Supporting Information

Photoswitching of Dextro-/Levo- Rotation with Axially Chiral Binaphthyls linked to an Azobenzene

Kazuto Takaishi,*,† Masuki Kawamoto, ${ }^{\dagger}$ Kazunori Tsubaki, \ddagger and Tatsuo Wada*, \dagger

\dagger Supramolecular Science Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan and \ddagger Graduate School of Life and Environmental Science, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo, Kyoto 606-8522, Japan

1. UV-vis and CD spectra of (R)-4-9 and (S)-4. Pages S2
2. Thermodynamic parameters of cis-trans isomerization process of $(R)-4$ and $(R)-7$. Pages S S8
3. Synthesis of (R)-4-8 and (S)-4. Pages S10
4. Determination of configuration of $(R)-4$ Pages S13
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Pages S14
6. References Pages S28
7. UV-vis and CD spectra of (R)-4-9 and (S)-4.
(a) After 365 nm-irradiation

(b) After 436 nm -irradiation

Figure S-1. CD spectra of (R)-4 (red line) and (S)-4 (blue line) after (a) 365 nm -irradiation and (b) 436 nm-irradiation. Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}, 20^{\circ} \mathrm{C}$, light-path length $=10 \mathrm{~mm}$, irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

Figure S-2. CD and UV-vis spectra of $(R)-4$ and $(R)-\mathbf{9}^{51}$. ((R)-4 after 365 nm -irradiation (blue line), (R)-4 after 436 nm -irradiation (red line), (R)-9 (green line)). Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}, 20^{\circ} \mathrm{C}$, light-path length $=10 \mathrm{~mm}$, irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}\right.$, 100 s).

Figure S-3. (a) CD spectra of (R)-4, (b) Absorption spectra of (R)-4; after 365 nm -irradiation (blue line), after 436 nm -irradiation (red line). Conditions: Methanol, saturated concentration, $20{ }^{\circ} \mathrm{C}$, light-path length $=10 \mathrm{~mm}$, irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

(R)-5

Figure S-4. (a) CD spectra of (R)-5, (b) Absorption spectra of (R)-5; after 365 nm-irradiation (blue line), after 436 nm -irradiation (red line). Conditions: Methanol, $20^{\circ} \mathrm{C}$, light-path length $=10 \mathrm{~mm}$, irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

(R)-6

Figure S-5. (a) CD spectra of (R)-6, (b) Absorption spectra of (R)-6; after 365 nm -irradiation (blue line), after 436 nm -irradiation (red line). Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}, 20^{\circ} \mathrm{C}$, light-path length $=10$ mm , irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right.$), $436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

(R)-7

Figure S-6. (a) CD spectra of (R)-7, (b) Absorption spectra of (R)-7; after 365 nm-irradiation (blue line), after 436 nm -irradiation (red line). Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}, 20^{\circ} \mathrm{C}$, light-path length $=10$ mm , irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

Figure S-7. (a) CD spectra of (R)-8, (b) Absorption spectra of (R)-8; after 365 nm-irradiation (blue line), after 436 nm -irradiation (red line). Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}, 20^{\circ} \mathrm{C}$, light-path length $=10$ mm , irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.
(a) After 365 nm-irradiation

Figure S-8. CD spectra of (R)-4-8 after (a) 365 nm -irradiation and (b) 436 nm -irradiation. Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}, 20{ }^{\circ} \mathrm{C}$, light-path length $=10 \mathrm{~mm}$, irradiation wavelength: 365 nm (10 $\left.\mathrm{mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right), 436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

Figure S-9. Absorption spectra of concentrated (R)-4 after photo-irradiation. Conditions: CHCl_{3}, $0.0126 \mathbf{M}(\mathbf{0 . 0 1} \mathbf{g} / \mathbf{d l})$, light path length $=10 \mathrm{~mm}, 20^{\circ} \mathrm{C}$, Irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}\right.$, 500 s), $436 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 500 \mathrm{~s}\right)$.

Figure S-10. Time-dependent change in absorbance of $(R)-4$ after 365 nm -irradiation. Conditions: 1,4-Dioxane, light path length $=10 \mathrm{~mm}, 20^{\circ} \mathrm{C}$ in the dark, Monitoring wavelength: 365 nm , Irradiation wavelength: $365 \mathrm{~nm}\left(10 \mathrm{~mW} / \mathrm{cm}^{2}, 100 \mathrm{~s}\right)$.

