\end{tabular}
```

```
Data File C:\CHEM32\1\DATA\AMS\AMT4-64C.D
Sample Name: AMF4-64C
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak & \[
\begin{aligned}
& \text { RetTime } \\
& {[\mathrm{min}]}
\end{aligned}
\] & Type & \[
\begin{aligned}
& \text { Kidth } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} \cdot \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& {[\mathrm{mAU}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\frac{z}{z}
\end{gathered}
\] \\
\hline 1 & 6.012 & BE & 0.1634 & 1.8778184 & 1774.71399 & 96.8791 \\
\hline 2 & 7.262 & BE & 0.1762 & 604.91840 & 52.60750 & 3.1209 \\
\hline
\end{tabular}
    Signal 2: DAD1 C, Sig=210,8 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Feax } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
{[m i n]}
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& {[\mathrm{min}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} \cdot \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& {[\mathrm{mAU}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\frac{\%}{8}
\end{gathered}
\] \\
\hline 1 & 6.011 & VE & 0.2549 & 4.4500204 & 2807.26465 & 94.4727 \\
\hline 2 & 7.262 & B3 & 0.1805 & 2603.56885 & 222.52574 & 5.5273 \\
\hline
\end{tabular}
    Signal 3: DAD{ D, Sig=230,16 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
\#
\end{tabular} & \[
\begin{aligned}
& \text { RetTine } \\
& {[\mathrm{min}]}
\end{aligned}
\] & حype & Width
\[
[m i n]
\] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{ma} \mathrm{U}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
8
\end{gathered}
\] \\
\hline 1 & 6.012 & BB & 0.1635 & 1.91229e4 & 1806.28406 & 96.7333 \\
\hline 2 & 7.262 & BB & 0.1782 & 645.77582 & 55.31314 & 3.2667 \\
\hline
\end{tabular}
```


** End of Report ...

3-(4-trifluoromethylphenyl)-1,3-dimethylindolin-2-one (Table 1, entry 2) ${ }^{2}$ The reaction was conducted according to the general procedure to yield the title compound as a white solid ($100 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.57(\mathrm{dt}, J=0.6,0.6,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=0.6,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dt}, J=1.4,7.8,7.8,2 \mathrm{H}), 7.21$ (ddd, $J=0.5$, $1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=1,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 178.6,144.7,143.1,133.8,129.5,129.2,128.5,127.1,125.4$ (q, $J=14.6,29.4 \mathrm{~Hz}$), 124.1, $122.9,122.6,108.5,52.0,26.5,23.7 \mathrm{ppm} .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 62.9 \mathrm{ppm} . \operatorname{IR}\left(\mathrm{neat}, \mathrm{cm}^{-1}\right): 2974.1$, 2935.9, 1718.1, 1612.3, 1493.7, 1472.2, 1410.4, 1375.7, 1347.0, 1328.2, 1166.8, 1123.0, 1096.34, 1075.9, 1016.8. Enantiomeric excess: 95%, Chiralpak AD-H column, $10 \%{ }^{i} \mathrm{PrOH}, 90 \%$ hexanes; $\mathrm{t}_{\text {minor }}=6.856 \mathrm{~min}$, $\mathrm{t}_{\text {major }}=5.749 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{22}-1.35^{\circ}\left(\mathrm{c} 0.316, \mathrm{CHCl}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 66.88 ; \mathrm{H}, 4.62$. Found: C, 66.93; H, 4.65. M. P.: 84 ${ }^{\circ} \mathrm{C}$.
Data File C:\CHEM32\2\DATA\ANT\AMT4-41-2.D
Data File C:\CHEM32\2\DATA\ANT\AMT4-41-2.D
Sample Name: AlAT4-41-2


```
Data FIle C:\CHEM32\2\DATA\AMT\AMT4-41-2.D
Sample Name: RMT4-41-2
    DAD1 E, Sig=280,16 Ref=360,100 (AMTAMT4-41-2.D)
```



```
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU}+\mathrm{s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[ mAU ]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 9.988 & VB & 0.2276 & 2.88810e4 & 1896.94104 & 49.8181 \\
\hline 2 & 12.868 & BB & 0.3017 & 2.90919 e 4 & 1452.16882 & 50.1819 \\
\hline Tota & \(s\) : & & & 5.79728 e 4 & 3349.10986 & \\
\hline
\end{tabular}
Signal 2: CAD1 B, Sig=254,16 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\vdots
\end{gathered}
\] & \[
\begin{aligned}
& \text { RetTime } \\
& {[\text { nin] }}
\end{aligned}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& {[\mathrm{min}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} \cdot \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { (mAU) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
\text { \& }
\end{gathered}
\] \\
\hline 1 & 9.988 & VB & 0.2275 & 2.83379 e 4 & 1863.01538 & 49.8305 \\
\hline 2 & 12.863 & BB & 0.3017 & 2.85306e4 & 1424.43042 & 50.1695 \\
\hline
\end{tabular}
Signal 3: DAD1 C, Sig=210,8 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{aligned}
& \text { RetTire } \\
& \text { (min] }
\end{aligned}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& {[m i n]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{*} s\right]}
\end{gathered}
\] & Height [mAU] & Area है \\
\hline 1 & 9.986 & & 0.3317 & 5.98217 e 4 & 2477.47412 & 45.9483 \\
\hline 2 & 12.870 & BB & 0.4558 & 7.03719 e 4 & 2445.18311 & 54.0517 \\
\hline
\end{tabular}
```

Data E{1e C:\CHEM32\2\DAZA\AMT\AME4-41-2.D
Sample Name: AVT4-41-2
Signal 4: DAD1 D, Sig=230,16 Ref=360,100

| Peak \# | $\begin{gathered} \text { Retiime } \\ {[m i n]} \end{gathered}$ | Type | Kidth
 [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \cdot \mathrm{~s}]} \end{gathered}$ | Height [mAU] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.988 | VB | 0.2426 | 4.13541e4 | 2586.09985 | 49.2967 |
| 2 | 12.868 | BB | 0.3072 | 4.25342 e 4 | 2092.38477 | 50.7033 |
| Total | s : | | | 8.38883 e 4 | 4678.48462 | |

Signal 5: DAD1 E, Sig=2B0,16 Ref=360,100
Peak RetTime Type Width Area Height Area

```

```

 1 9.983 VB 0.2253 1.01391e4 674.62262 49.9725
 2 12.868 BE 0.3009 1.01503e4 508.46445 50.0275
 Totals : 2.02894e4 1183.08707

```

```

** End of Report . . .

```
```

Data File C:\CHEM32\1\DATA\AMT\ANT4-64A-2.D
Sarple Name: AMT4-64A-2

```

```

 Sample Info : OD-H 20% IPA 1ML/MIN
    ```

```

Data File C:\CHEM32\1\DATA\ANT\AMT4-64A-2.D
Sample Name: AMT4-64A-2
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { Re:Time } \\ {[\mathrm{min}]} \end{gathered}$	туре	$\begin{aligned} & \text { Width } \\ & {[m i n]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{AU}+\mathrm{S}]} \end{gathered}$	Height [mAU]	Area के
1	9.431	BE	0.3126	7102.49219	353.20538	98.4334
2	11.182	BB	0.3935	$113.03 \mathrm{B05}$	4.43260	1.5666
Tota	s :			7215.53024	357.63798	

 Signal 2: DAD1 C, Sig=210, B Ref=360,100
 | Peak \# | $\begin{gathered} \text { RetTime } \\ {[m i n]} \end{gathered}$ | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \cdot \mathrm{~S}]} \end{gathered}$ | Height
 (mAU) | Area 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.431 | B3 | 0.3226 | 3.47120 e 4 | 1683.12036 | 98.3534 |
| 2 | 11.186 | | 0.4016 | 581.15155 | 22.63275 | 1.6466 |

