Supporting Information for

Phosphine-Mediated Olefination between Aldehydes and Allenes: An Efficient Synthesis of Trisubstituted 1,3-Dienes with High *E*-Selectivity

Silong Xu, Lili Zhou, San Zeng, Renqin Ma, Zhihong Wang, Zhengjie He*

The State Key Laboratory of Elemento-Organic Chemistry and Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China

Table of Contents

General Remarks	S2
Preparation of Allenoates 2	S2
General Olefination Procedure	S3
Analytical Data for Dienes 3 and 4	S4
Reference	S13
¹ H and ¹³ C NMR Spectra	S14
NOSEY Spectra of 3d and 3t	S64
ORTEP Representation of 3c and 3t	S65

General Remarks

Unless otherwise mentioned, all reactions were carried out in nitrogen atmosphere under anhydrous conditions. ¹H and ¹³C NMR spectra were recorded on a Variant 400 or a Bruker AV 300 spectrometer in CDCl₃ with tetramethylsilane (TMS) as the internal standard. NOESY spectra were obtained on a Bruker AV 600 spectrometer in CDCl₃. Melting points were measured on a RY-I apparatus and uncorrected. High resolution ESI mass spectra were acquired with IonSpec QFT-ESI instrument. CHN microanalyses were measured with a Yanaco CHN Corder MT-3 automatic analyzer. X-ray crystallographic data were collected using a Nonius Kappa CCD diffractometer with Mo K α radiation ($\lambda = 0.7107$ Å) at room temperature. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether/ethyl acetate as eluant. Commercially available reagents were used without further purification. PTA was prepared from tetrahydroxymethylphosphonium sulfate according to a reported procedure.¹

Preparation of Allenoates 2

Synthesis of ethyl 5-phenylpenta-2, 3-dienoate² (2a)

Allenoate 2a is a known compound and was synthesized according to a similar method developed by Hansen³ and co-workers. To solution а of (ethoxycarbonylmethylene)triphenylphosphorane (50 17.4 mmol. in g) dichloromethane (200 mL) was added 1.1 equiv of triethylamine (55 mmol, 5.6 g). After stirred for about 10 minutes, 1.1 equiv of 3-phenylpropanoyl chloride (55 mmol, 9.24 g) was dropwise added over 30 minutes at 0 °C. Then the reaction mixture was allowed to be warmed up to room temperature and stirred overnight. The resulting mixture was carefully evaporated to remove most of the solvent, and the residue was extracted by petroleum ether (bp 30-60 °C, 5×100 mL). The combined extracting was concentrated and the crude product was subjected to column chromatography purification (eluant: 5% EtOAc in petroleum ether) to provide the allenoate **2a** as yellow oil (9.4 g, 93% yield). ¹H NMR (CDCl₃, 400 MHz, TMS): δ = 7.36-7.15 (m, 5H), 5.78-5.73 (m, 1H), 5.62-5.59 (m, 1H), 4.24-4.15 (m, 2H), 3.49-3.44 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): δ = 212.7, 166.0, 138.5, 128.4, 126.5, 94.7, 88.6, 60.8, 34.0, 14.2.

Synthesis of 1-ethyl 6-methyl 2, 3-hexadienedioate (2b)

3-Carbomethoxypropionyl chloride was prepared according to a procedure described in literature⁴. Preparation of the allenoate **2b** was followed a similar procedure for **2a** described above.

Allenoate **2b** (colorless oil, 76% yield); ¹H NMR (CDCl₃, 400 MHz, TMS): $\delta = 5.83-5.78$ (m, 1H), 5.69-5.67 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.23-3.18 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75MHz, TMS): $\delta = 212.3$, 170.3, 165.2, 89.0, 88.6, 60.8, 51.9, 32.6, 14.0; HRMS calcd for C₉H₁₂O₄Na⁺ requires 207.0628, found 207.0632.

General Olefination Procedure

Ph₃P-mediated olefination of allenoate 2a with aldehydes:

At room temperature and under nitrogen atmosphere, to a stirred solution of aldehyde (0.5 mmol) and Ph_3P (0.6 mmol, 157 mg) in dichloromethane (2 mL) was added allenoate **2a** (0.6 mmol, 121 mg) by the means of a microsyringe over 5 minutes. The resulting reaction mixture was further stirred at room temperature and monitored by TLC. When the aldehyde disappeared, the solvent was removed under reduced pressure and the residue was subjected to column chromatography on silica gel

(gradient eluant: petroleum ether/ethyl acetate 20:1–5:1) to give diene 3.