2. Thermodynamic parameters of cis-trans isomerization process of (R)-4 and (R)-7.

For the thermal cis-trans isomerization,

$$
\begin{equation*}
\ln \frac{[c i s]_{t}}{[c i s]_{0}}=-k t \tag{1}
\end{equation*}
$$

Where $[\mathrm{cis}]_{t}$ and $[\mathrm{Cis}]_{0}$ are the concentrations of the cis-azobenzene at time t and time zero, respectively, and k is the rate constant for the thermal cis-trans isomerization. The first-order rate constant was determined by fitting the experimental data to the equation,

$$
\begin{equation*}
\ln \frac{A_{\infty}-A_{t}}{A_{\infty}-A_{0}}=-k t \tag{2}
\end{equation*}
$$

where A_{t}, A_{0} and A_{∞} are the absorbance at 365 nm at time t, time zero and infinite time, respectively. The first order plots according to equation 2 for the cis-trans thermal isomerization of $(R)-4$ and $(R)-7$ at various temperatures are shown in Figure S-11.

Furthermore thermodynamic parameters such as enthalpy of activation $\left(\Delta H^{\dagger}\right)$ and entropy of activation $\left(\Delta S^{\ddagger}\right)$ were determined according to the Eyring equation ${ }^{\text {S2 }}$:

$$
\begin{equation*}
k=\frac{k_{B} T}{h} \exp \left(\frac{\Delta S^{\ddagger}}{R}\right) \exp \left(-\frac{\Delta H^{\ddagger}}{R T}\right) \tag{3}
\end{equation*}
$$

where R, k_{B}, and h are gas constant, Boltzmann constant, and Planck's constant, respectively. Substituting into equation 3 ,

$$
\begin{equation*}
\ln \left(\frac{k h}{k_{B} T}\right)=-\frac{\Delta H^{\ddagger}}{R T}+\frac{\Delta S^{\ddagger}}{R} \tag{4}
\end{equation*}
$$

Figure S-12 shows Eyring plots for cis to trans thermal isomerization of $(R)-4$ and $(R)-7$. The values of ΔH^{\ddagger} and ΔS^{\ddagger} were obtained from intersect and aslope, respectively, of the linear plot of $\ln \left(h k / k_{B} T\right)$ versus $1 / T$ extrapolated to $T \rightarrow \infty$.

Figure S-11. First-order plots for cis to trans thermal isomerization of (R)-4 (A) and (R)-7 (B). (a) $35^{\circ} \mathrm{C}$, (b) $45^{\circ} \mathrm{C}$, (c) $55^{\circ} \mathrm{C}$, (d) $65^{\circ} \mathrm{C}$. Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}$.

Figure S-12. Eyring plots for cis to trans thermal isomerization of $(R)-4$ and $(R)-7$. Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}$.

Table S-1. Rate coefficients $k\left(\mathrm{~s}^{-1}\right)$ of cis to trans isomerization and the values of ΔH^{\ddagger} and ΔS^{\ddagger} of $(R)-\mathbf{4}$ and (R)-7.

	k at $35^{\circ} \mathrm{C}$	k at $45^{\circ} \mathrm{C}$	k at $55^{\circ} \mathrm{C}$	k at $65^{\circ} \mathrm{C}$	ΔH^{\ddagger}	ΔS^{\ddagger}
$(R)-\mathbf{4}$	4.7×10^{-6}	9.8×10^{-6}	4.0×10^{-5}	1.1×10^{-4}	$22 \mathrm{kcal} / \mathrm{mol}$	$-13 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$
$(R)-\mathbf{7}$	3.4×10^{-6}	1.8×10^{-5}	3.1×10^{-5}	8.1×10^{-5}	$20 \mathrm{kcal} / \mathrm{mol}$	$-17 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

Conditions: 1,4-Dioxane, $1.0 \times 10^{-5} \mathrm{M}$.

3. Synthesis

Synthetic route of binaphthyl with azobenzene 4-8 is shown below. Binaphthyl $\mathbf{2}^{\text {S3 }}$ and dibromide $\mathbf{3}^{\text {S4 }}$ was prepared by following the reported procedure.