 Signal 3: DAD1 D, Sig=230,16 Ref=360,100
 | Peak $\#$ | $\begin{gathered} \text { RetTim:e } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { Fidth } \\ {\left[m^{2} \mathrm{n}\right]} \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mU*} \mathrm{~S}]} \end{gathered}$ | Height
 [mAU] | Area q. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.431 | BB | 0.3109 | 8578.76465 | 429.71759 | 98.4012 |
| 2 | 11.185 | BE | 0.3977 | 139.38789 | 5.46328 | 1.5988 |

```

*. End of Report ...


1,3-dimethyl-3-(naphthalen-2-yl)indolin-2-one (Table 1 , entry 3) The reaction was conducted according to the general procedure to afford the title compound as a clear oil ( \(117 \mathrm{mg}, 81 \%\) ). \({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.87(\mathrm{~m}\), \(4 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=2.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=1.2,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19\) \((\mathrm{td}, J=0.8,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) \(\delta: 179.3,143.1,138.0,134.7,133.1,132.3,128.1,127.9,127.3,126.0,125.9,125.2,124.8,124.1,122.7,108.3\), \(52.2,26.4,23.5 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 3055.0, 2969.7, 2932.3, 1714.1, 1506.5, 1493.2, 1470.6, 1419.0, 1373.5, \(1343.1,1302.6,1259.5,1157.9,1144.3,1128.4,1114.2,1100.5,1053.2,1024.1,1053.2,1024.1\). Enantiomeric excess: \(96 \%\), Chiralpak AD-H column, \(10 \%{ }^{i} \operatorname{PrOH}, 90 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=16.561 \mathrm{~min}, \mathrm{t}_{\text {major }}=11.831 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-\) \(90.3^{\circ}\) (c \(0.558, \mathrm{CHCl}_{3}\) ).

Data File C: \CHEM32\2\DATA\ANT \(\backslash A M T 4-41-3 . D\)
Sample Name: AMT4-41-3


\begin{tabular}{lccl} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000 \\
Sample Amount & : & 1.00000 [ng/ul] (not used in calc.) \\
Use Multiplier \& Dilution Factor with ISTDs &
\end{tabular}
Signal 1: DAD1 A, Sig \(=254,4\) Ref \(=360,100\)

Signal 2: DAD1 B, Sig=254, 16 Ref \(=360,100\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\vdots
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[m A U * S]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
(mAU)
\end{tabular} & Area 8 \\
\hline \(\pm\) & 23.347 & BB & 0.2946 & 856.91003 & 44.12596 & 50.2575 \\
\hline 2 & \$8.890 & EB & 0.4070 & B4B. 12775 & 31.81866 & 49.7425 \\
\hline Total & 3 : & & & 1705.03778 & 75.94463 & \\
\hline \multicolumn{7}{|l|}{Signal 3: DAD1 C, Sig \(=210,8\) Ref \(=360,100\)} \\
\hline Peak \# & RetTime (min) & Type & \[
\begin{aligned}
& \text { Width } \\
& {[m i n]}
\end{aligned}
\] & \[
\begin{gathered}
A z e a \\
{[\pi \hat{A} U * 5]}
\end{gathered}
\] & Height [mAU] & Area も \\
\hline 1 & 13.347 & BB & 0.2957 & 2887.28345 & 147.94829 & 50.0503 \\
\hline 2 & 18.889 & & 0.4104 & 2881.48096 & 106.91277 & 49.9497 \\
\hline \multicolumn{3}{|l|}{Zotals :} & & 5768.76440 & 254.86106 & \\
\hline
\end{tabular}
```

Cata File C:\CHEM32\2\DATA\AVT\AMT4-41-3.D
Sample Name: A/TG4-41-3
Signal \&: DAD1 D, Sig=230,16 Ref=360,100

$\underset{\#}{\text { Peak }}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width (min)	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \cdot \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { (mau) } \end{aligned}$	$\begin{gathered} \text { Area } \\ \& \end{gathered}$
1	23.347	3B	0.2963	3968.54932	202.79507	50.0531
2	18.890	BB	0.4108	3960.12939	246.76143	49.9469
Totals :				7928.67871	349.55650	

Signal 5: DAD1 巳, Sig=280,16 Ref=360,100
Feak RetZime Type Width Area Height Area

```

```

 1 13.347 B3 0.2928 440.29120
 2 18.890 Bב 0.4029 435.87531 16.46381 49.7480
 Totals : 876.16650 39.30963
    ```

. . End of Report . .

```

Data File C:\CHEM32\1\DATA\AMT\AMT4-64D.D
Sample Name: AMT4-64D
Signal 1: DAD: A, Stg=254,4 Ref=360,100

| $\begin{gathered} \text { Peak: } \\ \# \end{gathered}$ | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Fype | $\begin{aligned} & \text { Width } \\ & (\mathrm{min}) \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mA} \mathrm{U} \cdot \mathrm{~s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$ | $\begin{gathered} \text { Area } \\ \text { z } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.885 | BB | 0.3335 | 2.039364 | 931.11536 | 98.1642 |
| 2 | 20.129 | BB | 0.4360 | 381.39459 | 13.32124 | 1.8358 |

 Signa1 2: DAD1 C, Sig=210, B Ref=360,100
 | $\begin{gathered} \text { Feak } \\ \# \end{gathered}$ | $\begin{gathered} \text { Ret Time } \\ {[m \leq n]} \end{gathered}$ | Type | $\begin{aligned} & \text { Wicth } \\ & {[\text { min }} \end{aligned}$ | $\begin{gathered} \text { Area } \\ (\mathrm{mAU} \cdot \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.885 | BE | 0.3803 | 6.36561 e 4 | 2611.97803 | 97.9878 |
| 2 | 20.129 | B日 | 0.4366 | 1307.15881 | 45.30059 | 2.0122 |

 Signal 3: DAD1 D, Sig=230,16 Ref=360,100
 | $\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$ | $\begin{aligned} & \text { RetTime } \\ & (\mathrm{min}) \end{aligned}$ | Type | Width $[\mathrm{m}!\mathrm{n}]$ | $\begin{gathered} \text { Area } \\ {[\pi A \cup B]} \end{gathered}$ | Height
 [mAU] | $\begin{gathered} \text { Area } \\ \text { q } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.885 | BB | 0.4431 | 7.08319 e 4 | 2573.75708 | 97.5325 |
| 2 | 20.127 | BB | 0.4407 | 1791.97412 | 62.08633 | 2.4675 |

```
\(\qquad\)
* . End of Report ...


3-(3-chlorophenyl)-1,3-dimethylindolin-2-one (3, Table 1, entry 4) The reaction was conducted according to the general procedure for 18 h to afford the title compound as an off-white solid ( \(86 \mathrm{mg}, 63 \%\) ). \({ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta: 7.36(\mathrm{td}, J=1.4,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{ddd}, J=0.5,1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13\) \((\mathrm{td}, J=1.0,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta\) : \(178.7,143.0,142.7,134.3,133.9,129.7,128.3,127.4,126.9,124.9,124.0,122.9,108.4,51.8,26.4,23.7 \mathrm{ppm} . \operatorname{IR}\) (neat, \(\mathrm{cm}^{-1}\) ): 1715.6, 1611.9, 1593.7, 1569.8, 1492.7, 1471.1, 1418.0, 1374.3, 1345.3, 1303.6, 1256.7, 1144.8, 1102.9, 1024.2. Enantiomeric excess: \(97 \%\), Chiralpak AD-H column, \(2 \%{ }^{i} \mathrm{PrOH}, 98 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=15.2 \mathrm{~min}\), \(\mathrm{t}_{\text {major }}=12.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}-14.68^{\circ}\left(\mathrm{c} 0.066, \mathrm{CHCl}_{3}\right)\). Anal. Calc. for \(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClNO}: \mathrm{C}, 70.72 ; \mathrm{H}, 5.19\). Found: C, 70.85; H, 5.15. M. P.: \(90^{\circ} \mathrm{C}\).


