Supporting Information: calculation details
$\mathrm{y}=\mathrm{I}_{\mathrm{A}} /\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}\right)$ with $\mathrm{I}_{\mathrm{A}}=\mathrm{x}_{\mathrm{A}} \cdot \mathrm{m}_{\mathrm{A}}$ and $\mathrm{I}_{\mathrm{B}}=\mathrm{x}_{\mathrm{B}} \cdot \mathrm{m}_{\mathrm{B}}$ with $\mathrm{x}_{\mathrm{A}}=0.72$ and $\mathrm{x}_{\mathrm{B}}=0.82$ hence, $\mathrm{y}=\mathrm{x}_{\mathrm{A}} \cdot \mathrm{m}_{\mathrm{A}} /\left(\mathrm{x}_{\mathrm{A}} \cdot \mathrm{m}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \cdot \mathrm{m}_{\mathrm{B}}\right)$
Simplifying its expression by posing $\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}=1$, we also have:
$\mathrm{y}=\mathrm{x}_{\mathrm{A}} \cdot \mathrm{m}_{\mathrm{A}} /\left(\mathrm{x}_{\mathrm{A}} \cdot \mathrm{m}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \cdot\left(1-\mathrm{x}_{\mathrm{A}}\right)\right)=\mathrm{x}_{\mathrm{A}} \cdot \mathrm{m}_{\mathrm{A}} /\left(\left(\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{B}}\right) \cdot \mathrm{m}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}\right)$ and $\mathrm{x}=$ \% anatase $=\mathrm{m}_{\mathrm{A}} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)=$ m_{A};
hence, with $\mathrm{k}_{\mathrm{E}}=\mathrm{x}_{\mathrm{A}} / \mathrm{x}_{\mathrm{B}}$, the expression becomes $\mathrm{y}=\mathrm{x}_{\mathrm{A}} \cdot \mathrm{x} /\left(\left(\mathrm{x}_{\mathrm{A}}-\mathrm{x}_{\mathrm{B}}\right) \cdot \mathrm{x}+\mathrm{x}_{\mathrm{B}}\right)=\mathrm{k}_{\mathrm{E}} \cdot \mathrm{x}_{\mathrm{B}} \cdot \mathrm{x} /\left(\mathrm{k}_{\mathrm{E}} \cdot \mathrm{x}_{\mathrm{B}}-\right.$ $\left.\left.\mathrm{x}_{\mathrm{B}}\right) \cdot \mathrm{x}+\mathrm{x}_{\mathrm{B}}\right)=\mathrm{k}_{\mathrm{E}} \cdot \mathrm{x} /\left(\left(\mathrm{k}_{\mathrm{E}}-1\right) \cdot \mathrm{x}+1\right.$

And finally, $\mathrm{y}=\mathrm{k}_{\mathrm{E}} \times \%$ anatase $/\left(1+\left(\mathrm{k}_{\mathrm{E}}-1\right) \times \%\right.$ anatase $)$