PTA-mediated olefination of allenoate 2a or 2b with aldehydes:

At room temperature and under nitrogen atmosphere, to a stirred solution of aldehyde (0.5 mmol) and PTA (0.6 mmol, 94 mg) in dichloromethane (5 mL) was added allenoate **2a** (0.6 mmol, 121 mg) or **2b** (0.6 mmol, 110 mg) by the means of a microsyringe over 5 minutes. The reaction mixture was further stirred at room temperature and monitored by TLC. When the aldehyde disappeared, water (15 mL) was added to dissolve the PTA oxide. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 × 10 mL). The combined extracting was dried over sodium sulfate and concentrated, and the residue was subjected to column chromatography on silica gel (gradient eluant: petroleum ether/ethyl acetate 20:1–5:1) to afford diene **3**.

Analytical Data for Dienes 3 and 4

(*3E*,4*E*)-ethyl 3-(2-chlorobenzylidene)-5-phenylpent-4-enoate (3a) obtained from *o*-chlorobenzaldehyde (70 mg, 0.5 mmol) as a white solid (131 mg, 80% yield): mp 87-88 °C; IR (thin film): v_{max} 3024, 2987, 2897, 1741, 1467, 1448, 1319, 1184, 1151, 1028, 964, 831, 761, 751, 691, 657 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.56 (dd, J = 7.0, 2.3 Hz, 1H), 7.47-7.19 (m, 8H), 7.02 (d, J = 16.3 Hz, 1H), 6.93 (s, 1H), 6.69 (d, J = 16.3 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.47 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 171.4, 137.0, 135.2, 134.1, 134.0, 131.7, 131.6, 130.3, 129.4, 129.3, 128.7, 128.6, 127.7, 126.6, 126.5, 61.0, 34.3, 14.2; Anal. calcd for C₂₀H₁₉ClO₂: C, 73.50; H, 5.86%; found: C, 73.55; H, 5.95%.

(3*E*,4*E*)-ethyl 3-(2-nitrobenzylidene)-5-phenylpent-4-enoate (3b) obtained from *o*-nitrobenzaldehyde (76 mg, 0.5 mmol) as a yellow solid (167 mg, 99% yield): mp

81-82 °C; IR (thin film): v_{max} 3022, 2985, 2922, 1721, 1514, 1335, 1239, 1195, 1140, 1025, 963, 870, 741, 685, 548 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 8.07$ (d, J = 7.7 Hz, 1H), 7.68-7.59 (m, 2H), 7.48-7.22 (m, 6H), 7.13 (s, 1H), 7.00 (d, J = 16.3 Hz, 1H), 6.70 (d, J = 16.3 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.37 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 171.1$, 148.1, 136.8, 134.1, 133.1, 132.3, 131.6, 131.0, 130.3, 129.9, 128.6, 128.3, 127.8, 126.6, 124.7, 61.0, 34.3, 14.1; Anal calcd for C₂₀H₁₉NO₄: C, 71.20; H, 5.68; N, 4.15%; found: C, 71.07; H, 5.99; N, 3.99%.

(*3E*,4*E*)-ethyl 3-(3-nitrobenzylidene)-5-phenylpent-4-enoate (3c) obtained from *m*-nitrobenzaldehyde (76 mg, 0.5 mmol) as a yellow solid (167 mg, 99% yield): mp 68-69 °C; IR (thin film): v_{max} 3072, 2976, 2902, 1726, 1533, 1351, 1305, 1199, 1130, 1068, 966, 810, 731, 696, 607, 549 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 8.32$ (s, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.54-7.44 (m, 3H), 7.36-7.23 (m, 3H), 6.96 (d, J = 16.2 Hz, 1H), 6.86 (s, 1H), 6.78 (d, J = 16.2 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.53 (s, 2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 170.8$, 148.3, 138.4, 136.7, 135.1, 134.7, 131.7, 131.2, 130.3, 129.2, 128.6, 127.9, 126.6, 123.4, 121.9, 61.3, 34.0, 14.1; Anal calcd for C₂₀H₁₉NO₄: C, 71.20; H, 5.68; N, 4.15%; found: C, 70.96; H, 5.87; N, 4.12%.

