Supporting Information for

Phosphine-Mediated Olefination between Aldehydes and Allenes: AnEfficient Synthesis of Trisubstituted 1,3-Dienes with HighE-SelectivitySilong Xu, Lili Zhou, San Zeng, Renqin Ma, Zhihong Wang, Zhengjie He*The State Key Laboratory of Elemento-Organic Chemistry and Department ofChemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
Table of Contents
General Remarks S2
Preparation of Allenoates 2 S2
General Olefination Procedure S3
Analytical Data for Dienes 3 and 4 S4
Reference S13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S14
NOSEY Spectra of $\mathbf{3 d}$ and $\mathbf{3 t}$ S64
ORTEP Representation of $\mathbf{3 c}$ and $\mathbf{3 t}$ S65

General Remarks

Unless otherwise mentioned, all reactions were carried out in nitrogen atmosphere under anhydrous conditions. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Variant 400 or a Bruker AV 300 spectrometer in CDCl_{3} with tetramethylsilane (TMS) as the internal standard. NOESY spectra were obtained on a Bruker AV 600 spectrometer in CDCl_{3}. Melting points were measured on a RY-I apparatus and uncorrected. High resolution ESI mass spectra were acquired with IonSpec QFT-ESI instrument. CHN microanalyses were measured with a Yanaco CHN Corder MT-3 automatic analyzer. X-ray crystallographic data were collected using a Nonius Kappa CCD diffractometer with Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.7107 \AA$) at room temperature. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether/ethyl acetate as eluant. Commercially available reagents were used without further purification. PTA was prepared from tetrahydroxymethylphosphonium sulfate according to a reported procedure. ${ }^{1}$

Preparation of Allenoates 2

Synthesis of ethyl 5-phenylpenta-2, 3-dienoate ${ }^{2}$ (2a)

Allenoate 2a is a known compound and was synthesized according to a similar method developed by Hansen ${ }^{3}$ and co-workers. To a solution of (ethoxycarbonylmethylene)triphenylphosphorane ($50 \mathrm{mmol}, 17.4 \mathrm{~g}) \quad$ in dichloromethane (200 mL) was added 1.1 equiv of triethylamine ($55 \mathrm{mmol}, 5.6 \mathrm{~g}$). After stirred for about 10 minutes, 1.1 equiv of 3-phenylpropanoyl chloride (55 mmol , 9.24 g) was dropwise added over 30 minutes at $0^{\circ} \mathrm{C}$. Then the reaction mixture was allowed to be warmed up to room temperature and stirred overnight. The resulting mixture was carefully evaporated to remove most of the solvent, and the residue was extracted by petroleum ether (bp $30-60^{\circ} \mathrm{C}, 5 \times 100 \mathrm{~mL}$). The combined extracting
was concentrated and the crude product was subjected to column chromatography purification (eluant: 5\% EtOAc in petroleum ether) to provide the allenoate 2a as yellow oil ($9.4 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}$): $\delta=7.36-7.15$ (m , $5 \mathrm{H}), 5.78-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.59(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{TMS}\right): \delta=212.7,166.0,138.5$, $128.4,126.5,94.7,88.6,60.8,34.0,14.2$.

Synthesis of 1-ethyl 6-methyl 2, 3-hexadienedioate (2b)

3-Carbomethoxypropionyl chloride was prepared according to a procedure described in literature ${ }^{4}$. Preparation of the allenoate $\mathbf{2 b}$ was followed a similar procedure for $\mathbf{2 a}$ described above.

Allenoate 2b (colorless oil, 76% yield); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}$): $\delta=$ 5.83-5.78 (m, 1H), 5.69-5.67 (m, 1H), $4.20(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.23-3.18 (m, 2H), $1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=$ $212.3,170.3,165.2,89.0,88.6,60.8,51.9,32.6,14.0$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}^{+}$ requires 207.0628, found 207.0632.

