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CPMAS 13C NMR measurement 24 

Solid-state 13C NMR data were acquired using cross-polarization and magic angle 25 

spinning (CPMAS) on a 300-MHz NMR spectrometer (Varian, San Francisco, USA). 26 

Spectra were acquired at a frequency of 75 MHz with a 13C MAS spinning rate of 13 27 

kHz, contact time of 2 ms, 1 s recycle delay. The number of scans ranged from 5000 28 

to 10000 per sample. 29 

FTIR measurement 30 

Fourier Transform Infrared (FTIR) spectra were obtained on a NEXUS 670 31 

spectrophotometer equipped with deuterated triglycine (DTGS) and 32 

mercury-cadmium-telluride (MCT) detector, a KBr beam splitter and a sample bench 33 

purged with dry air. The resolution for FTIR spectra was 2.0 cm-1, and a total of 64 34 

scans were collected for each spectrum. The sample was prepared using the same 35 

conditions as were used for the sorption experiments. The initial solution 36 

concentration of TCP was 370 mg L-1. The aqueous suspensions, containing TCP 37 

sorbed to ash or HA, were passed through a 0.45μm hydrophilic polyethersulfone 38 

membrane on a Millipore holder. The resulting TCP sorbed samples deposited on the 39 

filter were allowed to air-dry overnight and were removed from the filter by running 40 

the filter and deposit over a knife edge. The FTIR spectra were recorded on pellets 41 

obtained by pressing a mixture of ash or HA (1 mg) with dried KBr (100 mg) under 42 

reduced pressure. 43 

X-ray absorption measurements and data analyses 44 
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X-ray absorption spectra at Cu K-edges and Pb Lш-edges were recorded at a 45 

wiggler beamline and XAFS end station of Beijing Synchrotron Radiation Facility 46 

(BSRF) using a Si (111) double crystal monochromator. During the experiment, the 47 

storage ring was operating at 2.2 GeV with a beam current of ∼80 mA. To suppress 48 

the unwanted high order harmonics, the parallism of the two crystals in the 49 

monochromator was adjusted to mistune the incident beam by 30%. The incident 50 

beam intensities were monitored and recorded using a nitrogen-15% argon gas 51 

flowing ionization chamber. The fluorescence signals were measured using Lytle-type 52 

detector (EXAFS Company, Pioche, NV, USA) with filter (EXAFS Materials Inc., 53 

Danvalle, CA, USA). XAS data were collected in an energy range from 8920 to 9080 54 

eV for Cu and 12920 to 14000 eV for Pb, covering K-edge absorption of Cu atoms 55 

and the Lш-edge absorption of Pb atoms. Three scans were averaged for both adsorbed 56 

samples and chemical standards. 57 

The code, WinXAS2.1, was used for data analysis (1). The mid-point of the 58 

absorption jump was chosen as the energy threshold. The pre-edge absorption 59 

background was fitted and subtracted using the Victoreen formula. The post-edge 60 

absorption backgrounds were fitted using the spline function and subtracted from the 61 

absorption spectra. The EXAFS functions were normalized using the absorption edge 62 

jump and were Fourier transformed to R-space with k3-weighting over the range from 63 

2.2-8.5 Å for Cu and 2-11 Å for Pb. The fit was performed in k-space with a model 64 

of one shell, where the coordination number (N), the atomic distance (R), energy 65 

offset (E0) and Debye-Waller factor (σ2) were allowed to float freely. Phase shifts and 66 
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backscattering amplitudes were obtained from the theoretical calculation using 67 

FEFF6.0 (2) and fit with the reference compounds, Cu(CH3COO)2 and 68 

Pb(CH3COO)2. 69 

 70 

Fluorescence Quenching Experiment  71 

    A 0.02 M pyrene stock solution was prepared in ethanol and diluted aqueous 72 

pyrene solutions (1 × 10-7 M) were prepared by placing the appropriate amount of 73 

stock solution in a dry volumetric flask and evaporating the ethanol. Subsequently, 74 

water was added and the solution was sonicated for at least 5 hrs. All working pyrene 75 

solutions were stored in the dark in glass flasks at room temperature. Quenching of 76 

pyrene fluorescence by bromide was measured by adding consecutive aliquots of 0, 77 

