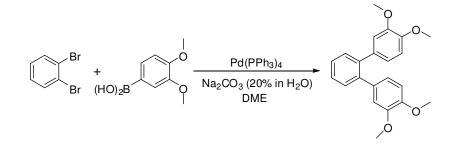
SUPPORTING INFROMATION FOR

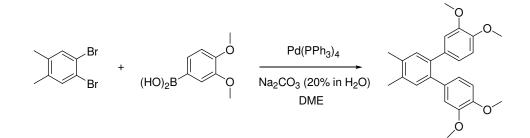
Oxidative C-C Bond Formation (Scholl Reaction) Using DDQ as an Efficient and Easily Recyclable Oxidant


Linyi Zhai, Ruchi Shukla, and Rajendra Rathore*

Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI-53201 Email: <u>Rajendra.Rathore@marquette.edu</u>

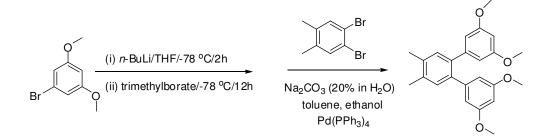
General Experimental Methods and Materials. All reactions were performed under argon atmosphere using conventional vacuum-line techniques unless otherwise noted. All commercial reagents were used without further purification unless otherwise noted. Anhydrous tetrahydrofuran (THF) was prepared by refluxing the commercial tetrahydrofuran (Aldrich) over lithium tetrahydroaluminate under an argon atmosphere for 24 hours followed by distillation. It was stored under an argon atmosphere in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. Dichloromethane (Aldrich) was repeatedly stirred with fresh aliquots of conc. Sulfuric acid (~10% by volume) until the acid layer remained colorless. After separation it was washed successively with water, aqueous sodium bicarbonate, water, and saturated aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from P_2O_5 under an argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve argon atmosphere and then refluxed over calcium hydride (~12 hrs). After distillation from CaH₂, the solvents were stored in Schlenk flasks under argon atmosphere.

Syntheses of *o*-terphenyls, hexaarylbenzenes, and bichromophoric diarylpropanes as Scholl precursors. The Suzuki coupling^{S1} provided a general route for the preparation of various substituted *o*-terphenyls (**1a-e** and **1k**). The hexaarylbenzene derivatives (**1l-1n**) were synthesized according to a previously known literature procedure.^{S2} Bichromophoric 2,2-*bis*(3,4-dimethoxyphenyl)propane (**1f**),^{S3} 9,9-*bis*(3,4dimethoxyphenyl)fluorene (**1g**),^{S4} and 1,3-*bis*(3,4-dimethoxyphenyl)propane (**1h**)^{S4} were available from literature procedures. The details of the synthesis and spectral data for various Scholl precursors, utilized in this study, are summarized below:


General Method for Suzuki Reaction (Method A). Synthesis of 3,3",4,4"-tetramethoxy-*o*-terphenyl (1a).

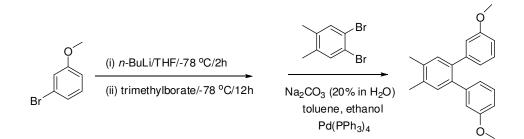
A solution of sodium carbonate (5 g) in water (20 mL) was prepared in a Schlenk flask and degassed (3x) and kept under argon atmosphere. In a separate Schlenk flask, 1,2-dibromobenzene (1.65 g, 7.0 mmol), 3,4-dimethoxyphenylboronic acid (3.82 g, 21 mmol), and DME (35 mL) were added under an argon atmosphere and the Schlenk flask was degassed (5x). Under an argon flow, a catalytic amount of Pd(PPh₃)₄ (35 mg) was added

and the flask was covered by aluminum foil and degassed (3x). Into this mixture, the aqueous sodium carbonate solution was transferred with the aid of a syringe and the reaction was degassed again (3x). The resulting mixture was heated to reflux for ~24 hours, cooled to room temperature and poured onto 5% aqueous hydrochloric acid. The resulting mixture was extracted with dichloromethane (3 x 25 mL). The combined dichloromethane extracts were washed with water, brine, and dried over anhydrous MgSO₄. Removal of the solvent in *vacuo* afforded a crude solid which was purified by column chromatography on silica gel using a 95:5 mixture of hexanes: ethyl acetate as the eluent to afford pure 3,3",4,4"-tetramethoxy-*o*-terphenyl as white solid. Yield: 2.05 g, 84%; mp 138-139 °C; ¹H NMR (CDCl₃) δ : 3.61 (s, 6H), 3.86 (s, 6H), 6.61 (s, 2H), 6.78 (d, 4H), 7.41 (m, 4H); ¹³C NMR (CDCl₃) δ : 55.83, 56.02, 110.94, 113.64, 122.01, 127.46, 130.52, 134.53, 140.37, 147.88, 148.39.

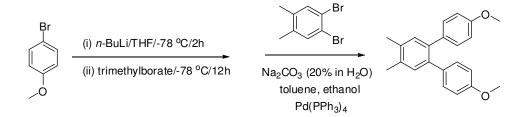

Synthesis of 3',4'-dimethyl-3,4,3'',4''-tetramethoxy-o-terphenyl (1b)

According to **Method A**, 1,2-dibromo-4,5-dimethylbenzene (1.1 g, 4.2 mmol) and 3,4dimethoxyphenylboronic acid (2.3 g, 12.5 mmol) were mixed in 1,2-dimethoxyethane (25 mL) under argon atmosphere, followed by successive addition of a catalytic amount of $Pd(PPh_3)_4$ (35 mg) and aqueous sodium carbonate solution (20%, 20 mL). The resulting mixture was degassed and heated to reflux for 15h. Standard aqueous work up afforded

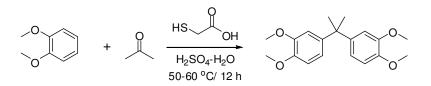
the crude product which was purified by a column chromatography on silica gel using 10% ethyl acetate in hexanes as the eluent to furnish 3',4'-dimethyl-3,4,3",4"-tetramethoxyl-*o*-terphenyl (**1b**) as white solid. Yield: 1.5 g, 94%; mp 139-140 $^{\circ}$ C; ¹H NMR (CDCl₃) δ : 2.36 (s, 6H), 3.62 (s, 6H), 3.86 (s, 6H), 6.62 (s, 2H), 6.77 (s, 2H), 6.78 (s, 2H), 7.23 (s, 2H); ¹³C NMR (CDCl₃) δ : 19.55, 55.79, 55.99, 110.91, 113.66, 121.92, 131.78, 134.50, 135.83, 137.81, 147.68, 148.32.


General *in situ* Suzuki Reaction (Method B): Synthesis of 3',4'-dimethyl-3,5,3'',5''tetramethoxy-*o*-terphenyl (1c).