3,3’-Dibenzyloxybinaphthyl with azobenzene (S)-4

A suspension of (S)-2 (100 mg, 0.201 mmol$), \mathrm{NaH}(10.6 \mathrm{mg}, 0.442 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) and 3(91 \mathrm{mg}, 0.201$ mmol, 1.0 eq.) in DMF (15 ml) was stirred for 12 hours at room temperature. The reaction mixture was poured into the mixed solvent of chloroform and water. The organic layer was separated and washed successively with 0.1 N hydrochloric acid solution, water (twice) and brine. After dried over sodium sulfate, the solvent was evaporated in vacuo to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane/chloroform = 1/2) and GPC to afford (S)-4 (57 mg, $\left.0.0719 \mathrm{mmol}, 36 \%\right)$. Red amorphous; IR (KBr) 2959, 1439, 1281, 1250, 1017, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.2-2.1 (m, 4H), 3.2-4.3 (m, 8H), 4.88, 5.19 (ABq, $\left.v_{A B}=61.7 \mathrm{~Hz}, J_{A B}=11.2 \mathrm{~Hz} ; \mathrm{s}, 4 \mathrm{H}\right), 6.4-7.5(\mathrm{~m}, 26 \mathrm{H})$, $7.73,7.78$ (two d, $J=8.4 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.5,29.7,64.8,65.1,68.9,70.1$, $70.5,70.6,108.4,108.4,113.1,113.9,119.4,120.2,124.0,124.2,125.0,125.6,125.7,125.2,126.3,127.8$, $127.9,128.2,128.5,128.8,128.8,130.5,130.6,130.8,136.4,136.5,142.6,143.7,145.9,146.4,151.1$, 151.3, 152.8 (Some peaks overlapped); HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 815.3097. Found: 815.3076; LR MS (FAB^{+}) 792.4 (M) ${ }^{+}$.

3,3’-Dimethoxybinaphthyl with azobenzene (R) - $\mathbf{6}$

A suspension of $(R)-5(30 \mathrm{mg}, 0.0490 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(34 \mathrm{mg}, 0.245 \mathrm{mmol}, 5 \mathrm{eq}$.$) and \mathrm{MeI}(30 \mu \mathrm{l}$, $0.490 \mathrm{mmol}, 10$ eq.) in DMF (1.5 ml) was stirred for 12 hours at room temperature. The reaction mixture was poured into the mixed solvent of chloroform and water. The organic layer was separated and washed successively with 0.1 N hydrochloric acid solution, water (twice) and brine. After dried over sodium sulfate, the solvent was evaporated in vacuo to give a residue. The residue was purified by column chromatography (SiO_{2}; n-hexane/chloroform/ethyl acetate $=4 / 3 / 1$, then $2 / 3 / 1$) and GPC to afford (R)-6 (20 mg, 0.0312 mmol, 64\%). Red amorphous; IR (KBr) 2959, 1281, 1250, 1022, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.2-2.1$ (m, 4H), 3.2-4.2 (m, 8H), 3.65, 3.83 (two s, 6H), 6.52, 6.61 (two d, $J=$ $8.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.6-7.5 (m, 14H), 7.66, 7.71 (two d, $J=8.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 29.7,29.9,55.1,55.3,64.9,65.5,69.1,70.4,107.0,107.2,113.1,114.6,119.4,120.5,120.5$, 121.1, 123.9, 124.1, 125.1, 125.2, 125.6, 125.9, 126.2, 126.3, 126.5, 126.7, 128.1, 128.6, 130.5, 130.8, 130.9, 131.1, 142.7, 144.2, 145.9, 146.2, 151.8, 152.1, 152.3, 152.9; HRMS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 663.2471$. Found: 663.2464; LR MS (FAB $\left.{ }^{+}\right) 640.3(\mathrm{M})^{+}$.