General Olefination Procedure

$\mathbf{P h}_{3} \mathbf{P}$-mediated olefination of allenoate 2 a with aldehydes:

At room temperature and under nitrogen atmosphere, to a stirred solution of aldehyde $(0.5 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(0.6 \mathrm{mmol}, 157 \mathrm{mg})$ in dichloromethane $(2 \mathrm{~mL})$ was added allenoate $2 \mathbf{a}(0.6 \mathrm{mmol}, 121 \mathrm{mg})$ by the means of a microsyringe over 5 minutes. The resulting reaction mixture was further stirred at room temperature and monitored by TLC. When the aldehyde disappeared, the solvent was removed under reduced pressure and the residue was subjected to column chromatography on silica gel
(gradient eluant: petroleum ether/ethyl acetate 20:1-5:1) to give diene 3.

PTA-mediated olefination of allenoate 2a or 2b with aldehydes:

At room temperature and under nitrogen atmosphere, to a stirred solution of aldehyde $(0.5 \mathrm{mmol})$ and PTA ($0.6 \mathrm{mmol}, 94 \mathrm{mg}$) in dichloromethane $(5 \mathrm{~mL})$ was added allenoate $2 \mathbf{a}(0.6 \mathrm{mmol}, 121 \mathrm{mg})$ or $\mathbf{2 b}(0.6 \mathrm{mmol}, 110 \mathrm{mg})$ by the means of a microsyringe over 5 minutes. The reaction mixture was further stirred at room temperature and monitored by TLC. When the aldehyde disappeared, water (15 mL) was added to dissolve the PTA oxide. The organic layer was separated and the aqueous layer was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined extracting was dried over sodium sulfate and concentrated, and the residue was subjected to column chromatography on silica gel (gradient eluant: petroleum ether/ethyl acetate 20:1-5:1) to afford diene 3.

Analytical Data for Dienes 3 and 4

(3E,4E)-ethyl 3-(2-chlorobenzylidene)-5-phenylpent-4-enoate (3a) obtained from o-chlorobenzaldehyde ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($131 \mathrm{mg}, 80 \%$ yield): mp $87-88^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3024,2987,2897,1741,1467,1448,1319,1184,1151$, 1028, 964, 831, 761, 751, 691, $657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}$): $\delta=7.56$ $(\mathrm{dd}, \mathrm{J}=7.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.4,137.0,135.2,134.1,134.0,131.7$, 131.6, 130.3, 129.4, 129.3, 128.7, 128.6, 127.7, 126.6, 126.5, 61.0, 34.3, 14.2; Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_{2}$: C, $73.50 ; \mathrm{H}, 5.86 \%$; found: C, $73.55 ; \mathrm{H}, 5.95 \%$.

(3E,4E)-ethyl 3-(2-nitrobenzylidene)-5-phenylpent-4-enoate (3b) obtained from o-nitrobenzaldehyde ($76 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a yellow solid ($167 \mathrm{mg}, 99 \%$ yield): mp
$81-82^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3022,2985,2922,1721,1514,1335,1239,1195,1140$, 1025, $963,870,741,685,548 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=8.07(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=16.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.1,148.1,136.8,134.1,133.1$, $132.3,131.6,131.0,130.3,129.9,128.6,128.3,127.8,126.6,124.7,61.0,34.3,14.1 ;$ Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, $71.20 ; \mathrm{H}, 5.68 ; \mathrm{N}, 4.15 \%$; found: C, $71.07 ; \mathrm{H}, 5.99 ; \mathrm{N}$, 3.99\%.

(3E,4E)-ethyl 3-(3-nitrobenzylidene)-5-phenylpent-4-enoate (3c) obtained from m-nitrobenzaldehyde ($76 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a yellow solid ($167 \mathrm{mg}, 99 \%$ yield): mp $68-69^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3072,2976,2902,1726,1533,1351,1305,1199,1130$, 1068, $966,810,731,696,607,549 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=8.32$ (s, 1H), $8.11(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54-7.44 (m, 3H), 7.36-7.23 (m, 3H), $6.96(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz, TMS): $\delta=170.8,148.3,138.4,136.7,135.1,134.7,131.7,131.2,130.3,129.2$, 128.6, 127.9, 126.6, 123.4, 121.9, 61.3, 34.0, 14.1; Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 71.20; H, 5.68; N, 4.15\%; found: C, 70.96; H, 5.87; N, 4.12\%.