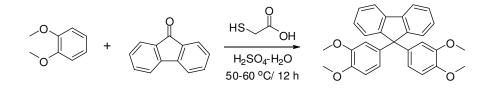
In a oven dried Schlenk flask, a solution of 1-bromo-3,5-dimethoxybenzene (3.25 g, 15 mmol) in anhydrous THF (30 mL) was cooled to -78 °C (dry ice-acetone bath) under argon atmosphere and *n*-butyllithium (2.5 M in hexane, 8 mL, 20 mmol) was added dropwise. After 2h of stirring at -78 °C, trimethylborate (1.5 equiv) was added dropwise with the aid of a syringe and the temperature was allowed to gradually rise to room temperature during an 8h period. To the resulting mixture were added 1,2-dibromo-4,5-dimethylbenzene (1.32 g, 5 mmol), anhydrous toluene (30 mL), dry ethanol (30 mL), aqueous Na₂CO₃ (7.5 g dissolved in 30 mL H₂O), and Pd(PPh₃)₄ (40 mg) successively. The flask containing the resulting mixture was repeatedly evacuated and filled with argon (3x), covered by aluminum foil and refluxed for 24 h. The reaction mixture was cooled to


room temperature and then poured into 5% aqueous HCl solution. The organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 25 mL). The combined organic extracts were washed with water, brine and dried over anhydrous MgSO₄. Removal of the solvent in *vacuo* afforded the crude product which was purified by column chromatography on silica gel using 2% ethyl acetate in hexanes as the eluent to afford 3',4'-dimethyl-3,5,3",5"-tetramethoxy-*o*-terphenyl (**1c**) as colorless oil. Yield: 0.75 g, 40%; ¹H NMR (CDCl₃) δ : 2.38 (s, 6H), 3.66 (s, 12H), 6.35 (t, *J* = 2.26 Hz, 2H), 6.39 (dd, *J*₁ = 2.26 Hz, *J*₂ = 0.86 Hz, 4H), 7.28 (s, 2H); ¹³C NMR (CDCl₃) δ : 19.58, 55.41, 99.10, 107.99, 131.65, 136.21, 138.08, 143.66, 160.35.

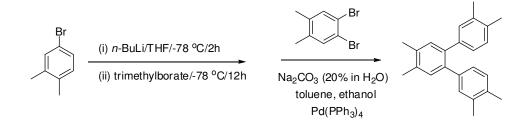
Synthesis of 3,3"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1d)


According to **Method B**, *n*-butyllithium (2.5M in hexane) (3.3 mL, 8.2 mmol) was added to a solution of *m*-bromoanisole (1.74 g, 9.3 mmol) in THF (20 mL) at -78 °C under argon atmosphere. After 2h, trimethylborate (1 mL, 9.4 mmol) was added and the mixture was allowed to warm to room temperature during a 12h period. 1,2-Dibromo-4,5-dimethylbenzene (0.42 g, 1.6 mmol), anhydrous toluene (20 mL), dry ethanol (20 mL), aqueous Na₂CO₃ (5 g dissolved in 20 mL H₂O), and Pd(PPh₃)₄ (40 mg) were added. The reaction mixture was refluxed for 16 h. Standard work up afforded a crude product which was purified by column chromatography on silica gel with hexanes as the eluent to afford 3,3"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1d) as colorless oil. Yield: 0.4 g, 79%; ¹H NMR (CDCl₃) δ : 2.35 (s, 6H), 3.62 (s, 6H), 6.67 (dd, J_1 = 2.58 Hz, J_2 = 1.59 Hz, 2H), 7.74 (m, 4H), 7.13 (t, J = 7.77 Hz, 2H), 7.23 (s, 2H); ¹³C NMR (CDCl₃) δ : 19.64, 50.31, 112.63, 115.31, 122.50, 129.02, 131.93, 136.18, 138.10, 143.08, 159.25.

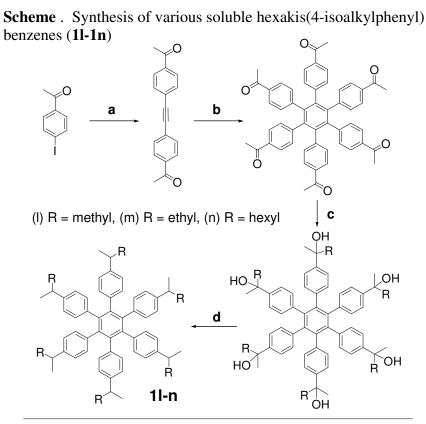
Synthesis of 4,4"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1e)


According to **Method B**, *n*-butyllithium (2.5M in hexane, 4.8 mL, 12 mmol) was added to a solution of *p*-bromoanisole (1.74 g, 9.3 mmol) in THF (25 mL) at -78 °C under an argon atmosphere. After 2 h, trimethylborate (1.56 mL, 14 mmol) was added and the resulting mixture was allowed to warm to room temperature during a 12h period. 1,2-Dibromo-4,5-dimethylbenzene (0.82 g, 3.1 mmol), anhydrous toluene (25 mL), dry ethanol (25 mL), aqueous Na₂CO₃ (5 g dissolved in 20 mL H₂O), and Pd(PPh₃)₄ (50 mg) were added. The reaction mixture was refluxed for 16 h. Standard work up afforded a crude product which was purified by column chromatography on silica gel using 2% ethyl acetate in hexanes as the eluent to afford 4,4"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (**1e**) as white solid. Yield: 0.9 g, 91%; mp 78-79 °C; ¹H NMR (CDCl₃) δ : 2.37 (s, 6H), 3.81 (s, 6H), 6.79 (dt, $J_1 = 8.74$ Hz, $J_2 = 2.25$ Hz, 4H), 7.10 (dt, $J_1 = 8.74$ Hz, $J_2 = 2.25$ Hz, 4H), 7.21 (s, 2H); ¹³C NMR (CDCl₃) δ : 19.58, 55.35, 113.52, 131.07, 132.09, 134.27, 135.66, 137.72, 158.27.

Synthesis of 2,2-Bis(3,4-dimethoxyphenyl)propane (1f)


According to a literature procedure,^{S4} 1,2-dimethoxybenzene (9.5 mL), acetone (2.0 mL), and mercaptoacetic acid (0.4 mL) were added to a solution prepared from conc. H₂SO₄ (*d* 1.84, 8.0 mL) and water (8.0 mL), and the resulting mixture was kept overnight at 50-60 °C. An standard aqueous workup and recrystallization from methanol afforded 2,2-bis(3,4-dimethoxyphenyl)propane (**1f**) as colorless crystalline solid. Yield: 3.1 g, mp 91-92 °C (lit.^{S4} mp 92 °C); ¹H NMR (CDCl₃) δ : 1.65 (s, 6H), 3.77 (s, 6H), 3.86 (s, 6H), 6.69 (d, *J* = 2 Hz, 2H), 6.76-6.84 (m, 4H); ¹³C NMR (CDCl₃) δ : 31.2, 42.4, 55.8, 55.9, 110.4, 110.8, 118.5, 143.5, 147.0, 148.4.