(*3E*,*4E*)-ethyl 3-(4-nitrobenzylidene)-5-phenylpent-4-enoate (3d) obtained from *p*-nitrobenzaldehyde (76 mg, 0.5 mmol) as a yellow solid (155 mg, 92% yield): mp 98-99 °C; IR (thin film): v_{max} 3021, 2977, 1727, 1591, 1514, 1446, 1334, 1197, 1107, 1030, 963, 889, 840, 741, 686, 634 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 8.16 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 7.4 Hz, 2H), 7.36-7.23 (m, 3H), 6.95 (d, J = 16.2 Hz, 1H), 6.86 (s, 1H), 6.78 (d, J = 16.2 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.54 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ =

170.7, 146.5, 143.4, 136.6, 135.7, 132.1, 131.3, 130.6, 129.4, 128.6, 128.0, 126.6, 123.5, 61.2, 34.0, 14.1; Anal calcd for C₂₀H₁₉NO₄: C, 71.20; H, 5.68; N, 4.15%; found: C, 71.21; H, 5.29; N, 4.19%.

(3*E*,4*E*)-ethyl 3-(4-(trifluoromethyl)benzylidene)-5-phenylpent-4-enoate (3e) obtained from *p*-trifluoromethylbenzaldehyde (87 mg, 0.5 mmol) as a white solid (144 mg, 80% yield): mp 49-50 °C; IR (thin film): v_{max} 3027, 2989, 1728, 1608, 1444, 1324, 1252, 1163, 1114, 1066, 1027, 958, 889, 849, 749, 694, 598 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 7.61$ (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H), 7.36-7.22 (m, 3H), 6.96 (d, J = 16.3 Hz, 1H), 6.87 (s, 1H), 6.73 (d, J = 16.3 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.53 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 171.1$, 140.5, 137.0, 134.6, 133.1, 131.6, 129.8, 129.0, 128.7, 128.7 (q, J = 36.7 Hz, 1C), 127.9, 126.6, 125.3 (q, J = 3.8 Hz, 2C), 124.2 (q, J = 271.4 Hz, 1C), 61.1, 34.1, 14.2; Anal calcd for C₂₁H₁₉F₃O₂: C, 69.99; H, 5.31%; found: C, 70.13; H, 5.38%.

(*3E*,*4E*)-ethyl 3-(2-cyanobenzylidene)-5-phenylpent-4-enoate (*3f*) obtained from *o*-cyanobenzaldehyde (66 mg, 0.5 mmol) as a white solid (157 mg, 99% yield): mp 77-78 °C; IR (thin film): v_{max} 3028, 2981, 2933, 2220, 1723, 1593, 1478, 1446, 1364, 1324, 1195, 1142, 1026, 958, 841, 764, 684, 540 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.74 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.61-7.56 (m, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.39-7.23 (m, 4H), 7.02 (d, J = 16.3 Hz, 1H), 7.03 (s, 1H), 6.77 (d, J = 16.3 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.51 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 170.9, 140.2, 136.6, 136.3, 132.9, 132.5, 131.1, 130.7, 130.0, 129.3, 128.6, 128.0, 127.6, 126.7, 117.7, 112.4, 61.1, 34.2, 14.1; Anal calcd for C₂₁H₁₉NO₂: C, 79.47; H, 6.03; N, 4.41%; found: C, 79.18; H, 6.00; N, 4.44%.

(*3E*,4*E*)-ethyl 3-(furan-2-ylmethylene)-5-phenylpent-4-enoate (3g) obtained from 2-furylaldehyde (48 mg, 0.5 mmol) as yellow oil (102 mg, 72% yield); ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.42-7.17 (m, 6H), 6.90 (d, J = 16.1 Hz, 1H), 6.62 (d, J = 16.1 Hz, 1H), 6.52 (s, 1H), 6.45-6.39 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.82 (s, 2H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 170.9, 152.5, 142.6, 137.1, 131.9, 129.9, 128.5, 128.3, 127.4, 126.3, 121.6, 111.6, 111.5, 60.7, 33.9, 14.1; Anal calcd for C₁₈H₁₈O₃: C, 76.57; H, 6.43%; found: C, 76.50; H, 6.64%.

