Supporting Information: calculation details

 $y=I_A/(I_A+I_B)$ with $I_A=x_A.m_A$ and $I_B=x_B.m_B$ with $x_A=0.72$ and $x_B=0.82$ hence, $y = x_A.m_A/(x_A.m_A + x_B.m_B)$

Simplifying its expression by posing $m_A+m_B=1$, we also have:

 $y = x_A.m_A/(x_A.m_A + x_B.(1-x_A)) = x_A.m_A/((x_A-x_B).m_A + x_B)$ and x = % anatase $= m_A/(m_A + m_B) = m_A/(m_A + m_B)$ m_A ;

hence, with $k_E=x_A/x_B$, the expression becomes $y=x_A.x/((x_A-x_B).x+x_B)=k_E.x_B.x/(k_E.x_B-x_B)$ x_B). $x+x_B$)= k_E . $x/((k_E-1).x+1$

And finally, $y = k_E \times \%$ anatase $/(1+(k_E-1) \times \%$ anatase)