Synthesis of 9,9-Bis(3,4-dimethoxyphenyl)fluorene (1g)



Following a literature procedure^{S4} similar to the one described above for (**1f**), 1,2dimethoxybenzene (10 mL), fluorenone (1.8 g, 10 mmol), and mercaptoacetic acid (0.4 mL) were added to a solution prepared from conc. H₂SO₄ (*d* 1.84, 8.0 mL) and water (8.0 mL), and the resulting mixture was kept overnight at 80 °C. A standard aqueous workup and recrystallization from methanol afforded 9,9-bis(3,4dimethoxyphenyl)fluorene (**1f**) as a colorless crystalline solid. Yield: 4.1 g, 94%; mp 216-218 °C; ¹H NMR (CDCl₃) δ : 3.69 (s, 6H), 3.81 (s, 6H), 6.69 (s, 4H), 6.77 (s, 2H), 7.24-7.29 (m, 2H), 7.33-7.42 (m, 4H), 7.76 (d, *J* = 7 Hz, 2H) ¹³C NMR (CDCl₃) δ: 55.91, 55.96, 64.8, 110.7, 112.0, 120.3, 120.4, 126.0, 127.6, 127.7, 138.4, 140.0, 147.9, 148.5, 151.6.

Synthesis of 3,4,3',4',3'',4''-hexamethyl-*o*-terphenyl (1k)

According to **Method B**, *n*-butyllithium (2.5M in hexane, 8 mL, 20 mmol) was added to a solution of 4-bromo-*o*-xylene (2.78 g, 15 mmol) in 30 mL THF at -78 °C under argon atmosphere. After 2 h, trimethylborate (2.5 mL, 22.5 mmol) was added and the resulting mixture was allowed to warm to room temperature during a 12h period. 1,2-Dibromo-4,5-dimethylbenzene (1.32 g, 5 mmol), anhydrous toluene (30 mL), dry ethanol (30 mL), aqueous Na₂CO₃ (7.5 g dissolved in 30 mL H₂O), and Pd(PPh₃)₄ (40 mg) were added. The reaction mixture was refluxed for 16 h. Standard work up afforded a crude product which was purified by column chromatography on silica gel using hexanes as the eluent to afford 3,4,3',4',3",4"-hexamethyl-*o*-terphenyl (**1k**) as a colorless oil. Yield: 0.50 g, 32 %; ¹H NMR (CDCl₃) δ : 2.20 (s, 6H), 2.23 (s, 6H), 2.35 (s, 6H), 6.81 (dd, *J₁* = 7.94 Hz, *J₂* = 1.90 Hz, 2H), 6.94 (d, *J* = 7.94 Hz, 2H), 7.02 (d, *J* = 1.90 Hz, 2H), 7.20 (s, 2H); ¹³C NMR (CDCl₃) δ : 19.58, 19.61, 19.67, 127.61, 129.15, 131.10, 132.17, 134.45, 135.57, 136.03, 138.16, 139.38. **Synthesis of Hexakis(4-isoalkylphenyl)benzenes (11-1n).** The hexaarylbenzenes **11-1n** were obtained according to a published procedure^{S2} from our laboratory according to the Scheme shown below:

^a Benzene/DBU/H₂O/ (PPh₃)PdCl₂/Cul/ Me₃SiCCH, reflux. ^bCo₂(CO)₈/Dioxane/reflux. ^c THF/RMgBr or RMgCl. ^d H⁺/H₂ 50 psi/ 10% Pd-C.

General Procedure for the Oxidative Cyclodehydrogenation with Acid and DDQ.

A solution of *o*-terphenyl **1a** (0.1 mmol) in dichloromethane (10 mL) containing protic acid (10% v/v) or Lewis acid (~10 equiv.) at ~0 °C was treated with DDQ (1 equivalent per C-C bond formation, i.e. 0.1 mmol), and the solution immediately took on a darkgreen coloration. [Note that the solution colors varied depending on the Scholl precursors used (see Chart 1).] The progress of the reaction was monitored by TLC and ¹H NMR spectroscopy. After completion of the reaction, it was quenched with a saturated aqueous solution of NaHCO₃ (20 mL). The dichloromethane layer was separated and washed with water and brine solution and dried over anhydrous MgSO₄ and filtered. Removal of the solvent in *vacuo* afforded the crude product which by 1 H/ 13 C NMR analysis was shown to be 2,3,10,11-tetramethoxytriphenylene (**2a**). Various Scholl precursors were subjected to similar reaction conditions and the characterization data for the oxidative cyclodehydrogenation products are summarized below:

2,3,10,11-Tetramethoxytriphenylene (**2a**). Yield: quantitative; mp 215-216 °C; ¹H NMR (CDCl₃) δ: 4.11 (s, 12H), 7.59 (q, 2H), 7.71 (s, 2H), 7.94 (s, 2H), 8.46 (q, 2H); ¹³C NMR (CDCl₃) δ: 56.08, 56.17, 104.11, 104.58, 122.99, 123.54, 123.94, 126.16, 128.93, 148.84, 149.39.

6,7-Dimethyl-2,3,10,11-tetramethoxytriphenylene (**2b**). White crystals, quantitative yield; mp 282-283 °C; ¹H NMR (CDCl₃) δ: 2.51 (s, 6H), 4.09 (s, 6H), 4.11 (s, 6H), 7.68 (s, 2H), 7.88 (s, 2H), 8.14 (s, 2H); ¹³C NMR (CDCl₃) δ: 20.47, 56.14, 104.24, 104.46, 123.43, 123.54, 123.61, 127.15, 135.11, 148.79, 149.02.

6,7-Dimethyl-1,3,9,11-tetramethoxytriphenylene (**2c**). White solid, yield: 50%; mp 193-194 °C; ¹H NMR (CDCl₃) δ : 2.49 (s, 6H), 3.97 (s, 6H), 4.01 (s, 6H), 6.68 (s, 2H), 7.51 (s, 2H), 8.16 (s, 2H); ¹³C NMR (CDCl₃) δ : 20.49, 55.78, 56.00, 96.96, 98.09, 112.94, 124.25, 128.74, 132.34, 136.41, 158.82, 158.91. Note that the triphenylene **2c** undergoes decomposition under the reaction conditions and thus the pure **2c** was isolated by column chromatography on silica gel using 5% ethyl acetate in hexanes as eluent.