(3E,4E)-ethyl 3-(4-nitrobenzylidene)-5-phenylpent-4-enoate (3d) obtained from p-nitrobenzaldehyde ($76 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a yellow solid ($155 \mathrm{mg}, 92 \%$ yield): mp $98-99^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3021,2977,1727,1591,1514,1446,1334,1197,1107$, 1030, 963, 889, 840, 741, 686, $634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}$): $\delta=8.16$ (d, J = 8.6 Hz, 2H), 7.56 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.23(\mathrm{~m}$, $3 H), 6.95(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=$
170.7, 146.5, 143.4, 136.6, 135.7, 132.1, 131.3, 130.6, 129.4, 128.6, 128.0, 126.6, 123.5, 61.2, 34.0, 14.1; Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 71.20; H, 5.68; $\mathrm{N}, 4.15 \%$; found: C, 71.21; H, 5.29; N, 4.19\%.

(3E,4E)-ethyl 3-(4-(trifluoromethyl)benzylidene)-5-phenylpent-4-enoate (3e) obtained from p-trifluoromethylbenzaldehyde ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($144 \mathrm{mg}, 80 \%$ yield): $\mathrm{mp} 49-50^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3027,2989,1728,1608,1444$, 1324, 1252, 1163, 1114, 1066, 1027, 958, 889, 849, 749, 694, $598 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}$, $\mathrm{J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.1,140.5,137.0,134.6,133.1,131.6,129.8$, 129.0 , 128.7, 128.7 (q, J = $36.7 \mathrm{~Hz}, 1 \mathrm{C}$), 127.9, 126.6, 125.3 (q, J = $3.8 \mathrm{~Hz}, 2 \mathrm{C}$), $124.2(\mathrm{q}, \mathrm{J}=271.4 \mathrm{~Hz}, 1 \mathrm{C}), 61.1,34.1,14.2$; Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2}: \mathrm{C}, 69.99 ; \mathrm{H}$, 5.31\%; found: C, 70.13; H, 5.38\%.

(3E,4E)-ethyl 3-(2-cyanobenzylidene)-5-phenylpent-4-enoate (3f) obtained from o-cyanobenzaldehyde ($66 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($157 \mathrm{mg}, 99 \%$ yield): mp $77-78^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3028,2981,2933,2220,1723,1593,1478,1446,1364$, $1324,1195,1142,1026,958,841,764,684,540 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, TMS): $\delta=7.74(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $\mathrm{J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.9,140.2,136.6,136.3,132.9,132.5,131.1$, 130.7, 130.0, 129.3, 128.6, 128.0, 127.6, 126.7, 117.7, 112.4, 61.1, 34.2, 14.1; Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 79.47; $\mathrm{H}, 6.03$; $\mathrm{N}, 4.41 \%$; found: C, $79.18 ; \mathrm{H}, 6.00$; N , 4.44\%.

(3E,4E)-ethyl 3-(furan-2-ylmethylene)-5-phenylpent-4-enoate $\mathbf{(3 g}$) obtained from 2-furylaldehyde ($48 \mathrm{mg}, 0.5 \mathrm{mmol}$) as yellow oil ($102 \mathrm{mg}, 72 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.42-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.45-6.39(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H})$, $1.22(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.9,152.5,142.6$, $137.1,131.9,129.9,128.5,128.3,127.4,126.3,121.6,111.6,111.5,60.7,33.9,14.1$; Anal calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$: C, $76.57 ; \mathrm{H}, 6.43 \%$; found: $\mathrm{C}, 76.50 ; \mathrm{H}, 6.64 \%$.

(3E,4E)-ethyl 5-phenyl-3-(pyridin-2-ylmethylene)pent-4-enoate (3h) obtained from 2-pyridylaldehyde ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil $\left(103 \mathrm{mg}, 70 \%\right.$ yield); ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=8.55(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dt}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.23(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.3,155.9,148.9$, $136.9,136.3,135.9,132.6,132.0,129.7,128.5,127.6,126.5,125.1,121.1,60.4,33.5$, 14.1; Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 77.79 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.77 \%$; found: $\mathrm{C}, 77.72 ; \mathrm{H}$, 6.73 ; N, 4.71\%.