(*3E*,4*E*)-ethyl 5-phenyl-3-(pyridin-2-ylmethylene)pent-4-enoate (3h) obtained from 2-pyridylaldehyde (54 mg, 0.5 mmol) as colorless oil (103 mg, 70% yield); ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 8.55$ (d, J = 4.7 Hz, 1H), 7.55 (dt, J = 7.7, 1.8 Hz, 1H), 7.44 (d, J = 7.3 Hz, 2H), 7.33-7.21 (m, 4H), 7.04-7.00 (m, 1H), 6.99 (d, J = 16.2 Hz, 1H), 6.72 (d, J = 16.2 Hz, 1H), 6.71 (s, 1H), 4.25 (s, 2H), 4.20 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 171.3$, 155.9, 148.9, 136.9, 136.3, 135.9, 132.6, 132.0, 129.7, 128.5, 127.6, 126.5, 125.1, 121.1, 60.4, 33.5, 14.1; Anal calcd for C₁₉H₁₉NO₂: C, 77.79; H, 6.53; N, 4.77%; found: C, 77.72; H, 6.73; N, 4.71%.

(*3E*,*4E*)-ethyl 5-phenyl-3-(pyridin-3-ylmethylene)pent-4-enoate (3i) obtained from 3-pyridylaldehyde (54 mg, 0.5 mmol) as colorless oil (111 mg, 76% yield); ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 8.54$ (s, 1H), 8.38 (d, J = 4.6 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.2 Hz, 2H), 7.23-7.09 (m, 4H), 6.85 (d, J = 16.2 Hz, 1H), 6.67 (s, 1H), 6.61 (d, J = 16.2 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.41 (s, 2H), 1.61 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 170.8$, 149.7, 148.0, 136.6, 135.4, 134.6, 132.4, 131.3, 130.5, 129.5, 128.4, 127.6, 126.4, 123.0, 60.9, 33.8, 14.0; Anal calcd for C₁₉H₁₉NO₂: C, 77.79; H, 6.53; N, 4.77%; found: C, 77.68; H, 6.35; N, 4.59%.

(*3E*,4*E*)-ethyl 5-phenyl-3-(pyridin-4-ylmethylene)pent-4-enoate (3j) obtained from 4-pyridylaldehyde (54 mg, 0.5 mmol) as colorless oil (111 mg, 76% yield); ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 8.48$ (d, J = 5.6 Hz, 2H), 7.34 (d, J = 7.2 Hz, 2H), 7.25-7.11 (m, 5H), 6.83 (d, J = 16.1 Hz, 1H), 6.66 (d, J = 16.1 Hz, 1H), 6.63 (s, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.44 (s, 2H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 170.6$, 149.7, 144.1, 136.5, 135.8, 131.5, 131.2, 130.4, 128.5, 128.9, 126.5, 123.1, 61.0, 33.9, 14.0; Anal calcd for C₁₉H₁₉NO₂: C, 77.79; H, 6.53; N, 4.77%; found: C, 77.70; H, 6.60; N, 4.77%.

(*3E*,4*E*)-ethyl 5-phenyl-3-(thiophen-2-ylmethylene)pent-4-enoate (3k) obtained from 2-thiofurylaldehyde (56 mg, 0.5 mmol) as colorless oil (106 mg, 71% yield); ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.44-7.15 (m, 7H), 7.03 (m, 1H), 6.94 (d, J = 16.2 Hz, 1H), 6.91 (s, 1H), 6.63 (d, J = 16.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.75 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 170.5, 139.8, 137.2, 132.1, 130.8, 128.5, 128.4, 127.4, 127.3, 127.2, 126.4, 126.3, 126.2, 61.0, 34.2, 14.1; HRMS calcd for C₁₈H₁₈O₂SNa⁺ requires 321.0920, found 321.0927.

(*3E*,*4E*)-ethyl **3-benzylidene-5-phenylpent-4-enoate** (**3I**) obtained from benzaldehyde (53 mg, 0.5 mmol) as colorless oil (133 mg, 91% yield); ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.45-7.20 (m, 10H), 6.96 (d, J = 16.2 Hz, 1H), 6.88 (s, 1H), 6.65 (d, J = 16.2 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.57 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 171.5, 137.2, 136.9, 134.9, 132.7, 132.2, 128.8, 128.6, 128.5, 128.3, 127.5, 127.3, 126.4, 60.9, 34.1, 14.2; Anal calcd for C₂₀H₂₀O₂: C, 82.16; H, 6.89%; found: C, 81.96; H, 6.89%.