3,10-Dimethoxy-6,7-dimethyltriphenylene (2d). Yield: 100%, mp 208-211 °C; ¹H NMR (CDCl₃) δ : 2.52 (s, 6H), 4.02 (s, 6H), 7.21 (dd, J₁ = 8.91 Hz, J₂ = 2.58 Hz, 2H),

7.99 (d, *J* = 2.58 Hz, 2H), 8.28 (s, 2H), 8.44 (d, *J* = 8.91 Hz, 2H); 20.53, 55.72, 105.76, 115.53, 123.93, 124.15, 124.51, 128.23, 130.30, 136.38, 158.34.

2,11-Dimethoxy-6,7-dimethyltriphenylene (2e). Yield: 60%; mp 214-215 °C; ¹H NMR (CDCl₃) δ : 2.49 (s, 6H), 4.02 (s, 6H), 7.25 (dd, J_1 = 8.83 Hz, J_2 = 2.56 Hz, 2H), 7.94 (d, J = 2.56 Hz, 2H), 8.26 (s, 2H), 8.53 (d, J = 8.83 Hz, 2H); ¹³C NMR (CDCl₃) δ : 20.48, 55.71, 106.32, 115.66, 123.54, 124.44, 124.95, 127.22, 130.79, 135.41, 158.56.

2,3,6,7-Tetramethoxy-9,9-dimethylfluorene (2f). White solid, yield: 100%; mp 178-180 °C; ¹H NMR (CDCl₃) δ : 1.65 (s, 6H), 3.77 (s, 6H), 3.86 (s, 6H), 6.69 (d, 2H, J = 2 Hz), 6.76-6.84 (m, 4H); ¹³C NMR (CDCl₃) δ : 27.4, 46.7, 56.2, 56.3, 102.5, 106.1, 131.8, 146.1, 148.2, 148.7.

2,3,6,7-Tetramethoxy9,9-spirobifluorene (2g). White solid, yield: 100%; mp 242-244 ^oC; ¹H NMR (CDCl₃) δ: 3.61 (s, 6H), 4.03 (s, 6H), 6.18 (s, 2H), 6.75 (d, *J* = 7.6 Hz, 2H), 7.14 (t, *J* = 7 Hz, 2H), 7.26 (d, *J* = 5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 2H) ¹³C NMR (CDCl₃) δ: 56.2, 56.3, 65.9, 102.3, 107.0, 120.0, 124.2, 127.8, 128.0, 134.7, 141.0, 141.7, 148.6, 149.1, 149.3.

6,7-Dihydro-2,3,9,10-tetramethoxydibenzo[**1,c**]**cycloheptadiene** (**2h**). White solid, yield: 100%; mp 152-153 °C (lit^{S5} mp 158-159 °C); ¹H NMR (CDCl₃) δ: 2.11-2.20 (m, 2H), 2.43 (t, *J* = 7 Hz, 4H), 3.92 (s, 12H), 6.77 (s, 2H), 6.89 (s, 2H); ¹³C NMR (CDCl₃) δ: 31.2, 34.0, 56.1, 56.3, 111.7, 112.0, 132.2, 133.1, 147.6, 147.9.

4,4',5,5'-Tetramethoxy-2,2'-dimethylbiphenyl (2i). White solid, yield: 100%; mp 113-114 °C; ¹H NMR (CDCl₃) δ: 2.02 (s, 6H), 3.83 (s, 6H), 3.91 (s, 6H), 6.65 (s, 2H), 6.77 (s, 2H); ¹³C NMR (CDCl₃) δ: 19.48, 56.04, 56.16, 112.91, 113.10, 128.36, 133.52, 146.66, 147.89.

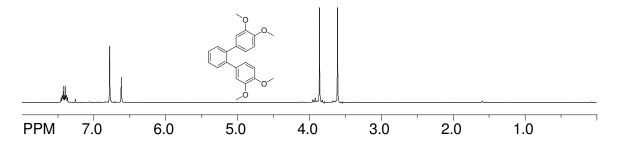
2,2',5,5'-Tetramethoxy-4,4'-dimethylbiphenyl (**2j**). White solid, yield: 100%; mp 129-130 °C; ¹H NMR (CDCl₃) δ: 2.29 (s, 6H), 3.75 (s, 6H), 3.81 (s, 6H), 6.79 (s, 2H), 6.83 (s, 2H); ¹³C NMR (CDCl₃) δ: 16.60, 56.17, 56.82, 114.04, 115.08, 125.73, 126.71, 150.87, 151.87.

2,3,6,7,10,11-hexamethyltriphenylene (**2k**). Pale yellow crystals, quantitative yield, mp 303-306 °C; ¹H NMR (CDCl₃) δ: 2.51 (s, 18H), 8.33 (s, 6H); ¹³C NMR (CDCl₃) δ: 20.50, 123.75, 127.80, 135.56.

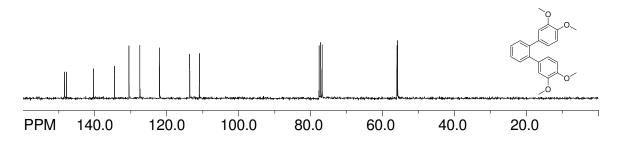
Alkyl substituted hexa-peri-hexabenzocoronenes (21-20).

HBC 2l. Yellow/orange solid, Yield: qunatitative; mp >300 °C; ¹H NMR (CDCl₃) δ: 1.73 (d, 36H), 3.58 (m, 6H), 8.9 (s, 12H); ¹³C NMR (CDCl₃) δ: 24.97, 35.46, 120.04, 120.33, 124.15, 130.52, 146.56.

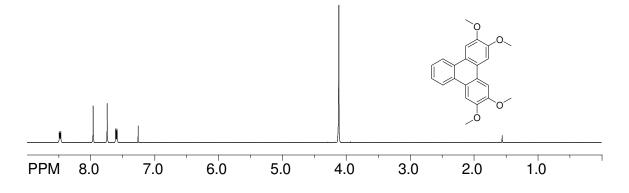
HBC 2m. Yellow/orange solid, Yield: quantitatve; mp >300 °C; ¹H NMR (CDCl₃) δ: 1.11 (s, 18H), 1.69 (s, 18H), 2.07 (s, 12H), 3.29 (s, 6H), 9.03 (s, 12H); ¹³C NMR (CDCl₃) δ: 12.12, 22.36, 31.25, 44.36, 120.11, 120.13, 124.89, 131.09, 146.78.