3-[3-(1,3-dioxolan-2-yl)phenyl]-1,3-dimethylindolin-2-one (Table 1, entry 5) The reaction was conducted according to the general procedure to afford the title compound as a clear oil \((97 \mathrm{mg}, 63 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta: 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{dd}, J=1.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=0.9,7.5,7.5 \mathrm{~Hz}\), \(1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR \((400 \mathrm{MHz}\), \(\mathrm{CDCl}_{3}\) ) \(\delta: 179.0,143.0,140.8,138.0,134.4,128.5,128.0,127.5,125.1,124.7,124.1,122.6,108.2,103.5,65.1\), \(65.0,51.9,26.3,23.9 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 3054.8, 2970.1, 2887.3, 1715.2, 1611.8, 1492.2, 1471.1, 1420.1, 1374.0, \(1345.8,1304.0,1255.4,1221.3,1174.1,1143.9,1102.9\), 1083.6, 1024.7. Enantiomeric excess: \(96 \%\), Chiralpak ASH column, \(10 \%{ }^{i} \mathrm{PrOH}, 90 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=17.339 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.328 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-11.65^{\circ}\left(\mathrm{c} 0.086, \mathrm{CHCl}_{3}\right)\).


3-(3,5-dimethylphenyl)-1,3-dimethylindolin-2-one (Table 1, entry 6) The reaction was conducted according to the general procedure to afford the title compound as an off-white solid ( \(106 \mathrm{mg}, 80 \%\) ). \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) : \(7.34(\mathrm{dt}, J=1.3,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})\) ppm. \({ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 179.5,143.0,140.5,137.8,135.1,128.9,127.8,124.2,124.0,122.6,108.1\), 51.9, 26.3, 23.5, 21.3 ppm . IR (neat, \(\mathrm{cm}^{-1}\) ): 1716.6, 1611.5, 1492.7, 1470.6, 1372.8, 1342.7, 1303.3, 1256.4, 1102.2, 1026.4. Enantiomeric excess: \(96 \%\), Chiralpak AD-H column, \(10 \%{ }^{i} \operatorname{PrOH}, 90 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=5.240 \mathrm{~min}, \mathrm{t}_{\text {major }}=\) \(4.338 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-112.7^{\circ}\left(\mathrm{c} 0.582, \mathrm{CHCl}_{3}\right)\). Anal. Calc. for \(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 81.47 ; \mathrm{H}, 7.22\). Found: C, 81.47; H, 7.31. M. P.: \(86^{\circ} \mathrm{C}\).

( \(\boldsymbol{E}\) )-1,3-dimethyl-3-styrylindolin-2-one (Table 1, entry 7 trans) The reaction was conducted according to the general procedure at room temperature for 24 h . The title compound was isolated as a white foam ( \(98 \mathrm{mg}, 74 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{tt}, J=1,1,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=1,8,8 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 178.6,142.9,136.4,132.8,129.9,129.8,128.4\), \(128.1,127.6,126.4,123.9,122.5,108.3,50.6,26.3,23.0 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 1714.5, 1611.7, 1492.7, 1490.3, \(1447.4,1419.1,1373.7,1348.2\), 1254.5. Enantiomeric excess: \(77 \%\), Chiralpak AD-H column, \(5 \%{ }^{i} \mathrm{PrOH}, 95 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=12.100 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.285 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{22}-91.78^{\circ}\left(\mathrm{c} 1.428, \mathrm{CHCl}_{3}\right)\). Anal. Calc. for \(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}\), 82.10; H, 6.51. Found: C, 82.06; H, 6.51 .

(Z)-1,3-dimethyl-3-styrylindolin-2-one (Table 1 , entry 7 cis) The title compound was isolated as a clear oil ( 14 mg , \(11 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.12(\mathrm{tt}, J=0.5,0.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=0.5,0.5,7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03\) \((\mathrm{m}, 3 \mathrm{H}), 6.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J=0.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=\) \(0.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 1715.5, 1611.3, 1492.3, 1469.8, 1372.0, 1343.9, 1252.0, 1122.6, 1028.4. Enantiomeric excess: \(98 \%\) (determined from reduced compound, vide infra); \([\alpha]_{\mathrm{D}}{ }^{22}-159{ }^{\circ}\) (c \(0.28, \mathrm{CHCl}_{3}\) ). \({ }^{13} \mathrm{C}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 179.0,142.5,136.6,136.0,133.2,133.0,127.9,127.6,127.2,126.5,123.0,122.4\), 107.9, 48.7, 26.6, 25.9 ppm .


1,3-dimethyl-3-phenethylindolin-2-one (Table 1, entry 7 cis reduced) A round-bottomed flask was charged with (Z)-1,3-dimethyl-3-styrylindolin-2-one ( \(6.1 \mathrm{mg}, 0.023 \mathrm{mmol}, 1\) equiv), a stirbar, and a small amount of \(\mathrm{Pd} / \mathrm{C}\) before being sealed with a rubber septum. \(\mathrm{EtOH} / \operatorname{EtOAc}(1: 1,4 \mathrm{~mL})\) was added, and the vessel was evacuated and backfilled with \(\mathrm{H}_{2}\) three times. The reaction was stirred vigorously at rt for 2 h before the mixture was filtered though a plug of silica gel and eluted with EtOAc. The filtrate was concentrated in vacuo and purified by column chromatography with a Biotage (hexanes/ EtOAc) to yield the title compound as a clear oil ( \(6 \mathrm{mg}, 98 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.32(\mathrm{td}, J=1.3,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8\) \(\mathrm{Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{dd}, J=2.2,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR (400 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 180.3,143.4,141.4,133.8,128.3,128.2,127.8,125.8,122.6,122.5,108.0,48.4,40.2,31.0,26.1\), 23.9 ppm . IR (neat, \(\mathrm{cm}^{-1}\) ): 1711.6, 1612.8, 1383.7. Enantiomeric excess: \(98 \%\), Chiralcel OD-H column, \(10 \%{ }^{i} \mathrm{PrOH}\), \(90 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=6.11 \mathrm{~min}, \mathrm{t}_{\text {major }}=7.44 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22} 0.34^{\circ}\left(\mathrm{c} 0.092, \mathrm{CHCl}_{3}\right)\).

( \(\boldsymbol{Z}\) )-1,3-dimethyl-3-(prop-1-enyl)indolin-2-one (Table 1 , entry 8) The reaction was conducted according to the general procedure at room temperature for 24 h . The title compound was isolated as a clear oil ( \(81 \mathrm{mg}, 81 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.26(\mathrm{td}, J=1.5,8,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=1,7.5,7.5\)
\(\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dq}, J=1.5,3,11 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{dd}\), \(J=1.5,7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 179.7,142.5,135.4,131.2,128.6,127.5,122.9\), 122.7, 107.9, 48.5, 26.4, 26.2, 13.3 ppm . IR (neat, \(\mathrm{cm}^{-1}\) ): 3019.7, 2969.5, 2926.4, 1717.1, 1611.2, 1492.1, 1470.6, 1451.6, \(1420.9,1400.9,1372.2,1343.1,1303.1,1252.7,1158.0,1124.8,1053.8,1024.9\). Enantiomeric excess: \(94 \%\), WhelkO1 column, \(5 \%{ }^{i} \mathrm{PrOH}, 95 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=10.593 \mathrm{~min}, \mathrm{t}_{\text {major }}=11.827 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-44.98{ }^{\circ}\left(\mathrm{c} 1.04, \mathrm{CHCl}_{3}\right)\). Anal. Calc. for \(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51\). Found: C, 77.30; H, 7.61.
```

Data ₹lle C:\CHEN32\1\DATA\AMT\AMT4-51-1.D
Sample Name: AMT4-51-1