(3E,4E)-ethyl 5-phenyl-3-(pyridin-3-ylmethylene)pent-4-enoate (3i) obtained from 3-pyridylaldehyde ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($111 \mathrm{mg}, 76 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=8.54(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ $(\mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.8,149.7,148.0,136.6,135.4$, $134.6,132.4,131.3,130.5,129.5,128.4,127.6,126.4,123.0,60.9,33.8,14.0$; Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 77.79 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.77 \%$; found: $\mathrm{C}, 77.68 ; \mathrm{H}, 6.35 ; \mathrm{N}$,
4.59\%.

($3 E, 4 E$)-ethyl 5-phenyl-3-(pyridin-4-ylmethylene)pent-4-enoate ($\mathbf{3 j}$) obtained from 4-pyridylaldehyde ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($111 \mathrm{mg}, 76 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=8.48(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.25-7.11 (m, 5H), $6.83(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $4.12(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz, TMS): $\delta=170.6,149.7,144.1,136.5,135.8,131.5,131.2,130.4,128.5,128.9$, 126.5, 123.1, 61.0, 33.9, 14.0; Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 77.79; H, 6.53; $\mathrm{N}, 4.77 \%$; found: C, $77.70 ; \mathrm{H}, 6.60 ; \mathrm{N}, 4.77 \%$.

($3 E, 4 E$)-ethyl 5-phenyl-3-(thiophen-2-ylmethylene)pent-4-enoate (3 k) obtained from 2-thiofurylaldehyde ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($106 \mathrm{mg}, 71 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.44-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.5,139.8$, 137.2, 132.1, 130.8, 128.5, 128.4, 127.4, 127.3, 127.2, 126.4, 126.3, 126.2, 61.0, 34.2, 14.1; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{SNa}^{+}$requires 321.0920, found 321.0927.

(3E,4E)-ethyl 3-benzylidene-5-phenylpent-4-enoate (31) obtained from benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($133 \mathrm{mg}, 91 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.45-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.5,137.2,136.9,134.9,132.7$, 132.2, 128.8, 128.6, 128.5, 128.3, 127.5, 127.3, 126.4, 60.9, 34.1, 14.2; Anal calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 82.16 ; H, 6.89\%; found: C, 81.96 ; H, 6.89%.

($3 E, 4 E$)-ethyl 3-(4-methylbenzylidene)-5-phenylpent-4-enoate (3 m) obtained from p-methylbenzaldehyde ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($78 \mathrm{mg}, 51 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.43(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.16(\mathrm{~m}, 7 \mathrm{H}), 6.96$ $(\mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.57(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, TMS): $\delta=171.6,137.2,137.1,135.0,133.9,132.3,132.0,129.0,128.7,128.5,128.1$, 127.4, 126.3, 60.9, 34.0, 21.2, 14.2; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}^{+}$requires 329.1512, found 329.1518 .

(3E,4E)-ethyl 3-(4-methoxybenzylidene)-5-phenylpent-4-enoate (3n) obtained from p-methoxybenzaldehyde ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($81 \mathrm{mg}, 50 \%$ yield): mp. $49-51^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3024,2956,2839,1729,1601,1508,1442,1299$, 1251, 1181, 1142, 1027, 961, 844, 749, 693, $528 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, TMS): $\delta=7.43(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$, TMS): $\delta=171.6,158.8,137.3,134.7,132.4,131.2,130.1,129.3,128.5,127.7,127.3$, 126.3, 113.8, 60.9, 55.1, 34.0, 14.2; Anal calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}$: C, $78.23 ; \mathrm{H}, 6.88 \%$; found: C, 78.34; H, 6.41\%.

($3 E, 4 E$)-ethyl 3-(4-(dimethylamino)benzylidene)-5-phenylpent-4-enoate
obtained from p - $(N, N$-dimethylamino)benzaldehyde ($75 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a yellow solid ($72 \mathrm{mg}, 43 \%$ yield): mp. $73-76{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}$): $\delta=7.43$ (d, J = 7.5 Hz, 2H), 7.34-7.17 (m, 5H), $6.97(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.97$ $(\mathrm{s}, 6 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.9,149.7$,
137.7, 135.5, 133.2, 130.1, 129.5, 128.5, 127.0, 126.7, 126.2, 125.0, 112.0, 60.8, 40.3, 34.2, 14.2; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{H}^{+}$requires 336.1958, found 336.1961.