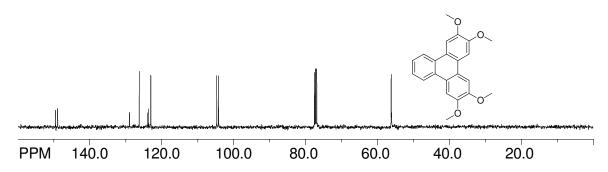

HBC 2n. Yellow/orange solid, Yield: quantitatve; mp 110-112 °C; ¹H NMR (CDCl₃) δ: 0.84 (t, 18H), 1.06 (d, 18H), 1.33 (m, 60H), 2.38 (m, 6H), 6.59 (s, 12H), 6.67 (d, 12H); ¹³C NMR (CDCl₃) δ: 14.32, 22.95, 28.33, 29.80, 32.02, 32.12, 39.24, 41.31, 120.70, 120.77, 124.94, 130.55, 146.26.

HBC 20. Yellow/orange solid, Yield: quantitatve; mp >320 °C (lit^{S5} mp >300 °C); ¹H NMR (CDCl₃) δ: 1.83 (s, 54H), 9.32 (s, 12H); ¹³C NMR (CDCl₃) δ: 32.25, 35.95, 119.13, 120.71, 124.22, 130.72, 149.22.

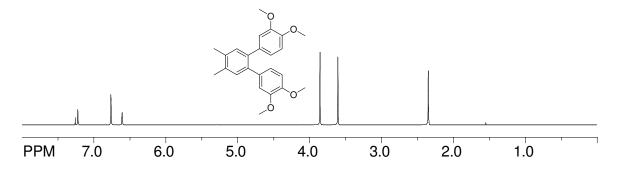

References:

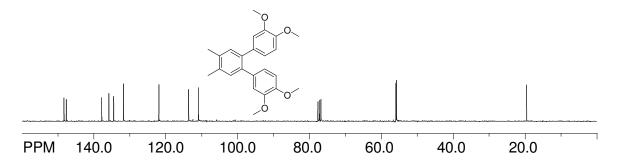
- S1. (a) Suzuki, A. *Chem. Commun.* 2005, 4759. (b) Hassan, J.; Sevignon, M.; Gozzi,
 C.; Schulz, E.; Lemaire, M. *Chem. Rev.* 2002, *102*, 1359.
- S2. Chebny, V. J.; Gwengo, C.; Gardinier, J. R.; Rathore, R. *Tetrahedron Lett.* 2008, 49, 4869.
- Sun, D.; Lindeman, S. V.; Rathore, R.; Kochi, J. K. J. Chem. Soc., Perkin Trans. 2, 2001, 1585.
- S4. Apel, S.; Nitsche, S.; Beketov, K.; Seichter, W.; Seidel, J.; Weber, E. J. Chem. Soc., Perkin Trans. 2 2001, 1212.
- S5. Ronlan, A.; Parker, V. D. J. Org. Chem. 1974, 39, 1014.
- S6. Compare: Herwig, P. T.; Enkelmann, V.; Schmelz, O.; Muellen, K. *Chem. Eur. J.* **2000**, *6*, 1834.


¹H NMR spectrum of 3,3',4,4'-tetramethoxy-*o*-terphenyl (1a).

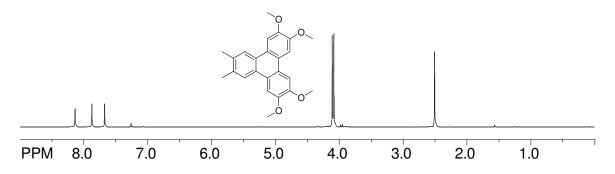


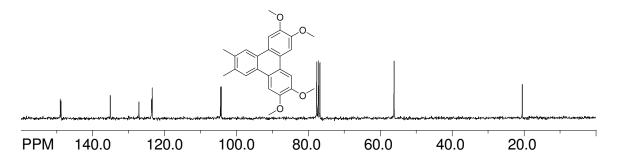
¹³C NMR spectrum of 3,3',4,4'-tetramethoxy-*o*-terphenyl (1a).

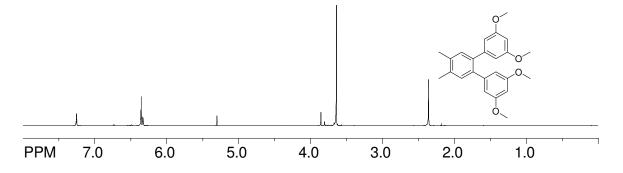

¹H NMR spectrum of 2,3,10,11-tetramethoxytriphenylene (2a).

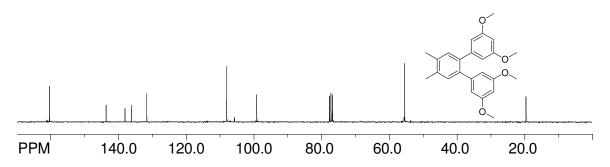


¹³C NMR spectrum of 2,3,10,11-tetramethoxytriphenylene (2a).

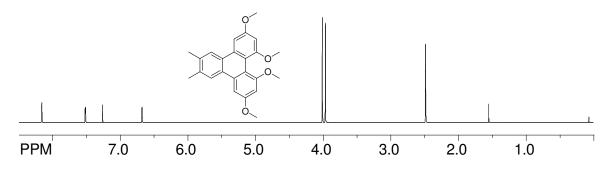

¹H NMR spectrum of 3',4'-dimethyl-3,4,3'',4''-tetramethoxyl-*o*-terphenyl (1b)

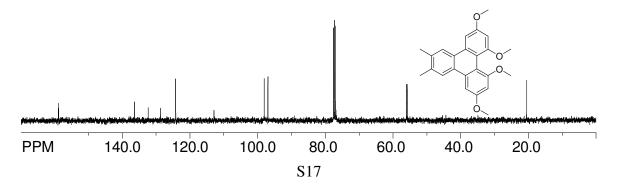

¹³C NMR spectrum of 3',4'-dimethyl-3,4,3'',4''-tetramethoxyl-*o*-terphenyl (1b)


¹H NMR spectrum of 6,7-dimethyl-2,3,10,11-tetramethoxytriphenylene (2b).



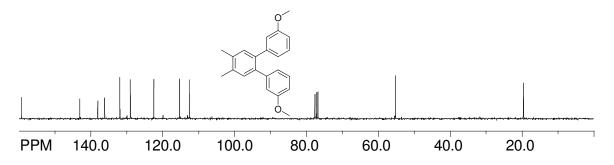
¹³C NMR spectrum of 6,7-dimethyl-2,3,10,11-tetramethoxytriphenylene (2b).