(*3E*,*4E*)-ethyl 3-(4-methylbenzylidene)-5-phenylpent-4-enoate (3m) obtained from *p*-methylbenzaldehyde (60 mg, 0.5 mmol) as colorless oil (78 mg, 51% yield); ¹H NMR (CDCl₃, 400 MHz, TMS): $\delta = 7.43$ (d, J = 7.7 Hz, 2H), 7.34-7.16 (m, 7H), 6.96 (d, J = 16.2 Hz, 1H), 6.86 (s, 1H), 6.63 (d, J = 16.2 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.57 (s, 2H), 2.36 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): $\delta = 171.6$, 137.2, 137.1, 135.0, 133.9, 132.3, 132.0, 129.0, 128.7, 128.5, 128.1, 127.4, 126.3, 60.9, 34.0, 21.2, 14.2; HRMS calcd for C₂₁H₂₂O₂Na⁺ requires 329.1512, found 329.1518.

(*3E*,4*E*)-ethyl **3**-(4-methoxybenzylidene)-5-phenylpent-4-enoate (**3n**) obtained from *p*-methoxybenzaldehyde (68 mg, 0.5 mmol) as a white solid (81 mg, 50% yield): mp. 49-51 °C; IR (thin film): v_{max} 3024, 2956, 2839, 1729, 1601, 1508, 1442, 1299, 1251, 1181, 1142, 1027, 961, 844, 749, 693, 528 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 7.43$ (d, J = 7.4 Hz, 2H), 7.37-7.18 (m, 5H), 6.95 (d, J = 16.2 Hz, 1H), 6.90 (d, J = 8.7 Hz, 2H), 6.82 (s, 1H), 6.62 (d, J = 16.2 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.57 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): $\delta = 171.6$, 158.8, 137.3, 134.7, 132.4, 131.2, 130.1, 129.3, 128.5, 127.7, 127.3, 126.3, 113.8, 60.9, 55.1, 34.0, 14.2; Anal calcd for C₂₁H₂₂O₃: C, 78.23; H, 6.88%; found: C, 78.34; H, 6.41%.

(3*E*,4*E*)-ethyl 3-(4-(dimethylamino)benzylidene)-5-phenylpent-4-enoate (30) obtained from *p*-(*N*,*N*-dimethylamino)benzaldehyde (75 mg, 0.5 mmol) as a yellow solid (72 mg, 43% yield): mp.73-76 °C; ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.43 (d, J = 7.5 Hz, 2H), 7.34-7.17 (m, 5H), 6.97 (d, J = 16.2 Hz, 1H), 6.79 (s, 1H), 6.71 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 16.2 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.62 (s, 2H), 2.97 (s, 6H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 171.9, 149.7,

137.7, 135.5, 133.2, 130.1, 129.5, 128.5, 127.0, 126.7, 126.2, 125.0, 112.0, 60.8, 40.3, 34.2, 14.2; HRMS calcd for C₂₂H₂₅NO₂H⁺ requires 336.1958, found 336.1961.

(*3E*,5*E*)-ethyl 6-phenyl-3-((*E*)-styryl)hexa-3,5-dienoate (3p) obtained from *trans*-cinnamaldehyde (66 mg, 0.5 mmol) as a yellow solid (48 mg, 30% yield): mp 71-74 °C; ¹H NMR (CDCl₃, 300 MHz, TMS): δ = 7.46-7.21 (m, 10H), 7.16 (dd, J = 15.4, 11.3 Hz, 1H), 6.90 (d, J = 16.1 Hz, 1H), 6.69 (d, J = 15.4 Hz, 1H), 6.67 (d, J = 16.1 Hz, 1H), 6.54 (d, J = 11.3 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.58 (s, 2H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 170.7, 137.4, 137.3, 134.9, 134.5, 132.3, 131.7, 128.6, 128.5, 128.4, 127.8, 127.5, 126.6, 126.5, 124.7, 60.9, 33.4, 14.2; HRMS calcd for C₂₂ H₂₂O₂Na⁺ requires 341.1512, found 341.1517.