(3E,5E)-ethyl 6-phenyl-3-((E)-styryl)hexa-3,5-dienoate (3p) obtained from trans-cinnamaldehyde ($66 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a yellow solid ($48 \mathrm{mg}, 30 \%$ yield): mp $71-74{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.46-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.16(\mathrm{dd}, \mathrm{J}=$ $15.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{t}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.7,137.4,137.3,134.9$, $134.5,132.3,131.7,128.6,128.5,128.4,127.8,127.5,126.6,126.5,124.7,60.9,33.4$, 14.2; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}^{+}$requires 341.1512, found 341.1517.

(\boldsymbol{E})-ethyl 3-((\boldsymbol{E})-styryl)hex-3-enoate ($\mathbf{3 q}$) obtained from propylaldehyde ($29 \mathrm{mg}, 0.5$ mmol) as colorless oil ($54 \mathrm{mg}, 44 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}$): $\delta=$ 7.32-7.10 (m, 5H), $6.71(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.2,138.8$, 137.5, 132.0, 130.6, 128.5, 127.0, 126.3, 126.2, 60.7, 32.9, 22.0, 14.2, 14.1; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}^{+}$requires 267.1355, found 267.1358.

(\boldsymbol{E})-ethyl 3-((\boldsymbol{E})-styryl)hept-3-enoate ($\mathbf{3 r}$) obtained from n-butylaldehyde (36 mg , 0.5 mmol) as colorless oil ($59 \mathrm{mg}, 46 \%$ yield), contaminated by the minor product (Z, E)-isomer with a ratio of $(E, E):(Z, E)=8: 1 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right)$: $\delta=7.39(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H})$, 2.24-2.18 (m, 2H), 1.53-1.43 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), $0.96(t, J=7.4 H z, 3 H) ;$ ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.2,137.6,137.1,132.1,131.3,128.5,127.0$,
$126.4,126.2,60.7,33.0,30.8,22.5,14.2,13.8$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}^{+}$ requires 281.1512, found 281.1515 .

(2E,4E)-6-ethyl 1-methyl 4-(2-chlorobenzylidene)hex-2-enedioate (3s) obtained from o-chlorobenzaldehyde ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($83 \mathrm{mg}, 54 \%$ yield): $\mathrm{mp} 55-57{ }^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3060,2972,2947,1730,1709,1619,1464,1434$, $1316,1251,1224,1197,1003,858,764,687,459 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, TMS): $\delta=7.46(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05$ (s, 1H), $5.93(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H})$, $1.18(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.4,167.0,147.1$, 138.3, 134.0, 132.3, 130.0, 129.5, 129.4, 126.6, 118.5, 61.0, 51.5, 33.8, 14.0; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4} \mathrm{Na}^{+}$requires 331.0708, found 331.0702.

($2 E, 4 E$)-6-ethyl 1-methyl 4-(3-nitrobenzylidene)hex-2-enedioate (3t) obtained from m-nitrobenzaldehyde ($76 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($116 \mathrm{mg}, 73 \%$ yield): $\mathrm{mp} 69-70{ }^{\circ} \mathrm{C}$; IR (thin film): $v_{\max } 3064,2979,2954,1714,1624,1524,1463,1432$, $1348,1319,1238,1199,1132,1093,991,856,810,736,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}, \mathrm{TMS}): \delta=8.34(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61-7.56 (m, 1H), $7.50(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.1,167.0,148.4,146.8,138.3,137.3,134.8,133.5$, 129.6, 123.7, 123.0, 119.6, 61.6, 51.7, 33.9, 14.1; Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 60.18; H, 5.37; N, 4.39\%; found: C, 59.94; H, 5.47; N, 4.25\%.