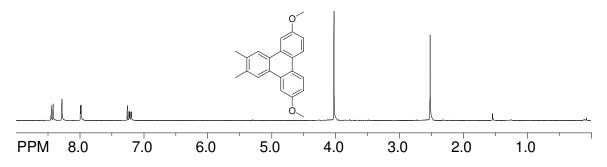

¹H NMR spectrum of 3',4'-dimethyl-3,5,3'',5''-tetramethoxy-*o*-terphenyl (1c)

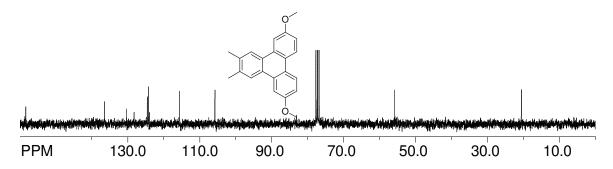


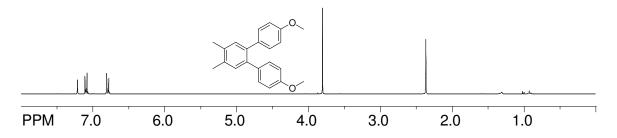
¹³C NMR spectrum of 3',4'-dimethyl-3,5,3'',5''-tetramethoxy-*o*-terphenyl (1c)

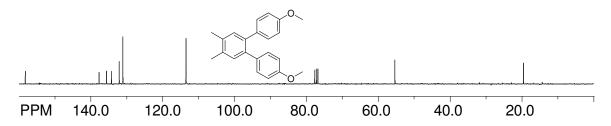
¹H NMR spectrum of 6,7-dimethyl-1,3,9,11-tetramethoxytriphenylene (2c)

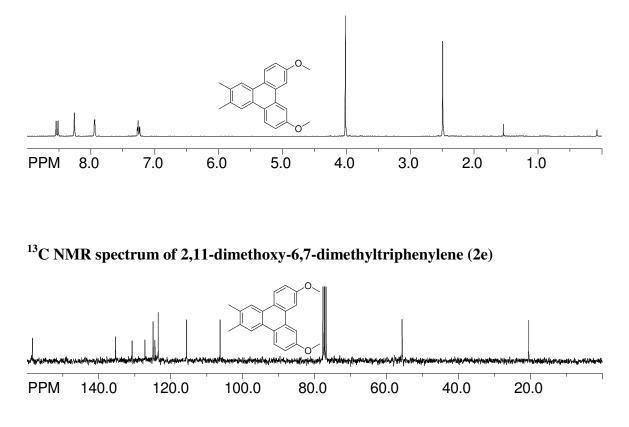

¹³C NMR spectrum of 6,7-dimethyl-1,3,9,11-tetramethoxytriphenylene (2c)

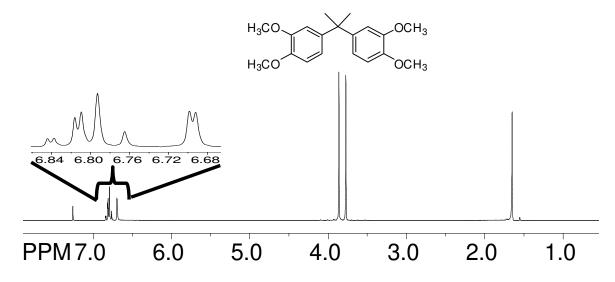

¹H NMR spectrum of 3,3"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1d)

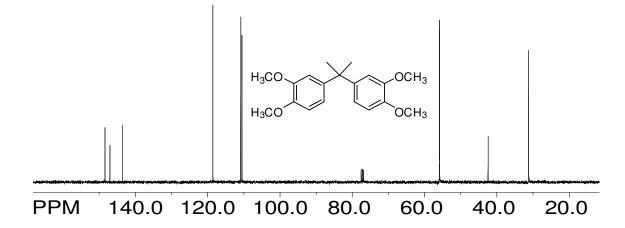

¹³C NMR spectrum of 3,3"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1d)

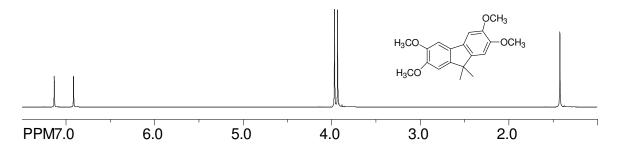

¹H NMR spectrum of 3,10-dimethoxy-6,7-dimethyltriphenylene (2d)

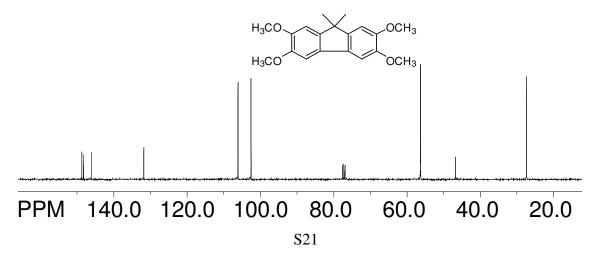

¹³C NMR spectrum of 3,10-dimethoxy-6,7-dimethyltriphenylene (2d)

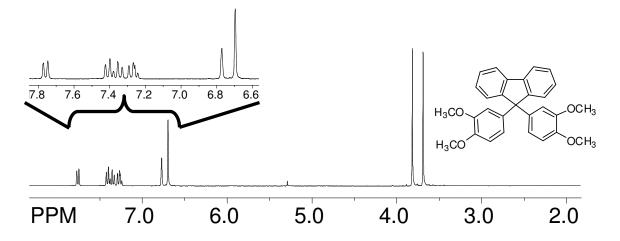

¹H NMR spectrum of 4,4''-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1e)

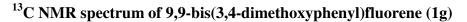

¹³C NMR spectrum of 4,4"-dimethoxy-3',4'-dimethyl-*o*-terphenyl (1e)

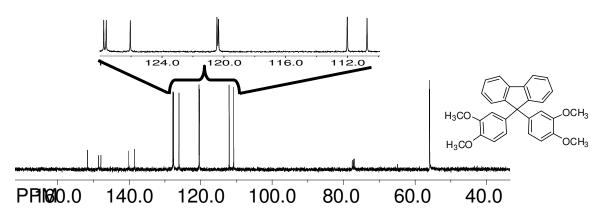

¹H NMR spectrum of 2,11-dimethoxy-6,7-dimethyltriphenylene (2e)

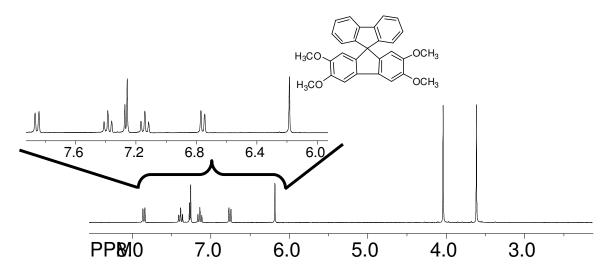

¹H NMR spectrum of 2,2-Bis(3,4-dimethoxyphenyl)propane (1f)