3,3’-Bis(diphenylmethyloxy)binaphthyl with azobenzene $(R)-7$

A suspension of $(R)-5(64 \mathrm{mg}, 0.104 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(72 \mathrm{mg}, 0.522 \mathrm{mmol}, 5 \mathrm{eq}$.$) and$ α-bromodiphenylmethane ($257 \mathrm{mg}, 1.04 \mathrm{mmol}, 10 \mathrm{eq}$.) in DMF (4.0 ml) was stirred for 14 hours at $50^{\circ} \mathrm{C}$. The reaction mixture was poured into the mixed solvent of chloroform and water. The organic layer was separated and washed successively with 0.1 N hydrochloric acid solution, water (twice) and brine. After dried over sodium sulfate, the solvent was evaporated in vacuo to give a residue. The residue was purified by GPC to afford (R)-7 ($36 \mathrm{mg}, 0.0381 \mathrm{mmol}, 37 \%$). Red amorphous; IR (KBr) 2960, 1283, 1248, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.2-2.0(\mathrm{~m}, 4 \mathrm{H}), 3.2-4.4(\mathrm{~m}, 8 \mathrm{H}), 6.07,6.43$ (two s, 2H), $6.4-7.5$ (m, 36H), 7.56, 7.61 (two d, $J=8.4 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.2,29.7$, 64.5, 65.5, 69.1, 70.8, 82.3, 82.9, 111.4, 111.7, 112.9, 114.3, 119.4, 120.3, 120.6, 122.2, 124.1, 124.3, $124.8,125.6,125.8,126.1,126.6,126.7,126.8,127.0,127.4,127.6,127.8,127.9,128.2,128.6,128.7$, 128.7, 128.9, 130.5, 130.6, 140.8, 140.9, 140.9, 141.1, 142.9, 143.8, 146.4, 147.1, 150.1, 150.4, 152.9; HRMS $\left(\mathrm{FAB}^{+}\right)$Calcd for $\mathrm{C}_{64} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$: 945.3907. Found: 945.3893; LR MS (FAB ${ }^{+}$) 944.4 $(\mathrm{M})^{+}$.

3-Benzyloxy-3'-hydroxy-binaphthyl with azobenzene (R) - $\mathbf{8}$

A suspension of (R)-5 ($40 \mathrm{mg}, 0.0653 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(10.8 \mathrm{mg}, 0.0783 \mathrm{mmol}, 1.2$ eq.) and benzyl bromide ($8.2 \mu \mathrm{l}, 0.0686 \mathrm{mmol}, 1.05 \mathrm{eq}$.) in DMF (4.0 ml) was stirred for 24 hours at $60{ }^{\circ} \mathrm{C}$. The reaction mixture was poured into the mixed solvent of chloroform and water. The organic layer was separated and washed successively with 0.1 N hydrochloric acid solution, water (twice) and brine. After dried over sodium sulfate, the solvent was evaporated in vacuo to give a residue. The residue was
purified by GPC to afford (R)-8 (16 mg, $0.0228 \mathrm{mmol}, 35 \%$), (R)-4 ($15 \mathrm{mg}, 0.0189 \mathrm{mmol}, 29 \%$), unreacted (R)-5 (10 mg, $0.0163 \mathrm{mmol}, 25 \%$). Red amorphous; IR (KBr) 3447, 3065, 1283, 1250, 748 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.2-2.1(\mathrm{~m}, 4 \mathrm{H}), 3.0-4.6(\mathrm{~m}, 8 \mathrm{H}), 5.19,5.30\left(\mathrm{AB} \mathrm{q}, \mathrm{v}_{\mathrm{AB}}=17.2 \mathrm{~Hz}\right.$, $\left.J_{A B}=11.2 \mathrm{~Hz} ; \mathrm{s}, 2 \mathrm{H}\right), 6.5-7.8(\mathrm{~m}, 23 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.9,29.2,29.9,30.1,65.3,66.0$, 67.1, 68.7, 68.7, 69.1, 69.6, 70.4, 70.7, 71.8, 108.9, 109.3, 110.5, 111.7, 113.6, 114.0, 114.4, 116.6, 118.8, 119.1, 119.3, 120.6, 121.2, 121.5, 121.7, 122.2, 123.4, 123.7, 124.0, 124.4, 124.7, 124.8, 125.1, 125.2, $125.4,125.8,125.8,125.9,126.1,126.2,126.4,126.5,126.6,126.6,126.9,127.5,127.6,128.0,128.1$, 128.2, 128.4, 128.5, 128.7, 128.8, 129.0, 129.0, 129.6, 130.4, 130.8, 131.0, 131.1, 131.2, 131.5, 131.6, 136.6, 136.7, 142.4, 144.4, 144.5, 144.6, 144.9, 146.3, 146.4, 146.6, 148.3, 151.5, 151.6, 152.8, 153.6 (Some peaks overlapped); HRMS (FAB^{+}) Calcd for $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M})^{+}$: 702.2730. Found: 702.2729; LR MS (FAB^{+}) 702.3 (M) ${ }^{+}$.