($2 E, 4 E$)-6-ethyl 1-methyl 4-(4-(trifluoromethyl)benzylidene)hex-2-enedioate: 6e (3u) obtained from p-trifluoromethylbenzaldehyde ($87 \mathrm{mg}, 0.5 \mathrm{mmol}$) as a white solid ($120 \mathrm{mg}, 70 \%$ yield): mp. $45-47{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J}$
$=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.06$ $(\mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.4,167.1,147.3,139.8,139.2$, 132.7, 130.0 (q, J = $32.9 \mathrm{~Hz}, 1 \mathrm{C}$), 129.1, $125.4(\mathrm{q}, \mathrm{J}=3.3 \mathrm{~Hz}, 2 \mathrm{C}), 118.8,61.4,51.7$, 33.7, 14.1; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Na}^{+}$requires 365.0971, found 365.0966.

(2E,4E)-6-ethyl 1-methyl 4-benzylidenehex-2-enedioate (3v) obtained from benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($86 \mathrm{mg}, 63 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.51(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~s}$, $1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H})$, $1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.5,167.1,148.0$, 141.6, 135.6, 130.9, 128.8, 128.4, 128.2, 117.6, 61.0, 51.4, 33.6, 14.0; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Na}^{+}$requires 297.1097, found 297.1100.

(2E,4E)-6-ethyl 1-methyl 4-(4-methoxybenzylidene)hex-2-enedioate (3w) obtained from p-methoxybenzaldehyde ($68 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($50 \mathrm{mg}, 33 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.50(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{TMS}\right): \delta=170.9,167.5,159.7,148.6,141.7,130.6,129.2,128.2$, 116.6, 114.0, 61.2, 55.2, 51.6, 33.8, 14.1; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}^{+}$requires 327.1203, found 327.1207.

($2 E, 4 E$)-6-ethyl 1-methyl 4-(2-hydroxybenzylidene)hex-2-enedioate ($\mathbf{3 x}$) obtained from salicylaldehyde ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) as colorless oil ($103 \mathrm{mg}, 71 \%$ yield), contaminated by the minor product (Z, E)-isomer with a ratio of $(E, E):(Z, E)=8: 1$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{TMS}\right): \delta=7.56(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
7.27 (d, J = 7.7 Hz, 1H), 7.19-7.15 (m, 2H), 6.90-6.85 (m, 2H), 5.92 (d, J = 15.8 Hz , $1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{TMS}\right): \delta=171.5,168.0,154.4,148.4,138.2,131.5,130.0$, $129.4,122.6,120.0,116.8,116.0,61.3,51.7,33.9,13.9$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}^{+}$requires 313.1046, found 313.1038.

(2E,4E)-ethyl 5-phenylpenta-2,4-dienoate ${ }^{5}$ (4) obtained from allenoate 2a (101 mg , 0.5 mmol) as slightly yellow oil ($79 \mathrm{mg}, 78 \%$ yield) ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, TMS) 7.45-7.41 (m, 3H), 7.36-7.29 (m, 3H), 6.91-6.82 (m, 2H), 5.98 (d, J = 15.3 Hz , $1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, TMS): $\delta=166.9,144.4,140.3,136.0,128.9,128.7,127.1,126.2,121.3,60.2,14.2$.

Reference

1. Daigle, D. J. Inorg. Synth. 1998, 32, 40.
2. Suarez, A.; Fu, G. C. Angew. Chem. In. Ed. 2004, 43, 3580.
3. Hansen, H.-J. Helv. Chim. Acta. 1980, 63, 438.
4. Nenitzescu; Cioranescu; Przemetzky; Chem. Ber. 1940, 73, 313.
5. Dockendorff, C.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

[^0]तิ

Dafer 24 Moy 2009 Docoment's Titio: $2 \cdot \mathrm{CH}+\mathrm{mrc}$		
Speetrum Tite:		
None		
Frequency (Mhtiz):		
(1) 360.132		
Origha/ Points Count: (1) 9258		
Achual Points Count: (1) 327 Ea		
Acquisioion Time(sec): (1) 1.49 bs		
Spectral With (ppm).$\text { (f1) } 20.567$		
Pulse Prograw:		
2630		
Temperature:		
295		
Mumber of Sams:		
Ace, Date: Wed Det $0500.30: 13 \mathrm{AM}$		