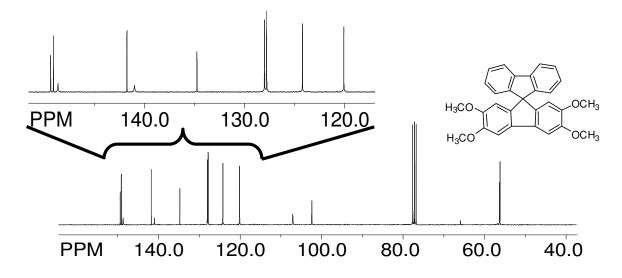

¹³C NMR spectrum of 2,2-Bis(3,4-dimethoxyphenyl)propane (1f)

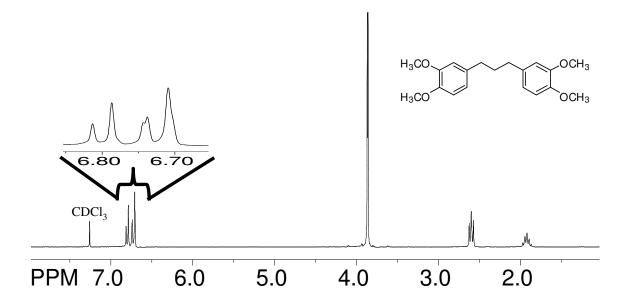

¹H NMR spectrum of 2,3,6,7-tetramethoxy-9,9-dimethylfluorene (2f)

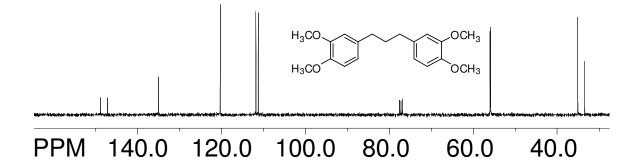


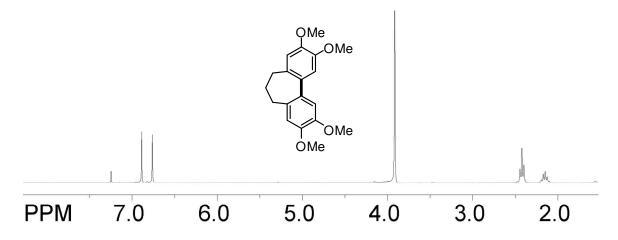

¹³C NMR spectrum of 2,3,6,7-tetramethoxy-9,9-dimethylfluorene (2f)

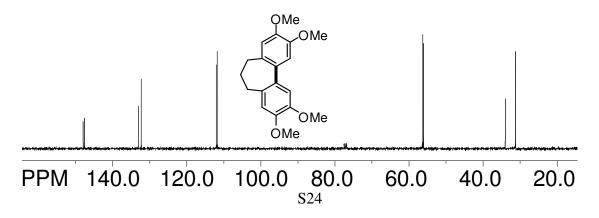

¹H NMR spectrum of 9,9-bis(3,4-dimethoxyphenyl)fluorene (1g)

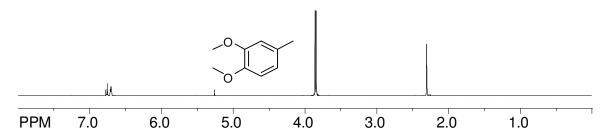


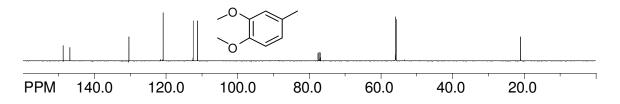

¹H NMR spectrum of 2,3,6,7-tetramethoxyspirobifluorene (2g)


¹³C NMR spectrum of 2,3,6,7-tetramethoxyspirobifluorene (2g)

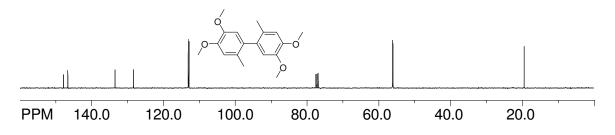

¹H NMR spectrum of 1,3-bis(3,4-dimethoxyphenyl)propane (1h)

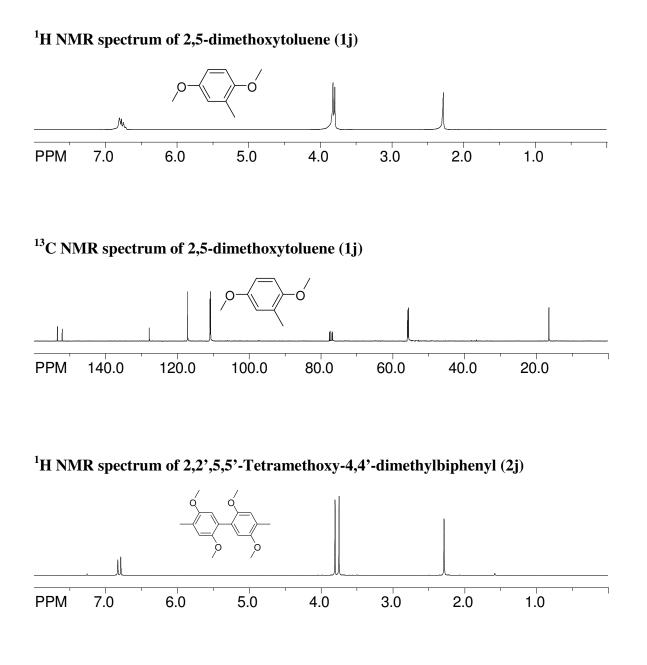

¹³C NMR spectrum of 1,3-bis(3,4-dimethoxyphenyl)propane (1h)


¹H NMR spectrum of 6,7-Dihydro-2,3,9,10-tetramethoxydibenzo-[1,c]cycloheptadiene (2h)

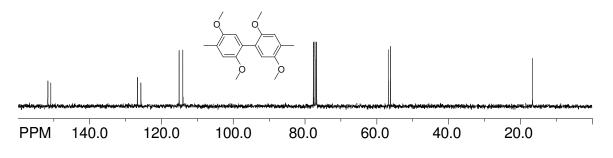

¹³C NMR spectrum of 6,7-Dihydro-2,3,9,10-tetramethoxydibenzo-[1,c]cycloheptadiene (2h)


¹H NMR spectrum of 3,4-dimethoxytoluene (1i)

