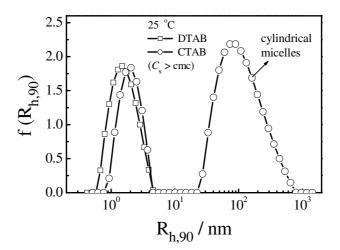
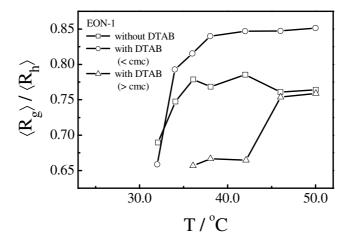
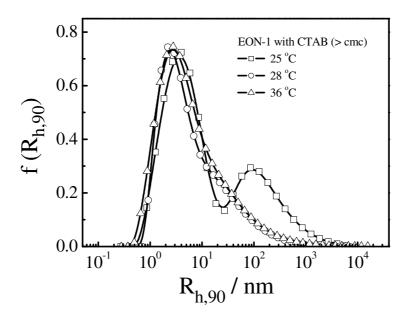
Supporting Information

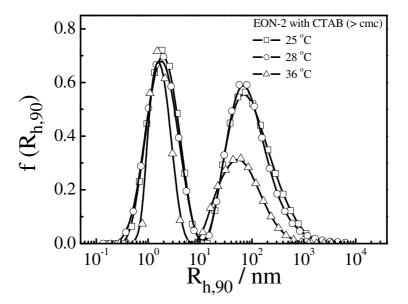

Thermo-induced Aggregation Behavior of Poly(ethylene oxide)-b-poly(*N*-isopropylacrylamide) Block Copolymers in the Presence of Cationic Surfactants

Junpeng Zhao^{†,‡}, Guangzhao Zhang[†], Stergios Pispas^{‡,*}


[†]Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 China

[‡]Theoretical and Physical Chemistry Institute, National Hellenic Research


Foundation, 48 Vass. Constantinou Ave., 11635 Athens, Greece


Figure S1. Hydrodynamic radius distributions ($f(R_{h,90})$) of DTAB (8.0 × 10⁻³ g/mL) and CTAB (6.0 × 10⁻⁴ g/mL) at 25 °C, where C_s are both higher than the respective cmc value.

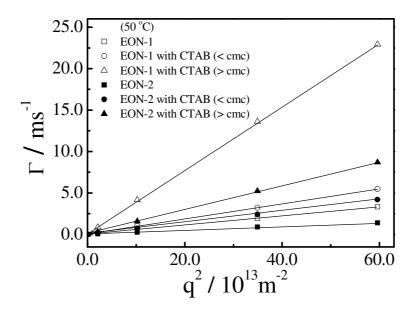

Figure S2. Temperature dependence of ratio of radius of gyration to hydrodynamic radius $(\langle R_g \rangle / \langle R_h \rangle)$ of EON-1 with and without DTAB, where C_p is constant at 1.0 × 10^{-3} g/mL, C_s are 2.0×10^{-3} g/mL (< cmc) and 8.0×10^{-3} g/mL (> cmc), respectively.

Figure S3. Temperature dependence of hydrodynamic radius distributions ($f(R_{h,90})$) of EON-1 with CTAB, where C_p is 1.0×10^{-3} g/mL, C_s is 6.0×10^{-4} g/mL.

Figure S4. Temperature dependence of hydrodynamic radius distributions ($f(R_{h,90})$) of EON-2 with CTAB, where C_p is 1.0×10^{-3} g/mL, C_s is 6.0×10^{-4} g/mL.

Figure S5. The typical scattering vector (q) dependence of average line width (Γ) of EON-1 and EON-2 (with or without CTAB) at 50 °C, where C_p is constant at 1.0 × 10^{-3} g/mL, C_s are 6.0×10^{-4} g/mL (< cmc) and 1.5×10^{-4} g/mL (> cmc).