$00000 \sim$

ल゙

ppm (t1)

2L1゙もに

Z9Z 2 FE \qquad

${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{M}, \mathrm{CDCl}_{3}\right)$

000 '0

$020^{\circ} \mathrm{Fl}$ \qquad

SOE'DE \qquad

Dasa:	
	25 Jun 2000
	Document's nile:
	\$NOETH.mre
	Spectrum Twev
	None
	Frequency (WHa): (71 300.132
	Originar Points Count: (1) 2 g 58
	Actyal Pointz Count: (H) 32768
	Acowisinion Time (sec): (1) 1.4996
	Spectral Width (ppmo: (F1) 20.567
	Pulse Prograw: 2630
	Temperature:
	295
	Number of Scans:
	8
	Acep. Dute:
	TueNor $0612: 02: 30 \mathrm{~mm}$

0000

＊90＇01

[^1]

980°

096 EE \qquad

$000^{\prime} 0$

LL1＇H1 \qquad

\qquad

0000 '0 \qquad

950 'Z

(ε^{1} Oaכ 'WOOE) yWN H
$\stackrel{m}{m}$

ppm (f1)

ppm (11)
$000^{\prime} 0$

990° \qquad

沶皆E \qquad

$660^{\circ} \mathrm{v}$ \qquad

$198 \cdot 09$

6ッドリ

切しまて！
p81921
$98 S^{2} \angle 2$
25v8を1
8126Z！
966 เモ！
919ZE1
1169E1
zoc9el
1Е6 9E1
e68971
b98991
LIELLI

Deter	
	14 Apr 2009
	Document's Tile:
	51
Spectrum Titike	
	None
Frequancy (Mra):	
	(1) 350.132
Origina/ Peints Coust:	
	(1) 9258
Actual Points Count. f1) 32788	
Acquisition Tirve (sec): (fi) 1.4996	
Spectral Wath (ppm): f1) 2085	
Pulse Prograne	
2 S 30	
Temperature:	
236.5	
Number of Scans:	
8	
Acg Dove:	
	Sat Nov 170457 714 PM

${ }^{1} \mathrm{H}$ NMR (300M, CDCl_{3})

Dase:$25 \text { Jun } 2009$	
	Documant's Tile:
	4-yndyl-H.mes
	Spoctruw Tine: None
	Frequency (MWa): (1) 300.132
	Original Points Count: (1) 4255
	Actual Points Count. (H) 32766
	Acquisinion Thine (sec): (1) 1.4596
	Spectral Width (ppmi: (7) 20.567
	Pulse Prograw: 26010
	Teroperature:
	25.5
	Number of Scans:
	6
	Aceq. Duse
	SatNov 1705002.50 PM

$0000^{\circ}-$

ppm (t1)
$600^{\prime} \mathrm{Fl}$ \qquad

298'EE \qquad

$0000-$

$000^{\circ} 0$

$\mathrm{D} \mathrm{LL}^{\circ}$
861^{-}

してLし

205

1099
0089
日G8
216
6E1－
891＇2
$18 \mathrm{~L}^{\circ}$
6EZ
99Z
DLZ
86\％
boe
60 CL

$59-$
12
$86 l^{\prime \prime} \mathrm{y}$ \qquad

S $\angle 0^{\circ} \mathrm{FE}$ \qquad

ppm (t1)

$000^{\prime} 0 \longrightarrow$

0 NE 2

m

レていった
と9เ＇เ \qquad
866ε \qquad
$08809 \longrightarrow$
28992
$000 \angle L \longrightarrow$
$818 \angle L$

ppm（t1）

0000%

m
ppm (t1)
$00 Z^{\prime} \mathrm{bl}$ \qquad

$$
\begin{aligned}
& 68 L \text { 'gS } \\
& 968 ' 09
\end{aligned}
$$

\qquad
19992
$000 \% 2$

81E'L2

$1 \varepsilon^{\prime} L L$

it9:LL

$0000^{\prime} 0$

\qquad
619
261
0巾て
OたZ＇
と
809

\qquad

$\mathbf{3 q}$

862 ED

200 D
090 t
SELS
25 2
LeE
LEt
62L
960
8 BL
291~
261^{2}
EEC1
$\operatorname{COE} \angle 2$
LモE 2

$820<2$
29820 \qquad

ppm (t1)