(*E*)-ethyl 3-((*E*)-styryl)hex-3-enoate (3q) obtained from propylaldehyde (29 mg, 0.5 mmol) as colorless oil (54 mg, 44% yield); ¹H NMR (CDCl₃, 400 MHz, TMS): $\delta = 7.32-7.10$ (m, 5H), 6.71 (d, J = 16.1 Hz, 1H), 6.42 (d, J = 16.1 Hz, 1H), 5.75 (t, J = 7.0 Hz, 1H), 4.05 (q, J = 7.0 Hz, 2H), 3.29 (s, 2H), 2.19-2.15 (m, 2H), 1.17 (t, J = 7.0 Hz, 3H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): $\delta = 171.2$, 138.8, 137.5, 132.0, 130.6, 128.5, 127.0, 126.3, 126.2, 60.7, 32.9, 22.0, 14.2, 14.1; HRMS calcd for C₁₆H₂₀O₂ Na⁺ requires 267.1355, found 267.1358.

(*E*)-ethyl 3-((*E*)-styryl)hept-3-enoate (3r) obtained from *n*-butylaldehyde (36 mg, 0.5 mmol) as colorless oil (59 mg, 46% yield), contaminated by the minor product (*Z*,*E*)-isomer with a ratio of (*E*,*E*) : (*Z*,*E*) = 8 : 1; ¹H NMR (CDCl₃, 400 MHz, TMS): $\delta = 7.39$ (d, J = 7.5 Hz, 2H), 7.31-7.17 (m, 3H), 6.79 (d, J = 16.3 Hz, 1H), 6.49 (d, J = 16.3 Hz, 1H), 5.85 (t, J = 7.4 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.38 (s, 2H), 2.24-2.18 (m, 2H), 1.53-1.43 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 171.2$, 137.6, 137.1, 132.1, 131.3, 128.5, 127.0,

126.4, 126.2, 60.7, 33.0, 30.8, 22.5, 14.2, 13.8; HRMS calcd for $C_{17}H_{22}O_2$ Na⁺ requires 281.1512, found 281.1515.

(2*E*,4*E*)-6-ethyl 1-methyl 4-(2-chlorobenzylidene)hex-2-enedioate (3s) obtained from *o*-chlorobenzaldehyde (70 mg, 0.5 mmol) as a white solid (83 mg, 54% yield): mp 55-57 °C; IR (thin film): v_{max} 3060, 2972, 2947, 1730, 1709, 1619, 1464, 1434, 1316, 1251, 1224, 1197, 1003, 858, 764, 687, 459 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz, TMS): $\delta = 7.46$ (d, J = 15.9 Hz, 1H), 7.41 (m, 1H), 7.32 (m, 1H), 7.18 (m, 2H), 7.05 (s, 1H), 5.93 (d, J = 15.9 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.68 (s, 3H), 3.28 (s, 2H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 170.4$, 167.0, 147.1, 138.3, 134.0, 132.3, 130.0, 129.5, 129.4, 126.6, 118.5, 61.0, 51.5, 33.8, 14.0; HRMS calcd for C₁₆H₁₇ClO₄Na⁺ requires 331.0708, found 331.0702.

(2*E*,4*E*)-6-ethyl 1-methyl 4-(3-nitrobenzylidene)hex-2-enedioate (3t) obtained from *m*-nitrobenzaldehyde (76 mg, 0.5 mmol) as a white solid (116 mg, 73% yield): mp 69-70 °C; IR (thin film): v_{max} 3064, 2979, 2954, 1714, 1624, 1524, 1463, 1432, 1348, 1319, 1238, 1199, 1132, 1093, 991, 856, 810, 736, 711 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, TMS): $\delta = 8.34$ (s, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.61-7.56 (m, 1H), 7.50 (d, J = 15.9 Hz, 1H), 7.09 (s, 1H), 6.12 (d, J = 15.9 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.44 (s, 2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): $\delta = 170.1$, 167.0, 148.4, 146.8, 138.3, 137.3, 134.8, 133.5, 129.6, 123.7, 123.0, 119.6, 61.6, 51.7, 33.9, 14.1; Anal calcd for C₁₆H₁₇NO₆: C, 60.18; H, 5.37; N, 4.39%; found: C, 59.94; H, 5.47; N, 4.25%.