4. Determination of configuration of (R)-4.

As a precautionary measure, $\mathbf{4}$ was derivatized to known compound $\mathbf{1 1}^{55}$ to certify that inversion did not occur during the synthesis of $\mathbf{4}$ from (R)-2. Below is a scheme that outlined the derivatization of $\mathbf{4}$ synthesized from (R)-2 to $\mathbf{1 1}$. The specific optical rotation of derivatized 11 was $+49^{\circ}$, whereas that of known compound (S)-11 was -52°. Thus, the absolute configuration of $\mathbf{4}$ synthesized from $(R)-2$ was (R) without inversion or racemization.

Tetramethoxybinaphthyl (R)-11.

A suspension of $(R)-4(100 \mathrm{mg}, 0.126 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ containing $\mathrm{BBr}_{3}(1.51 \mathrm{mmol}, 12 \mathrm{eq}$. was stirred for 24 hours at $0^{\circ} \mathrm{C}$. The reaction mixture was poured into the mixed solvent of chloroform and water. The organic layer was separated and washed successively with 0.1 N hydrochloric acid solution, water (twice) and brine. After dried over sodium sulfate, the solvent was evaporated in vacuo to afford crude (R)-10. Next, a suspension of crude $(R) \mathbf{- 1 0}$ (ca. 40 mg), $\mathrm{K}_{2} \mathrm{CO}_{3}(139 \mathrm{mg}, 1.01 \mathrm{mmol}, 8.0$ eq.) and MeI ($93 \mu \mathrm{l}, 1.51 \mathrm{mmol}, 12 \mathrm{eq}$.) in DMF (2.0 ml) was stirred for 24 hours at room temperature. The reaction mixture was poured into the mixed solvent of ethyl acetate and water. The organic layer was separated and washed successively with 0.1 N hydrochloric acid solution, water (twice) and brine. After dried over sodium sulfate, the solvent was evaporated in vacuo to give a residue. The residue was purified by preparative TLC (SiO_{2}; n-hexane/chloroform/ethyl acetate $=9 / 3 / 1$) and GPC and preparative TLC (SiO_{2}; n-hexane/chloroform/ethyl acetate $=8 / 3 / 1$) to afford $(R)-\mathbf{1 1}(12 \mathrm{mg}, 0.0321 \mathrm{mmol}, 25 \%$ over 2 steps). Colorless powder; $[\alpha]_{\mathrm{D}}^{20}=+49$ (c 0.6, CHCl_{3}); IR (KBr) 2940, 1464, 1420, 1254, $1117 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.61$ (s, 6H), 4.06 (s, 6H), 7.0-7.2 (m, 4H), 7.3-7.5 (m, 4H), 7.78 (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.6,60.7,107.2,124.0,125.2,125.7,125.9,126.5,128.9$, 131.2, 147.3, 152.3; HR MS (ESI ${ }^{+}$) Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 397.1416. Found: 397.1411; LR MS $\left(\mathrm{FAB}^{+}\right) 374.2(\mathrm{M})^{+}$.

(S)-4

(S)-4

(R) -5

(R)-6

(R)-7

0000 -
(R)-8

$(R)-11$

000%

References

(S1) Tsubaki, K.; Tanaka, H.; Furuta, T.; Tanaka, K.; Kinoshita, T.; Fuji, K. Tetrahedron, 2002, 58, 5611. (S2) Eyring, H. Chem. Rev. 1935, 17, 65.
(S3) Tsubaki, K.; Morikawa, H.; Tanaka, H.; Fuji, K. Tetrahedron: Asymmetry 2003, 14, 1393-1396.
(S4) Kawamoto, M.; Aoki, T.; Wada, T. Chem. Commun. 2007, 930.
(S5) Furuta, T.; Tanaka, K.; Tsubaki, K.; Fuji, K. Tetrahedron 2004, 60, 4431.