```

```

Sample Ir.fo : WHELK, 5% IPA in HEXANE, 1.0 ML/MIN

```

Sample Name: ANT4-51-1
    Signal 1: DAD1 A, Sig=254, 4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
i
\end{tabular} & \[
\begin{gathered}
\text { RetTire } \\
(\mathrm{min})
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Arca } \\
{[\mathrm{mAU} \cdot \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[ mAU ]
\end{tabular} & Area \\
\hline 1 & 9.853 & VV & 0.2969 & 1.69955 e 4 & 829.83063 & 49.4578 \\
\hline 2 & 11.159 & VB & 0.3371 & 1.73681 e 4 & 741.84705 & 50.5422 \\
\hline
\end{tabular}
    Signai 2: DAD1 C, Sig=210, 8 Ref \(=360,100\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { Ret?ime } \\
{[n i n]}
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Widih } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} \cdot s]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mad]
\end{tabular} & Area \\
\hline 1 & 9.852 & VV & 0.3399 & 5.12177 e 4 & 2230.54956 & 48.6064 \\
\hline 2 & 11.159 & & 0.3773 & 5.41548 eq & 2097.07861 & 51.3936 \\
\hline
\end{tabular}
Signal 3: DADD1 D, Siq \(=230,16\) Reff \(=360,100\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & \[
\begin{gathered}
\text { Re:Time } \\
{[m i n]}
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& {[m i n]}
\end{aligned}
\] & \[
\begin{gathered}
A \text { zea } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \& \\
\hline 1 & 9.853 & VV & 0.2965 & 8723.73730 & 426.65952 & 49.6775 \\
\hline 2 & 11.159 & VB & 0.3347 & 8836.99316 & 380.91174 & 50.3225 \\
\hline Sotal & \(s\) : & & & 1.75607 e4 & 807.57126 & \\
\hline
\end{tabular}
\(\qquad\)
* * End of Report . .
```

Data File C:\CHEM32\1\DATA\AMT\AMT4-69B.D
Sample Name: AMT4-69B

```

```

ust changed : 5/2/2009 4:30:50 PM by AM2
Sample Info : WHELK-O, 5% IPA 1.0 ML/MIN

```

```

Data Eile C:\CHEM32\1\DATA\AMT\AMT4-69B.D
Sample Name: AVT4-69B
Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak
 \# | $\begin{gathered} \text { Retzime } \\ {[m i n]} \end{gathered}$ | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \cdot \mathrm{~s}]} \end{gathered}$ | Height [mAU] | $\begin{gathered} \text { Area } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.593 | BB | 0.3052 | 384.30042 | 18.74267 | 3.0553 |
| 2 | 12.827 | B8 | 0.3540 | 1.21940 e 4 | 493.94867 | 96.9447 |

 Signal 2: CAD1 C, Sig=210, B Ref=360,100
 | Peak " | RetTime [min] | Type | $\begin{aligned} & \text { Widith } \\ & {[m i n]} \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.593 | BV | 0.3216 | 1380.08276 | 62.99067 | 3.3643 |
| 2 | 11.827 | VE | 0.3725 | 3.96410 e 4 | 1539.27563 | 96.6357 |

 Signal 3: DAD1 D, Sig=230,16 Ref=360,100
 | $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$ | Type | $\begin{aligned} & \text { Fidth } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \cdot \mathrm{~S}]} \end{gathered}$ | Height
 [mAU] | Area g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \pm | 10.593 | BB | 0.3003 | 192.49416 | 9.58444 | 3.0021 |
| 2 | 21.827 | EB | 0.3523 | 6219.52051 | 253.46826 | 96.9979 |

```
** End of Report *.

( \(\boldsymbol{E}\) )-1,3-dimethyl-3-(prop-1-enyl)indolin-2-one (Table 1, entry 9) The reaction was conducted according to the general procedure at room temperature for 24 h . The title compound was isolated as a clear oil ( \(90 \mathrm{mg}, 89 \%\) ). \({ }^{1} \mathrm{H}\)

NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.28(\mathrm{tt}, J=1,1,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=0.5,0.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{tt}, J=1,1,8\), \(8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=0.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dq}, J=1.5,2.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H})\), \(1.65(\mathrm{dd}, J=1,6 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 179.1,142.8,133.4,130.9\), 127.7, 125.9, 123.6, 122.3, 108.0, 50.3, 26.1, 22.8, 17.8 ppm . IR (neat, \(\mathrm{cm}^{-1}\) ): 2967.2, 2927.0, 1718.8, 1611.7, 1493.2 , 1471.0, \(1450.0,1420.0,1373.8,1345.6,1306.0,1256.2,1158.8,1119.7,1084.8,1055.0,1024.5\). Enantiomeric excess: \(54 \%\), Whelk-O1 column, \(5 \%{ }^{i} \operatorname{PrOH}, 95 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=9.863 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.001 \mathrm{~min}\); \([\alpha]_{D}{ }^{22}-0.46^{\circ}\left(\mathrm{c} 0.25, \mathrm{CHCl}_{3}\right)\). Anal. Calc. for \(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51\). Found: C, 77.29; H, 7.59.


1,3-dimethyl-3-(prop-1-en-2-yl)indolin-2-one (4, Table 1, entry 10) The reaction was conducted according to the general procedure at \(50{ }^{\circ} \mathrm{C}\) for 24 h . The title compound was isolated as a white crystalline solid ( \(64 \mathrm{mg}, 64 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.23(\mathrm{td}, J=1.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=0.5,1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=1,1\), \(8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=1 \mathrm{H}, 1 \mathrm{H}), 5.03(\mathrm{p}, J=1.5,1.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~m}\), \(6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 179.0,143.5,143.3,133.7,127.9,123.0,122.6,112.9,108.0,53.8,26.3\), 21.3, 19.4 ppm. IR (neat, \(\mathrm{cm}^{-1}\) ): 2979.0, 2935.7, 2880.2, 1720.4, 1645.4, 1610.9, 1493.1, 1474.0, 1445.2, 1418.4, \(1373.0,1345.0,1300.9,1258.7,1228.5,1118.4,1102.9,1060.2,1032.9,1001.9\). Enantiomeric excess: (determined from reduced compound, vide infra); \([\alpha]_{\mathrm{D}}{ }^{21}+28.4\) (c \(0.38, \mathrm{CHCl}_{3}\) ). Anal. Calc. for \(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51\). Found: C, 77.42; H, 7.59. M. P.: \(60^{\circ} \mathrm{C}\).


3-isopropyl-1,3-dimethylindolin-2-one (5, Scheme 1) A round bottomed flask was charged with 1,3-dimethyl-3-(prop-1-en-2-yl)indolin-2-one ( \(2,28 \mathrm{mg}, 0.138 \mathrm{mmol}\) ), \(\mathrm{Pd} / \mathrm{C}\) (small spatula tip, \(\sim 10 \mathrm{mg}\) ), and a stirbar. EtOH/ EtOAc ( \(1: 1,4 \mathrm{~mL}\) ) was added, and the mixture was evacuated and purged with \(\mathrm{H}_{2}\) three times before the mixture was stirred at room temperature for 2 h . The mixture was filtered through a plug of silica gel, concentrated, and purified with a Biotage on silica gel with hexanes and ethyl acetate to yield the title compound was isolated as a white solid ( \(25 \mathrm{mg}, 89 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.28(\mathrm{td}, J=1.3,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}\) ), \(7.20(\mathrm{dd}, J=0.5,7.6\), \(7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{sept}, J=6.9,6.9,13.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}\), \(J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 180.9,143.5,133.0,127.5,123.4\), \(122.1,107.7,51.5,35.4,25.9,21.4,17.4,17.1 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 2964.4, 1708.3, 1611.8, \(1493.11469 .3,1376.0\), 1348.8, 1300.9, 1259.9, 1125.1, 1074.4, 1020.8. Enantiomeric excess: \(96 \%\), Chiralcel OC column, \(2 \%{ }^{i} \mathrm{PrOH}, 98 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=25.17 \mathrm{~min}, \mathrm{t}_{\text {major }}=22.64 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}+53.94^{\circ}\left(\mathrm{c}=0.404, \mathrm{CHCl}_{3}\right) . \mathrm{M} . \mathrm{P} .: 54{ }^{\circ} \mathrm{C}\).