(2*E*,4*E*)-6-ethyl 1-methyl 4-(4-(trifluoromethyl)benzylidene)hex-2-enedioate: 6e (3u) obtained from *p*-trifluoromethylbenzaldehyde (87 mg, 0.5 mmol) as a white solid (120 mg, 70% yield): mp. 45-47 °C; ¹H NMR (CDCl₃, 400 MHz, TMS): δ = 7.65 (d, J

= 7.9 Hz, 2H), 7.53 (d, J = 7.9 Hz, 2H), 7.50 (d, J = 15.8 Hz, 1H), 7.09 (s, 1H), 6.06 (d, J = 15.8 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.44 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): δ =170.4, 167.1, 147.3, 139.8, 139.2, 132.7, 130.0 (q, J = 32.9 Hz, 1C), 129.1, 125.4(q, J = 3.3 Hz, 2C), 118.8, 61.4, 51.7, 33.7, 14.1; HRMS calcd for C₁₇H₁₇F₃O₄Na⁺ requires 365.0971, found 365.0966.

(2*E*,4*E*)-6-ethyl 1-methyl 4-benzylidenehex-2-enedioate (3v) obtained from benzaldehyde (53 mg, 0.5 mmol) as colorless oil (86 mg, 63% yield); ¹H NMR (CDCl₃, 400 MHz, TMS): δ = 7.51 (d, J = 15.8 Hz, 1H), 7.41-7.30 (m, 5H), 7.07 (s, 1H), 6.00 (d, J = 15.8 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 3.47 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 170.5, 167.1, 148.0, 141.6, 135.6, 130.9, 128.8, 128.4, 128.2, 117.6, 61.0, 51.4, 33.6, 14.0; HRMS calcd for C₁₆H₁₇O₄Na⁺ requires 297.1097, found 297.1100.

(2*E*,4*E*)-6-ethyl 1-methyl 4-(4-methoxybenzylidene)hex-2-enedioate (3w) obtained from *p*-methoxybenzaldehyde (68 mg, 0.5 mmol) as colorless oil (50 mg, 33% yield); ¹H NMR (CDCl₃, 400 MHz, TMS): δ = 7.50 (d, J = 15.8 Hz, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.01 (s, 1H), 6.92 (d, J = 8.5 Hz, 2H), 5.96 (d, J = 15.8 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 3.49 (s, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): δ = 170.9, 167.5, 159.7, 148.6, 141.7, 130.6, 129.2, 128.2, 116.6, 114.0, 61.2, 55.2, 51.6, 33.8, 14.1; HRMS calcd for C₁₇H ₂₀O₅Na⁺ requires 327.1203, found 327.1207.

OH CO₂Et

(2*E*,4*E*)-6-ethyl 1-methyl 4-(2-hydroxybenzylidene)hex-2-enedioate (3x) obtained from salicylaldehyde (61 mg, 0.5 mmol) as colorless oil (103 mg, 71% yield), contaminated by the minor product (*Z*,*E*)-isomer with a ratio of (*E*,*E*) : (*Z*,*E*) = 8 : 1; ¹H NMR (CDCl₃, 400 MHz, TMS): δ = 7.56 (d, J = 15.9 Hz, 1H), 7.44 (br s, 1H), 7.27 (d, J = 7.7 Hz, 1H), 7.19-7.15 (m, 2H), 6.90-6.85 (m, 2H), 5.92 (d, J = 15.8 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 3.42 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz, TMS): δ = 171.5, 168.0, 154.4, 148.4, 138.2, 131.5, 130.0, 129.4, 122.6, 120.0, 116.8, 116.0, 61.3, 51.7, 33.9, 13.9; HRMS calcd for C₁₆H₁₈O₅Na⁺ requires 313.1046, found 313.1038.

(2*E*,4*E*)-ethyl 5-phenylpenta-2,4-dienoate⁵ (4) obtained from allenoate 2a (101 mg, 0.5 mmol) as slightly yellow oil (79 mg, 78% yield); ¹H NMR (CDCl₃, 400 MHz, TMS) 7.45-7.41 (m, 3H), 7.36-7.29 (m, 3H), 6.91-6.82 (m, 2H), 5.98 (d, J = 15.3 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz, TMS): $\delta = 166.9$, 144.4, 140.3, 136.0, 128.9, 128.7, 127.1, 126.2, 121.3, 60.2, 14.2.