0.04, 0.08, and 0.16 M KBr, respectively, to fluorescence-free quartz cavetti 78 

containing 5 × 10-8 M pyrene and 0, 10, and 20 mg L-1 ash or HA. After the addition 79 

of KBr the solution was allowed to equilibrate for at least 5 min before fluorescence 80 

measurement. An equilibration time of 20 min produced no significant change in 81 

fluorescence intensity. Adsorption of pyrene to the quartz cell walls was not detected. 82 

Fluorescence excitation was set at 240 nm, and the emission was measured at 373 nm 83 

(F-3000 fluorescence spectrophotometer, Hitachi Co., Japan). The background 84 

fluorescence of ash and HA was corrected. The fluorescence quenching experiment 85 

was repeated three times. 86 

 87 

UV-Visible detection of pyrene 88 
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The concentration of pyrene was determined using a Hewlett-Packard Model 1100 89 

gradient HPLC system equipped with an auto-injector, photodiode-array UV-Visible 90 

detector at 254 nm, and an extended polar selectivity reversed-phase column (15 cm × 91 

4.6 mm i.d.). The mobile phase was a mixture of methanol and water (90:10) with a 92 

flow rate of 1.0 ml min-1. 93 

 94 
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Table S1. Characteristics of Wheat ash, TJHA and GeHA 
  ash  TJHA  GeHA 
Ash (%) 1.66 9.16 6.56 

C (%)  77.0  57.4  48.5 

N (%) 0.56 1.72 1.07 
H (%) 2.58 3.43 3.72 

O (%)  18.2  28.3  40.2 

H/C 0.40 0.71 0.91 
O/C 0.18 0.37 0.62 

N/C 0.01 0.03 0.02 

(N+O)/C 0.19 0.40 0.64 
No solutes adsorbed  410  36.7  32.6 

TCP-adsorbed  331  23.5  25.4 

 Cu-adsorbed  369  27.6  24.2 
BET Surface 
area (m2 g-1) 

 Pb-adsorbed  353  20.8  26.1 

Alkyl C (0 - 50 ppm) (%) 8.9  11  41 

O-alkyl C (50 - 110 ppm) (%) 6.9  16  42 
Aromatic C (110 - 145 ppm) (%)  73  71  12 

O-aryl C (145 - 163 ppm) (%) 9.0 1.0 1.2 

Carboxyl C (163 - 190 ppm) (%) 2.6 1.0 3.4 

Aliphatic C (%) 7.2  27  83 

Aromatic C (%)  90  72  13 

Aromaticity  12.5 2.66 0.16 

Aliphaticity 0.08 0.38 6.26 

*POC 0.182 0.177 0.466 
*POC: percentage of polar organic carbon, was calculated from the peak areas listed 
above with an equation: POC = (O-alkyl C + O-aryl C + carboxyl C)/(alkyl C +  101 
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TABLE S2. Results of Freundlich Model Fitting to the Adsorption 
Isotherms for TCP. 
 
      KF     N MWSE  R

2 
TCP alone 22.09 ± 1.25 0.40 ± 0.01 0.0072 0.994 
+ 0.1 mM Cd 21.20 ± 1.28 0.40 ± 0.01 0.0084 0.995 
+ 0.1 mM Cu 18.38 ± 0.20 0.38 ± 0.02 0.0061 0.995 

ash 

+ 0.1 mM Pb 18.29 ± 1.43 0.36 ± 0.01 0.0056 0.976 
      

TCP alone  1.50 ± 0.04 0.63 ± 0.01 0.0007 0.991 
+ 0.1 mM Cd 1.51 ± 0.06 0.63 ± 0.01 0.0014 0.989 
+ 0.1 mM Cu 1.25 ± 0.08 0.62 ± 0.01 0.0010 0.998 