1-(4-methoxyphenyl)-3-methyl-3-(naphthalen-2-yl)indolin-2-one (Figure 2) The reaction was conducted according to the general procedure at \(50^{\circ} \mathrm{C}\) for 24 h . The title compound was isolated as a white solid ( 139 mg , \(73 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.95(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85,(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{dt}, J=3.3,3.3\), \(10.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=0.7,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=3.3,3.3,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H})\), \(3.89(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 178.8,159.0,143.5,138.2,134.5,133.1\), 132.4, \(128.3,18.0,127.9,127.3,127.0,126.0,125.9,125.3,124.8,124.4,123.1,114.7,109.5,55.4,52.2,23.7 \mathrm{ppm} . \operatorname{IR}\)
(neat, \(\mathrm{cm}^{-1}\) ): 3054.7, 2969.4, 2933.5, 2837.4, 22467.0, 2047.0, 1719.8, 1632.2, 1586.7, 1513.9, 1483.4, 1463.8, \(1375.5,1324.8,1298.9,1249.5,1210.3,1180.8,1167.0,1129.0,1106.7,1059.7,1031.6\). Enantiomeric excess: \(>99 \%\), Chiralpak AD-H column, \(30 \%{ }^{i} \operatorname{PrOH}, 70 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=49.348 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.142 \mathrm{~min}\); \([\alpha]_{\mathrm{D}}{ }^{21}+29.8^{\circ}\) (c \(=2.56, \mathrm{CHCl}_{3}\) ). Anal. Calc. for \(\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{2}\) : C, 82.30; H, 5.58. Found: C, 82.30; H, 5.64. M. P.: \(144{ }^{\circ} \mathrm{C}\).

( \(Z\) )-3-benzyl-1-methyl-3-(prop-1-enyl)indolin-2-one (Figure 2) The reaction was conducted according to the general procedure at \(50^{\circ} \mathrm{C}\) for 24 h . The title compound was isolated as a yellow solid ( \(104 \mathrm{mg}, 75 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{dq}, J=1.6,3.3,10.9 \mathrm{~Hz}, 1 \mathrm{H})\), \(5.65(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{dd}, J=1.7,7.04 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}\). \({ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 178.0,143.1,134.8,132.5,130.1,129.8,129.2,127.6,127.1,126.4,123.8,122.2\), \(107.5,54.4,45.8,25.7,13.9 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): \(3028.5,1712.2,1610.3,1492.5,1469.8,1373.1,1350.1,1254.1\), 1118.4, 1088.1, 1021.4. Enantiomeric excess: \(86 \%\), Chiralpak AD-H column, \(2 \%{ }^{i} \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 98 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=14.64 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.71 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}+3.48^{\circ}\left(\mathrm{c}=0.168, \mathrm{CHCl}_{3}\right)\). M. P.: \(74{ }^{\circ} \mathrm{C}\).

(Z)-5-methoxy-1,3-dimethyl-3-(prop-1-enyl)indolin-2-one (Figure 2) The reaction was conducted according to the general procedure at \(50{ }^{\circ} \mathrm{C}\) for 24 h . The title compound was isolated as a clear oil ( \(91 \mathrm{mg}, 79 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( 400 \(\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.74(\mathrm{~m}, 3 \mathrm{H}), 5.55(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{dt}, J=1.3,1.3,6.7 \mathrm{~Hz}\), \(3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 179.4,156.1,136.8,136.0,131.1,128.8,111.6,110.3,108.1,55.6,48.9\), \(26.5,26.2,13.3 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 3018.5, 2967.6, 2834.6, 1710.7, 1600.3, 1494.9, 1469.3, 1434.5, 1401.1, \(1348.3,1287.4,1234.1,1206.2,1179.8,1156.1,1117.7,1035.5\). Enantiomeric excess: \(71 \%\), Chiralpak AS-H column, \(2 \%^{i} \operatorname{PrOH}, 90 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=18.10 \mathrm{~min}, \mathrm{t}_{\text {major }}=20.50 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-70.73{ }^{\circ}\left(\mathrm{c}=1.186, \mathrm{CHCl}_{3}\right)\).


1,3-dimethyl-3-(thiophen-3-yl)indolin-2-one (Figure 2) The reaction was conducted according to the general procedure at \(50{ }^{\circ} \mathrm{C}\) for 24 h . The title compound was isolated as a clear oil \((50 \mathrm{mg}, 41 \%) .{ }^{1} \mathrm{H}\) NMR \((400 \mathrm{MHz}\), \(\left.\mathrm{CDCl}_{3}\right) \delta: 7.35(\mathrm{dd}, J=1.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=3.2,5.0), 7.14(\mathrm{td}, J=0.7,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})\), \(7.07(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 178.6,142.9\), \(141.5,134.1,128.2,126.4,126.0,123.8,122.7,121.4,108.3,49.9,26.4,24.4 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 3105.1, 3054.3, \(2970.3,2929.7,1715.8,1612.0,1493.4,1470.9,1451.9,1419.5,1373.5,1346.5,1303.2,1246.2,1203.5,1157.8\), 1143.7, 1114.2, 1057.5, 1024.5. Enantiomeric excess: \(95 \%\), Chiralpak AD-H column, \(10 \%{ }^{i} \mathrm{PrOH}, 90 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=6.80 \mathrm{~min}, \mathrm{t}_{\text {major }}=7.96 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{22}-164.0^{\circ}\left(\mathrm{c}=0.56, \mathrm{CHCl}_{3}\right)\).


3-acetyl-1,3-dimethylindolin-2-one (6, Scheme 1) A round bottomed flask was charged with 1,3-dimethyl-3-(prop-1-en-2-yl)indolin-2-one ( \(2,18 \mathrm{mg}, 0.089 \mathrm{mmol}, 1\) equiv) and a stirbar. Methylene chloride ( 10 mL ) was added, and
the reaction was cooled to \(-78^{\circ} \mathrm{C}\). A Welsbach ozonator was used to generate ozone at a rate of about \(0.9 \mathrm{mmol} /\) min , and \(\mathrm{O}_{3}\) was bubbled through the solution until a blue color persisted. Argon was then bubbled through the solution until the blue color disappeared. \(\mathrm{PPh}_{3}(47 \mathrm{mg}, 0.18 \mathrm{mg}, 2\) equiv) was added, and the solution was warmed to room temperature and stirred for 2 h before being concentrated. Silica gel chromatography with a Biotage yielded the title compound was isolated as a white film \((12 \mathrm{mg}, 67 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.37(\mathrm{td}, J=1.4,7.8\), \(7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=0.6,1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=1.0,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}\), \(3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 201.0,175.9,143.7,129.4,129.1,123.5,123.2\), 108.6, 62.0, 26.6, \(25.9,18.9 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): \(1725.5,1704.9,1609.4,1492.6,1470.5,1373.8,1345.8,1196.5\), 1103.7, 1029.7. Enantiomeric excess: \(96 \%\), Chiralcel OC column, \(2 \%{ }^{i} \mathrm{PrOH}, 98 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=62.30 \mathrm{~min}, \mathrm{t}_{\text {major }}=\) \(53.69 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}+211.13{ }^{\circ}\left(\mathrm{c}=0.124, \mathrm{CHCl}_{3}\right)\).


3-(4-methoxyphenyl)-1,3-dimethylindoline (7, Scheme 1) A round-bottomed flask was charged with 2 ( 43 mg , \(0.161 \mathrm{mmol}, 1\) equiv) and a stirbar before being evacuated and purged with argon three times. \(\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{~mL},[\mathbf{2}]=\) \(0.1 \mathrm{M})\) was added, and the solution was cooled to \(0^{\circ} \mathrm{C}\) before the addition of a solution of \(\mathrm{LiAlH}_{4}\left(1.0 \mathrm{M}\right.\) in Et \({ }_{2} \mathrm{O}\), \(800 \mu \mathrm{~L}, 0.805 \mathrm{mmol}, 5\) equiv). The solution was stirred at \(0^{\circ} \mathrm{C}\) for five minutes before being warmed to room temperature and stirred for 2 h . The reaction was quenched with \(\mathrm{H}_{2} \mathrm{O}\), extracted with EtOAc, dried with magnesium sulfate, and concentrated in vacuo. Silica gel chromatography with a Biotage yielded the title compound as a red oil ( \(25 \mathrm{mg}, 61 \%\) ). \({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=1.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=0.5,1\), \(7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{td}, J=1,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=9 \mathrm{~Hz}\), \(1 \mathrm{H}), 3.33(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 157.8,152.5,139.6\), \(137.9,127.8,127.6,123.6,118.1,113.4,107.7,72.2,55.2,47.6,36.0,26.3 \mathrm{ppm}\). IR (neat, \(\mathrm{cm}^{-1}\) ): 3045.4, 2960.0, \(2853.8,2833.9,2806.4,1605.5,1580.4,1510.7,1489.6,1462.5,1422.3,1378.1,1324.3,1296.3,1249.2,1182.4\), 1156.1, 1115.7, 1097.7, 1083.8, 1034.5, 1021.7. Enantiomeric excess: \(96 \%\), OJ column, \(0.5 \%{ }^{i} \operatorname{PrOH}, 99.5 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=75.48 \mathrm{~min}, \mathrm{t}_{\text {major }}=51.62 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{22}-27.42{ }^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)\).