Reference

- 1. Daigle, D. J. Inorg. Synth. 1998, 32, 40.
- 2. Suarez, A.; Fu, G. C. Angew. Chem. In. Ed. 2004, 43, 3580.
- 3. Hansen, H.-J. Helv. Chim. Acta. 1980, 63, 438.
- 4. Nenitzescu; Cioranescu; Przemetzky; Chem. Ber. 1940, 73, 313.
- 5. Dockendorff, C.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.

¹H and ¹³C NMR Spectra

S29

S31

wte: 4 May 2009 6 current's 78%; 00/-H.mrc 00/-H.mrc pectrum 719% TANDARD 1H 088ERVE	Frequency (MHz): (1) 400.137 Original Points Count: (1) 903 Actual Points Count: (1) 32765 Acquisition Time (sec): (1) 14031 (1) 15.020 Puke Program: (1) 16.020 Puke Program: Unknown Temperature: 18	lumber of Scans: cq. Detec Jun 15 2008	
Date 24 M Decu Dech buty Speed	Preq (1) 4 (1) 9 (1) 9 (1) 3 Activ (1) 1 (1) 1 (Mum Acq. Jun	

Date: 25. Jun 2009 Document's Take: ester-2-Oh-Curric Spectrum 7/6/c None Frequency (MHD): (11) 75.468 Original Points Count: (11) 22768 Actual Points Count: (11) 22768 Actual Points Count: (11) 22768 Actual Points Count: (11) 22819 Spectral Width (ppm): (11) 230.322 Pulse Program: Unknown	
13 C NMR (75W, CDCl ₃)	210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -10

NOSEY Spectra of 3d and 3t

ORTEP Representation of 3c and 3t

Table 1. Crystal Data and Structure Refinement for 3c

Identification code	3c
Empirical formula	C20H19NO4
Formula weight	337.36
Temperature	294(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a = 6.854(2) \text{ Å alpha} = 90^{\circ}$
	$b = 7.879(2) \text{ Å beta} = 90^{\circ}$
	$c = 32.765(10) \text{ Å gamma} = 90^{\circ}$
Volume	$1769.4(10) \text{ Å}^3$
Ζ	4
Calculated density	1.266 Mg/m^3
Absorption coefficient	0.088 mm^{-1}
F(000)	712
Crystal size	$0.26 \ge 0.22 \ge 0.20 \text{ mm}^3$
Theta range for data collection	1.24 to 26.42°
Limiting indices	-8<=h<=8, -9<=k<=7, -40<=l<=40
Reflections collected	9978
Independent reflections	3639 [R(int) = 0.0449]
Completeness to theta = 26.42°	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9825 and 0.9774
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3639 / 0 / 227
Goodness-of-fit on F ²	0.998
Final R indices [I>2sigma(I)]	R1 = 0.0474, $wR2 = 0.1033$
R indices (all data)	R1 = 0.1189, $wR2 = 0.1288$
Largest diff. peak and hole	0.137 and -0.177 e. Å ⁻³

Table 2. Crystal Data and Structure Refinement for 3t

Identification code	3t
Empirical formula	C16H17NO6
Formula weight	319.31
Temperature	113(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 8.2434(16) \text{ Å alpha} = 82.63(3)^{\circ}$
	$b = 9.3954(19) \text{ Å beta} = 84.66(3)^{\circ}$
	$c = 10.116(2) \text{ Å gamma} = 80.19(3)^{\circ}$
Volume	763.6(3) Å ³
Z	2
Calculated density	1.389 Mg/m^3
Absorption coefficient	0.107 mm^{-1}
F(000)	336
Crystal size	$0.16 \ge 0.12 \ge 0.08 \text{ mm}^3$
Theta range for data collection	2.04 to 25.01°
Limiting indices	-9<=h<=7, -11<=k<=11, -12<=l<=11
Reflections collected	5656
Independent reflections	2666 [R(int) = 0.0248]
Completeness to theta = 25.01°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9915 and 0.9831
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2666 / 0 / 210
Goodness-of-fit on F ²	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0327, WR2 = 0.0915
R indices (all data)	R1 = 0.0424, $wR2 = 0.0962$
Largest diff. peak and hole	$0.169 \text{ and } -0.228 \text{ e. } \text{\AA}^{-3}$