TJHA 

+ 0.1 mM Pb 1.22 ± 0.09 0.61 ± 0.02 0.0028 0.987 
      

TCP alone  1.05 ± 0.10 0.79 ± 0.02 0.0900 0.988 
+ 0.1 mM Cd 1.09 ± 0.08 0.80 ± 0.02 0.0024 0.989 
+ 0.1 mM Cu 0.96 ± 0.04 0.79 ± 0.01 0.0032 0.983 

GeHA 

+ 0.1 mM Pb 0.99 ± 0.12 0.78 ± 0.02 0.0030 9.979 
MWSE is the mean weighted square error, equal to 1/v 
∑[(qmeasured-qmodel)

2/q2
measured], where v is the amount of freedom; v=n-2 for 

Freundlich Model; n=18 for ash, and 30 for TJHA and GeHA. 
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TABLE S3. XAFS Results of Metal Adsorbed Samples and Metal Reference Compounds 

 neighboring atoms R (Å)a CNb �σ
2 (Å2)c 

Cu-Oeq 1.97 4.75 0.007 Cu(CH3COO)2 

Cu-Oax 2.27 2.21 0.001 

Cu-Oeq 1.95 4.75 0.008 Cu2+ (aq)  

Cu-Oax 2.35 1.76 0.005 

Cu-Oeq 1.95 3.85 0.005 Cu(OH)2 

Cu-Oax 2.52 2.09 0.008 

Cu-Oeq 1.92 4.98 0.010 CuO 

Cu-Oax 2.63 1.90 0.009 

Cu-Oeq 1.97 4.43 0.008 Cu2+ adsorbed-ash 

 Cu-Oax 2.25 2.32 0.009 

Cu2+ adsorbed-TJHA Cu-Oeq 1.96 4.84 0.009 

 Cu-Oax 2.24 1.95 0.008 

Cu2+ adsorbed-GeHA Cu-Oeq 1.96 4.65 0.009 

 Cu-Oax 2.25 2.12 0.010 

     

Pb(CH3COO)2 Pb-O 2.38 1.69 0.010 

Pb2+ (aq)  Pb-O 2.48 2.75 0.010 

PbO Pb-O 2.31 3.92 0.009 

Pb2+ adsorbed-ash Pb-O 2.38 1.78 0.010 

Pb2+ adsorbed-TJHA Pb-O 2.38 1.80 0.009 

Pb2+ adsorbed-GeHA Pb-O 2.38 1.88 0.010 
a Interatomic distance. b Coordination number. c Debye-Waller factor (Å2). 
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FIGURE S1. Relationship between polarity ((N+O)/C and O/C ratio), or OC, 105 

hydrophilicity (H/C ratio), aliphaticities (aliphatic C (0-110 ppm)/aromatic C 106 

(110-165 ppm)), aromaticity of the adsorbents and Ns of TCP sorption. 107 
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FIGURE S2. Effects of different initial concentrations of Cu2+ or Pb2+ on the 109 

sorption of TCP (qTCP) (n = 3): (■) without Cu2+ or Pb2+, (●) 0.01 mM, (▼) 0.05 110 

mM, (▲) 0.1 mM Cu2+ or Pb2+.  111 
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FIGURE S3. XAS spectra of Cu adsorbed-ash, -TJHA, -GeHA, and two 121 

reference compounds (Cu(NO3)2 and Cu(CH3COO)2): (a) normalized XANES 122 

spectra, (b) first derivative spectra, (c) raw and fitted EXAFS spectra 123 

(χ-function), (d) Fourier transformation of EXAFS spectra. 124 
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FIGURE S4. XAS spectra of Pb adsorbed samples and reference compounds: (a) 132 

normalized XANES spectra, (b) first derivatives, (c) raw and fitted EXAFS 133 

spectra (χ-function), (d) Fourier transformation of EXAFS spectra.  134 
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FIGURE S5. Desorption of TCP in the absence of metals (a) and in the presence 136 

of 0.1 mM Cu (b) or 0.1 mM Pb (c) (n = 3). 137 
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FIGURE S6. Concentrations of pyrene (2.0 × 10-7 mol L-1) (n = 4) in aqueous 139 

solutions in the absence and presence of various concentrations of KBr. 140 
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FIGURE S7. Micropore diameter distribution of ash. 142 
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