\qquad

$0000 \longrightarrow$

\cdots

00000 \qquad

1609
8802
CLV
925
955
095
EBS
6092
$6 E L^{2} L$ —
غ818
20Z8
gees

Deter
25 Jun 20
Deser
25 Jun 2000
Decument's Tile:
esler-3-NO2.C.me

Frequancy (wha):
71) 75.456
Origina/ Peints Coust:
Ti) 32798
(1) 32788
Actual Points Count:
(11) 32788

Spectra/ Woth (ppm):
(fi) 230.322

$090 \cdot \mathrm{pl}$ \qquad

898 EE
8ε L'LS
S6S'19 \longrightarrow

$000^{\circ} 0$

\vec{m}
ppm (11)

1899
000 'L2 $81 \varepsilon \angle L$

0000

896 E

\qquad
$629 \mathrm{E} \mathrm{\varepsilon}$
\qquad

\qquad

0000

NOSEY Spectra of 3d and 3t

ORTEP Representation of $3 c$ and $3 t$

Table 1. Crystal Data and Structure Refinement for 3c

Identification code	3c
Empirical formula	C20H19NO4
Formula weight	337.36
Temperature	294(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=6.854(2) \AA \text { alpha }=90^{\circ} \\ & \mathrm{b}=7.879(2) \AA \text { beta }=90^{\circ} \\ & \mathrm{c}=32.765(10) \AA \text { gamma }=90^{\circ} \end{aligned}$
Volume	1769.4(10) \AA^{3}
Z	4
Calculated density	$1.266 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.088 \mathrm{~mm}^{-1}$
F(000)	712
Crystal size	$0.26 \times 0.22 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	1.24 to 26.42°
Limiting indices	$-8<=\mathrm{h}<=8,-9<=\mathrm{k}<=7,-40<=1<=40$
Reflections collected	9978
Independent reflections	3639 [R(int) $=0.0449]$
Completeness to theta $=26.42^{\circ}$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9825 and 0.9774
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3639 / 0 / 227
Goodness-of-fit on F^{2}	0.998
Final R indices $[1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0474, \mathrm{wR} 2=0.1033$
R indices (all data)	$\mathrm{R} 1=0.1189, \mathrm{wR} 2=0.1288$
Largest diff. peak and hole	0.137 and -0.177 e. \AA^{-3}

Table 2. Crystal Data and Structure Refinement for 3t

Identification code	$\mathbf{3 t}$
Empirical formula	C 16 H 17 NO 6
Formula weight	319.31
Temperature	$113(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions	$\mathrm{a}=8.2434(16) \AA$ alpha $=82.63(3)^{\circ}$
	$\mathrm{b}=9.3954(19) \AA$ beta $=84.66(3)^{\circ}$
	$\mathrm{c}=10.116(2) \AA$ gamma $=80.19(3)^{\circ}$
Volume	$763.6(3) \AA^{3}$
Z	2
Calculated density	$1.389 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.107 \mathrm{~mm}{ }^{-1}$
$\mathrm{~F}(000)$	336
Crystal size	$0.16 \times 0.12 \times 0.08 \mathrm{~mm}$
Theta range for data collection	2.04 to 25.01°
Limiting indices	$-9<=\mathrm{h}<=7,-11<=\mathrm{k}<=11,-12<=1<=11$
Reflections collected	5656
Independent reflections	$2666[\mathrm{R}($ int $)=0.0248]$
Completeness to theta $=25.01^{\circ}$	99.3%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9915 and 0.9831
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints $/$ parameters	$2666 / 0 / 210$
Goodness-of-fit on F^{2}	1.072
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0327, \mathrm{wR} 2=0.0915$
R indices (all data)	$\mathrm{R} 1=0.0424, \mathrm{wR} 2=0.0962$
Largest diff. peak and hole	0.169 and $-0.228 \mathrm{e} . \AA^{-3}$

[^0]:
 ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{M}, \mathrm{CDCl}_{3}\right)$

[^1]: ppm（t1）