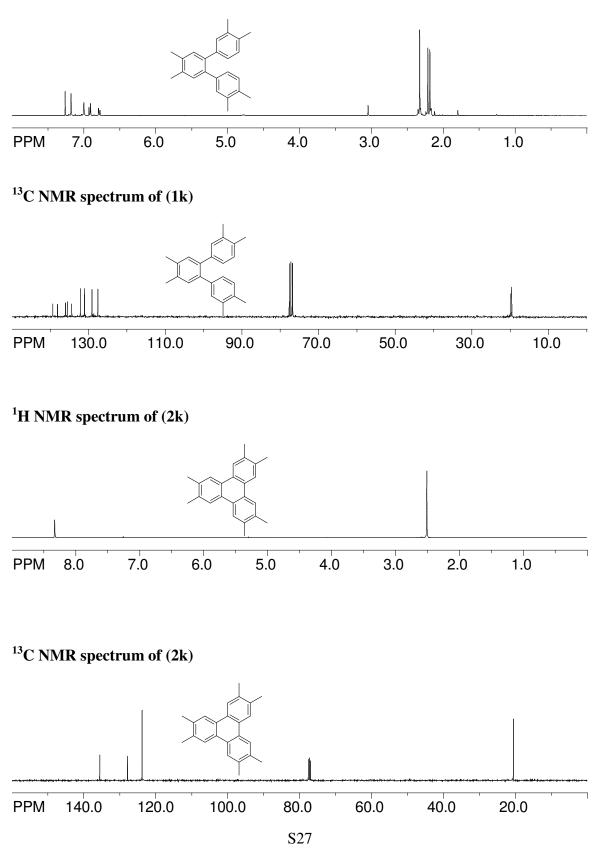

¹³C NMR spectrum of 3,4-dimethoxytoluene (1i)

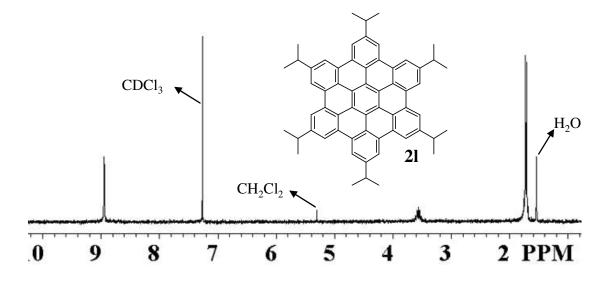


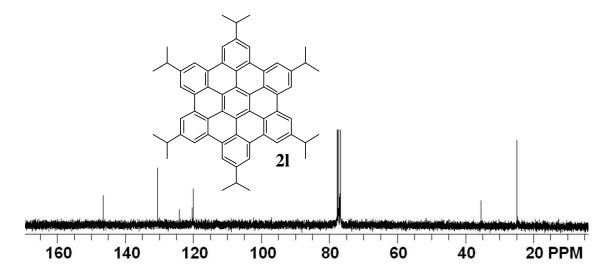
¹H NMR spectrum of 4,4',5,5'-Tetramethoxy-2,2'-dimethylbiphenyl (2i)

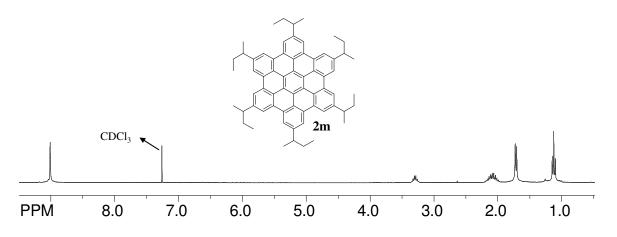


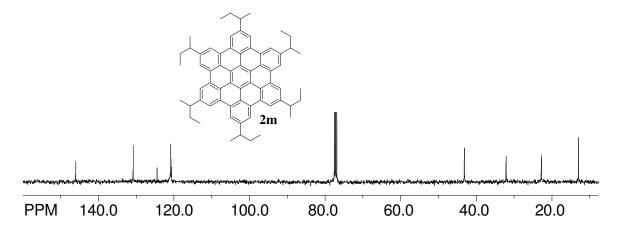
¹³C NMR spectrum of 4,4',5,5'-Tetramethoxy-2,2'-dimethylbiphenyl (2i)

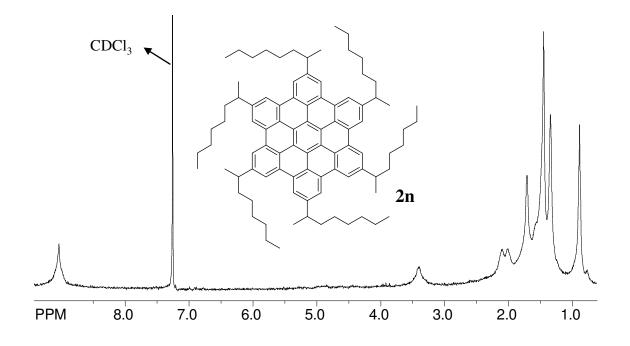


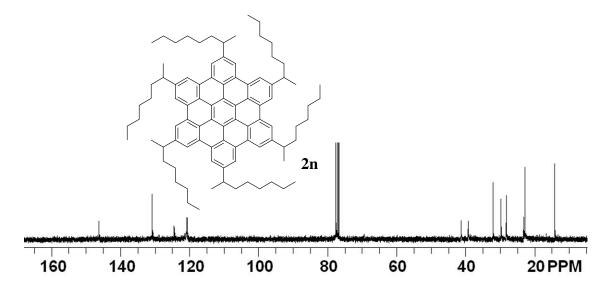

¹³C NMR spectrum of 2,2',5,5'-Tetramethoxy-4,4'-dimethylbiphenyl (2j)

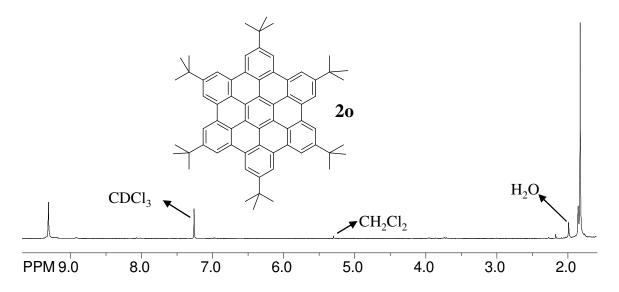

¹H NMR spectrum of (1k)

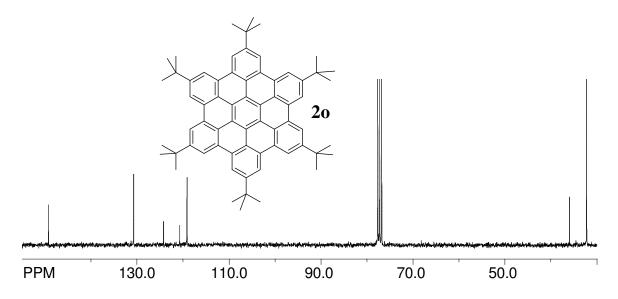

¹H NMR spectrum of HBC 2l


¹³C NMR spectrum of HBC 21


¹H NMR spectrum of HBC 2m


¹³C NMR spectrum of HBC 2m


¹H NMR spectrum of HBC 2n


¹³C NMR spectrum of HBC 2n

¹H NMR spectrum of HBC 20

¹³C NMR spectrum of HBC 20

Crystal data and structure refinement for raj15n (HBC 2o).