3-(3-(2,5-dimethylphenylamino)phenyl)-1,3-dimethylindolin-2-one (8, Scheme 1) For more details about the method that was used, see the recent publication regarding BrettPhos. \({ }^{8}\) A round-bottomed flask was charged with 3-(3-chlorophenyl)-1,3-dimethylindolin-2-one ( \(35.7 \mathrm{mg}, 0.13 \mathrm{mmol}, 1\) equiv) before being evacuated and purged with Argon three times. 2,5-dimethylaniline ( \(20 \mu \mathrm{~L}, 0.158 \mathrm{mmol}, 1.2\) equiv) was added, followed by dibutyl ether ( 1 mL ). The solution was added to a disposable tube containing BrettPhos precatalyst ( \(1.05 \mathrm{mg}, 0.0013 \mathrm{mmol}, 0.01\) equiv) and \(\mathrm{NaO}^{t} \mathrm{Bu}(15.2 \mathrm{mg}, 0.158,1.2\) equiv), which had been previously evacuated and purged with Argon three times. The mixture was stirred at \(110^{\circ} \mathrm{C}\) for 2 h before being cooled, diluted with ethyl acetate, washed with water and brine, dried with magnesium sulfate, filtered, and concentrated. Silica gel chromatography with a Biotage (hexanes: ethyl acetate) yielded the title compound as a white solid ( \(41 \mathrm{mg}, 88 \%\) ). \({ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta\) : \(7.35(\mathrm{td}, J=1.3,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{ddd}, J=0.6,1.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=8,8, \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=1,7.6\), \(7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=1.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}\), \(3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta: 179.4,143.8,143.1,141.9,140.8\), \(136.3,134.9,130.6,129.3,128.0,124.5,124.1,122.7,122.3,118.6,118.5,116.2,116.1,108.2,52.1,26.4,23.5\), 21.1, 17.4 ppm . IR (neat, \(\mathrm{cm}^{-1}\) ): 1707.0, 1611.6, 1471.2, 1373.3, 1346.3, 1102.8. Enantiomeric excess: 97\%,

\footnotetext{
\({ }^{8}\) Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552.
}

Chiralcel OD-H column, \(5 \%{ }^{i} \operatorname{PrOH}, 95 \%\) hexanes; \(\mathrm{t}_{\text {minor }}=18.23 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.22 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{21}-68.7{ }^{\circ}(\mathrm{c}=0.736\), \(\mathrm{CHCl}_{3}\) ). M. P.: \(48{ }^{\circ} \mathrm{C}\)

X-ray crystallographic information for ent-4


Table 1. Crystal data and structure refinement for amt 4-3-4.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta \(=68.59^{\circ}\)
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on \(\mathrm{F}^{2}\)
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
\(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}\)
201.26

100(2) K
\(1.54178 \AA\)
Monoclinic
P 21
\(\mathrm{a}=7.3945(3) \AA \quad \alpha=90^{\circ}\)
\(b=17.4160(6) \AA \quad \beta=90.9340(10)^{\circ}\)
\(\mathrm{c}=8.8582(3) \AA \quad \gamma=90^{\circ}\)
\(1140.63(7) \AA^{3}\)
4
\(1.172 \mathrm{Mg} / \mathrm{m}^{3}\)
\(0.581 \mathrm{~mm}^{-1}\)
432
\(0.48 \times 0.36 \times 0.18 \mathrm{~mm}^{3}\)
4.99 to \(68.59^{\circ}\).
\(-8<=\mathrm{h}<=8,-20<=\mathrm{k}<=21,-10<=1<=10\)
15919
\(3991[\mathrm{R}(\mathrm{int})=0.0168]\)
99.3 \%

Semi-empirical from equivalents
0.9027 and 0.7680

Full-matrix least-squares on \(\mathrm{F}^{2}\)
3991/1/271
1.095
\(\mathrm{R} 1=0.0307, \mathrm{wR} 2=0.0848\)
\(R 1=0.0307, w R 2=0.0848\)
-0.03(19)
0.162 and -0.264 e. \(\AA^{-3}\)

Table 2. Atomic coordinates ( \(\times 10^{4}\) ) and equivalent isotropic displacement parameters \(\left(\AA^{2} \times 10^{3}\right)\) for amt 4-3-4. \(U(e q)\) is defined as one third of the trace of the orthogonalized \(U^{i j}\) tensor.
\begin{tabular}{lrrrr}
\hline & x & y & z & \(\mathrm{U}(\mathrm{eq})\) \\
\hline \(\mathrm{N}(1)\) & \(9740(2)\) & \(1327(1)\) & \(2357(1)\) & \(25(1)\) \\
\(\mathrm{O}(1)\) & \(9268(2)\) & \(73(1)\) & \(1644(1)\) & \(39(1)\) \\
\(\mathrm{C}(1)\) & \(9447(2)\) & \(750(1)\) & \(1337(2)\) & \(26(1)\) \\
\(\mathrm{N}(2)\) & \(4981(2)\) & \(3388(1)\) & \(2657(1)\) & \(27(1)\) \\
\(\mathrm{O}(2)\) & \(4793(2)\) & \(4670(1)\) & \(3250(1)\) & \(38(1)\) \\
\(\mathrm{C}(2)\) & \(9341(2)\) & \(1109(1)\) & \(-266(2)\) & \(24(1)\) \\
\(\mathrm{C}(3)\) & \(9689(2)\) & \(1949(1)\) & \(82(2)\) & \(24(1)\) \\
\(\mathrm{C}(4)\) & \(9818(2)\) & \(2578(1)\) & \(-856(2)\) & \(32(1)\) \\
\(\mathrm{C}(5)\) & \(10138(2)\) & \(3300(1)\) & \(-214(2)\) & \(40(1)\) \\
\(\mathrm{C}(6)\) & \(10311(2)\) & \(3383(1)\) & \(1337(2)\) & \(39(1)\) \\
\(\mathrm{C}(7)\) & \(10190(2)\) & \(2753(1)\) & \(2299(2)\) & \(32(1)\) \\
\(\mathrm{C}(8)\) & \(9889(2)\) & \(2042(1)\) & \(1639(2)\) & \(24(1)\) \\
\(\mathrm{C}(9)\) & \(7419(2)\) & \(978(1)\) & \(-891(2)\) & \(35(1)\) \\
\(\mathrm{C}(10)\) & \(10819(2)\) & \(765(1)\) & \(-1239(2)\) & \(24(1)\) \\
\(\mathrm{C}(11)\) & \(12722(2)\) & \(879(1)\) & \(-659(2)\) & \(30(1)\) \\
\(\mathrm{C}(12)\) & \(10468(2)\) & \(396(1)\) & \(-2522(2)\) & \(31(1)\) \\
\(\mathrm{C}(13)\) & \(9870(2)\) & \(1212(1)\) & \(3981(2)\) & \(34(1)\) \\
\(\mathrm{C}(14)\) & \(4788(2)\) & \(3996(1)\) & \(3615(2)\) & \(25(1)\) \\
\(\mathrm{C}(15)\) & \(4518(2)\) & \(3680(1)\) & \(5225(2)\) & \(23(1)\) \\
\(\mathrm{C}(16)\) & \(4673(2)\) & \(2820(1)\) & \(4963(2)\) & \(23(1)\) \\
\(\mathrm{C}(17)\) & \(4586(2)\) & \(2211(1)\) & \(5963(2)\) & \(33(1)\) \\
\(\mathrm{C}(18)\) & \(4744(2)\) & \(1467(1)\) & \(5399(2)\) & \(43(1)\) \\
\(\mathrm{C}(19)\) & \(4969(2)\) & \(1343(1)\) & \(3877(2)\) & \(44(1)\) \\
\(\mathrm{C}(20)\) & \(5059(2)\) & \(1952(1)\) & \(2850(2)\) & \(36(1)\) \\
\(\mathrm{C}(21)\) & \(4918(2)\) & \(2686(1)\) & \(3432(2)\) & \(24(1)\) \\
C(22) & \(6023(2)\) & \(3974(1)\) & \(6278(2)\) & \(24(1)\) \\
C(23) & \(5692(2)\) & \(4331(1)\) & \(7569(2)\) & \(31(1)\) \\
C(24) & \(7916(2)\) & \(3824(1)\) & \(5766(2)\) & \(30(1)\) \\
C(25) & \(2615(2)\) & \(3908(1)\) & \(5720(2)\) & \(33(1)\) \\
C(26) & \(5209(2)\) & \(3460(1)\) & \(1034(2)\) & \(40(1)\) \\
& & & & \\
\hline & & & & \\
\hline
\end{tabular}

Table 3. Bond lengths \([\AA]\) and angles [ \({ }^{\circ}\) ] for amt 4-3-4.
\begin{tabular}{|c|c|}
\hline \(\mathrm{N}(1)-\mathrm{C}(1)\) & 1.3662(19) \\
\hline \(\mathrm{N}(1)-\mathrm{C}(8)\) & \(1.4033(19)\) \\
\hline \(\mathrm{N}(1)-\mathrm{C}(13)\) & 1.4536(18) \\
\hline \(\mathrm{O}(1)-\mathrm{C}(1)\) & 1.2184(18) \\
\hline \(\mathrm{C}(1)-\mathrm{C}(2)\) & 1.5516(19) \\
\hline \(\mathrm{N}(2)-\mathrm{C}(14)\) & 1.3647(18) \\
\hline \(\mathrm{N}(2)-\mathrm{C}(21)\) & \(1.4046(19)\) \\
\hline \(\mathrm{N}(2)-\mathrm{C}(26)\) & 1.4558(17) \\
\hline \(\mathrm{O}(2)-\mathrm{C}(14)\) & 1.2173(18) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(3)\) & \(1.5170(19)\) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(10)\) & \(1.526(2)\) \\
\hline \(\mathrm{C}(2)-\mathrm{C}(9)\) & \(1.534(2)\) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)\) & \(1.379(2)\) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(8)\) & 1.3944(19) \\
\hline \(\mathrm{C}(4)-\mathrm{C}(5)\) & \(1.398(2)\) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(6)\) & \(1.386(3)\) \\
\hline \(\mathrm{C}(6)-\mathrm{C}(7)\) & \(1.392(2)\) \\
\hline \(\mathrm{C}(7)-\mathrm{C}(8)\) & \(1.386(2)\) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(12)\) & 1.326 (2) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(11)\) & \(1.504(2)\) \\
\hline \(\mathrm{C}(14)-\mathrm{C}(15)\) & 1.5448(18) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(16)\) & \(1.5206(19)\) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(22)\) & 1.5287(19) \\
\hline \(\mathrm{C}(15)-\mathrm{C}(25)\) & \(1.532(2)\) \\
\hline \(\mathrm{C}(16)-\mathrm{C}(17)\) & 1.384(2) \\
\hline \(\mathrm{C}(16)-\mathrm{C}(21)\) & \(1.391(2)\) \\
\hline \(\mathrm{C}(17)-\mathrm{C}(18)\) & \(1.395(2)\) \\
\hline \(\mathrm{C}(18)-\mathrm{C}(19)\) & \(1.378(3)\) \\
\hline \(\mathrm{C}(19)-\mathrm{C}(20)\) & 1.400(3) \\
\hline \(\mathrm{C}(20)-\mathrm{C}(21)\) & 1.382(2) \\
\hline \(\mathrm{C}(22)-\mathrm{C}(23)\) & 1.327(2) \\
\hline \(\mathrm{C}(22)-\mathrm{C}(24)\) & 1.501(2) \\
\hline \(\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)\) & 111.40(11) \\
\hline \(\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(13)\) & 124.12(13) \\
\hline \(\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(13)\) & 124.48(12) \\
\hline \(\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)\) & 125.46(13) \\
\hline \(\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)\) & 126.16(13) \\
\hline \(\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)\) & 108.36(12) \\
\hline \(\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(21)\) & 111.53(11) \\
\hline \(\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(26)\) & 124.24(14) \\
\hline \(\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(26)\) & 124.22(14) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)\) & 111.91(11) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)\) & 111.69(12) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(9)\) & 113.96(12) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)\) & 101.32(11) \\
\hline \(\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{C}(1)\) & 109.44(11) \\
\hline \(\mathrm{C}(9)-\mathrm{C}(2)-\mathrm{C}(1)\) & 107.66(12) \\
\hline \(\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)\) & 119.76(14) \\
\hline \(\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)\) & 131.12(13) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)\) & 109.12(12) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)\) & 118.84(15) \\
\hline \(\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)\) & 120.62(15) \\
\hline \(\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)\) & 121.27(15) \\
\hline \(\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)\) & 117.20(14) \\
\hline \(\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)\) & 122.31(14) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(1)\) & \(127.94(13)\) \\
\(\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{N}(1)\) & \(109.75(12)\) \\
\(\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)\) & \(121.68(14)\) \\
\(\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(2)\) & \(122.83(13)\) \\
\(\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(2)\) & \(115.49(12)\) \\
\(\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{N}(2)\) & \(125.55(13)\) \\
\(\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{C}(15)\) & \(126.08(13)\) \\
\(\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(15)\) & \(108.35(11)\) \\
\(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(22)\) & \(111.53(11)\) \\
\(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(25)\) & \(111.75(12)\) \\
\(\mathrm{C}(22)-\mathrm{C}(15)-\mathrm{C}(25)\) & \(113.69(12)\) \\
\(\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)\) & \(101.41(11)\) \\
\(\mathrm{C}(22)-\mathrm{C}(15)-\mathrm{C}(14)\) & \(109.90(11)\) \\
\(\mathrm{C}(25)-\mathrm{C}(15)-\mathrm{C}(14)\) & \(107.77(12)\) \\
\(\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)\) & \(120.18(14)\) \\
\(\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)\) & \(130.75(13)\) \\
\(\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(15)\) & \(109.06(12)\) \\
\(\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)\) & \(118.56(16)\) \\
\(\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)\) & \(120.59(16)\) \\
\(\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)\) & \(121.60(15)\) \\
\(\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)\) & \(116.95(15)\) \\
\(\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)\) & \(122.12(14)\) \\
\(\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{N}(2)\) & \(128.29(14)\) \\
\(\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{N}(2)\) & \(109.60(12)\) \\
\(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(24)\) & \(121.86(13)\) \\
\(\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(15)\) & \(122.63(14)\) \\
\(\mathrm{C}(24)-\mathrm{C}(22)-\mathrm{C}(15)\) & \(115.51(12)\) \\
\end{tabular}

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters \(\left(\AA^{2} \times 10^{3}\right)\) for amt 4-3-4. The anisotropic displacement factor exponent takes the form: \(-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]\)
\begin{tabular}{lcccccc}
\hline & \(\mathrm{U}^{11}\) & \(\mathrm{U}^{22}\) & \(\mathrm{U}^{33}\) & \(\mathrm{U}^{23}\) & \(\mathrm{U}^{13}\) & \(\mathrm{U}^{12}\) \\
\hline \(\mathrm{~N}(1)\) & \(30(1)\) & \(25(1)\) & \(20(1)\) & \(1(1)\) & \(0(1)\) & \(-1(1)\) \\
\(\mathrm{O}(1)\) & \(59(1)\) & \(23(1)\) & \(36(1)\) & \(4(1)\) & \(14(1)\) & \(-4(1)\) \\
\(\mathrm{C}(1)\) & \(29(1)\) & \(25(1)\) & \(25(1)\) & \(1(1)\) & \(4(1)\) & \(-1(1)\) \\
\(\mathrm{N}(2)\) & \(28(1)\) & \(33(1)\) & \(19(1)\) & \(1(1)\) & \(1(1)\) & \(-1(1)\) \\
\(\mathrm{O}(2)\) & \(55(1)\) & \(23(1)\) & \(38(1)\) & \(10(1)\) & \(-10(1)\) & \(-2(1)\) \\
\(\mathrm{C}(2)\) & \(26(1)\) & \(22(1)\) & \(22(1)\) & \(-1(1)\) & \(-1(1)\) & \(-2(1)\) \\
\(\mathrm{C}(3)\) & \(23(1)\) & \(24(1)\) & \(25(1)\) & \(-1(1)\) & \(0(1)\) & \(3(1)\) \\
\(\mathrm{C}(4)\) & \(36(1)\) & \(28(1)\) & \(32(1)\) & \(7(1)\) & \(4(1)\) & \(6(1)\) \\
\(\mathrm{C}(5)\) & \(39(1)\) & \(23(1)\) & \(57(1)\) & \(10(1)\) & \(10(1)\) & \(5(1)\) \\
\(\mathrm{C}(6)\) & \(35(1)\) & \(22(1)\) & \(61(1)\) & \(-11(1)\) & \(9(1)\) & \(-1(1)\) \\
\(\mathrm{C}(7)\) & \(29(1)\) & \(30(1)\) & \(36(1)\) & \(-12(1)\) & \(1(1)\) & \(-3(1)\) \\
\(\mathrm{C}(8)\) & \(20(1)\) & \(25(1)\) & \(26(1)\) & \(-2(1)\) & \(0(1)\) & \(0(1)\) \\
\(\mathrm{C}(9)\) & \(25(1)\) & \(44(1)\) & \(36(1)\) & \(-15(1)\) & \(-1(1)\) & \(0(1)\) \\
\(\mathrm{C}(10)\) & \(30(1)\) & \(20(1)\) & \(23(1)\) & \(4(1)\) & \(1(1)\) & \(1(1)\) \\
\(\mathrm{C}(11)\) & \(27(1)\) & \(31(1)\) & \(33(1)\) & \(-1(1)\) & \(2(1)\) & \(4(1)\) \\
\(\mathrm{C}(12)\) & \(41(1)\) & \(27(1)\) & \(25(1)\) & \(-2(1)\) & \(4(1)\) & \(0(1)\) \\
\(\mathrm{C}(13)\) & \(38(1)\) & \(45(1)\) & \(20(1)\) & \(3(1)\) & \(-1(1)\) & \(0(1)\) \\
\(\mathrm{C}(14)\) & \(27(1)\) & \(24(1)\) & \(23(1)\) & \(2(1)\) & \(-3(1)\) & \(-1(1)\) \\
\(\mathrm{C}(15)\) & \(26(1)\) & \(21(1)\) & \(21(1)\) & \(-1(1)\) & \(1(1)\) & \(1(1)\) \\
\(\mathrm{C}(16)\) & \(23(1)\) & \(21(1)\) & \(26(1)\) & \(0(1)\) & \(-2(1)\) & \(-1(1)\) \\
\(\mathrm{C}(17)\) & \(33(1)\) & \(30(1)\) & \(36(1)\) & \(8(1)\) & \(-5(1)\) & \(-6(1)\) \\
\(\mathrm{C}(18)\) & \(40(1)\) & \(25(1)\) & \(64(1)\) & \(12(1)\) & \(-17(1)\) & \(-7(1)\) \\
\(\mathrm{C}(19)\) & \(34(1)\) & \(19(1)\) & \(77(1)\) & \(-10(1)\) & \(-15(1)\) & \(2(1)\) \\
\(\mathrm{C}(20)\) & \(29(1)\) & \(35(1)\) & \(43(1)\) & \(-17(1)\) & \(-4(1)\) & \(4(1)\) \\
C(21) & \(20(1)\) & \(24(1)\) & \(29(1)\) & \(-2(1)\) & \(-1(1)\) & \(1(1)\) \\
C(22) & \(30(1)\) & \(19(1)\) & \(23(1)\) & \(2(1)\) & \(-1(1)\) & \(-1(1)\) \\
C(23) & \(40(1)\) & \(29(1)\) & \(25(1)\) & \(-1(1)\) & \(-3(1)\) & \(-2(1)\) \\
C(24) & \(27(1)\) & \(33(1)\) & \(30(1)\) & \(1(1)\) & \(-2(1)\) & \(-3(1)\) \\
C(25) & \(26(1)\) & \(40(1)\) & \(34(1)\) & \(-12(1)\) & \(0(1)\) & \(3(1)\) \\
C(26) & \(39(1)\) & \(62(1)\) & \(19(1)\) & \(-1(1)\) & \(3(1)\) & \(-5(1)\) \\
& & & & & & \\
\hline
\end{tabular}

Table 5. Hydrogen coordinates ( \(\mathrm{x} 10^{4}\) ) and isotropic displacement parameters \(\left(\AA^{2} \times 10^{3}\right)\) for amt 4-3-4.
\begin{tabular}{lrrrr}
\hline & x & y & z & \(\mathrm{U}(\mathrm{eq})\) \\
\hline & & & & \\
H(4A) & 9691 & 2522 & -1919 & 38 \\
H(5A) & 10238 & 3737 & -847 & 48 \\
H(6A) & 10516 & 3879 & 1753 & 47 \\
H(7A) & 10309 & 2809 & 3363 & 38 \\
H(9A) & 7306 & 1206 & -1899 & 53 \\
H(9B) & 6545 & 1219 & -219 & 53 \\
H(9C) & 7177 & 426 & -953 & 53 \\
H(11A) & 13569 & 632 & -1348 & 45 \\
H(11B) & 12851 & 649 & 347 & 45 \\
H(11C) & 12988 & 1429 & -598 & 45 \\
H(12A) & 11432 & 196 & -3099 & 37 \\
H(12B) & 9253 & 332 & -2863 & 37 \\
H(13A) & 9727 & 666 & 4210 & 51 \\
H(13B) & 8917 & 1506 & 4475 & 51 \\
H(13C) & 11055 & 1388 & 4352 & 51 \\
H(17A) & 4423 & 2298 & 7010 & 40 \\
H(18A) & 4696 & 1042 & 6069 & 52 \\
H(19A) & 5066 & 831 & 3516 & 52 \\
H(20A) & 5210 & 1865 & 1801 & 43 \\
H(23A) & 6667 & 4498 & 8198 & 37 \\
H(23B) & 4480 & 4418 & 7864 & 37 \\
H(24A) & 8780 & 4034 & 6508 & 45 \\
H(24B) & 8097 & 4071 & 4786 & 45 \\
H(24C) & 8105 & 3269 & 5670 & 45 \\
H(25A) & 2408 & 3715 & 6742 & 50 \\
H(25B) & 1717 & 3686 & 5022 & 50 \\
H(25C) & 2503 & 4469 & 5712 & 50 \\
H(26A) & 5224 & 4004 & 755 & 60 \\
H(26B) & 4204 & 3203 & 506 & 60 \\
H(26C) & 6353 & 3220 & 748 & 60 \\
& & & & \\
\hline & & & & \\
\hline
\end{tabular}















































```


[^0]: ${ }^{1}$ Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925.
 ${ }^{2}$ Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590.
 ${ }^{3}$ Angelovski, G.; Keränen, M. D.; Linnepe, P.; Grudzielanek, S.; Eilbracht, P. Adv. Synth. Catal. 2006, 348, 1193.
 ${ }^{4}$ Biscoe, M. R.; Fors. B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 6686.
 ${ }^{5}$ Hamada, T.; Buchwald, S. L. Org. Lett. 2002, 4, 999.

[^1]: ${ }^{6}$ Note: Under the reaction conditions, the oxindole substrates were deprotonated and were not in solution.

