Supporting Information

Microwave Assisted Synthesis of Substituted Tetrahydropyrans Catalyzed by $\mathbf{Z r C l}_{4}$ and Its Application in the Asymmetric Synthesis of Exo- and Endo-brevicomin

Surendra Singh and Patrick J. Guiry
Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
patrick.guiry@ucd.ie

Table of contents:

Page 2; I. General remarks
Page 3; II. General procedure for ZrCl_{4}-catalyzed cyclic acetal formation
Page 3; III. Spectroscopic data for the cyclic acetals
Page 6; IV. Synthesis of (S)-1-((R)-oxiran-2-yl)prop-2-en-1-ol (20)
Page 7; V. Synthesis of 2-(2-bromoethyl)-2-methyl-1,3-dioxolane
Page 7; VI. Synthesis of (3S, 4R)-7-(2-methyl-1,3-dioxolan-2-yl)hept-1-ene-3,4-diol (21)
Page 9; VII. Synthesis of ($1 R, 5 S, 7 S$)-5-methyl-7-vinyl-6,8-dioxa-bicyclo[3.2.1]octane (22)
Page 9; VIII. The Synthesis of ($1 R, 5 S, 7 S$)-7-ethyl-5-methyl-6,8-dioxa-bicyclo[3.2.1]octane (18)
Page 9; IX. Synthesis of (R)-1-((R)-oxiran-2-yl)allyl 4-nitrobenzoate (24)
Page 10; X. Synthesis of $(R)-1-((R)$-oxiran-2-yl)prop-2-en-1-ol (25)
Page 10; XI. Synthesis of ($3 R, 4 R$)-7-(2-methyl-1,3-dioxolan-2-yl)hept-1-ene-3,4-diol (26)
Page 11; XII. (1R,5S,7R)-5-methyl-7-vinyl-6,8-dioxa-bicyclo[3.2.1]octane (27)
Page 11; XIII. Synthesis of (+)-exo-brevicomin
Page 12; XIV. References
Pages 13-56; Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectrums of all compounds.
Pages 57-59; XVI. GC Chromatograms.

I. General remarks:

Vinyl carbinols, (+)-and (-)-Diisopropyltartrate, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$, 3-butene-2-one, $\mathrm{TMSBr}, \mathrm{ZrCl}_{4}$, anhydrous methanol, anhydrous acetonitrile, CuI , and Mg turnings were obtained from commercial sources and were used as received. Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively) were recorded on 400 MHz (operating frequencies: ${ }^{1} \mathrm{H}, 400.13 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100.61 \mathrm{MHz}$) 500 MHz (operating frequencies: ${ }^{1} \mathrm{H}, 499.77 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125.67 \mathrm{MHz}$) FT spectrometers at ambient temperature. In the case of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, the chemical shifts (δ) for all compounds are listed in parts per million downfield from tetramethylsilane using the NMR solvent as an internal reference. The reference values used for deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ were 7.26 and 77.00 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively. High resolution mass spectra were measured on a Micromass instrument. Infrared spectra were recorded on infrared FT spectrometer. Optical rotation values were measured on a polarimeter. GC analysis was done using chiral GC column. Thin layer chromatography was carried out using silica gel plates. Column chromatography separations were performed using silica gel. Solvents were dried immediately before use by distillation from standard drying agents. The diols ($\mathbf{1}$ and $\mathbf{4}-\mathbf{8})^{1}$ and epoxide 20 were synthesized according to the literature. ${ }^{2}$

II. General procedure for $\mathbf{Z r C l}_{4}$-catalyzed cyclic acetal formation

$\mathrm{ZrCl}_{4}(6.8 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and diol ($200 \mathrm{mg}, 0.606 \mathrm{mmol}$) were dissolved in methanol ($400 \mu \mathrm{~L}$) and irradiated under MW (150 W) at $50{ }^{\circ} \mathrm{C}$ for 3 min . The title compound was purified by flash column chromatography using pentane:EtOAc (8.5/1.5) as the eluent. The \% yield of combined epimers is given in the Tables 1 and 2 . The epimeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy by integrating methoxy peaks and by GC also.

III. Spectroscopic data for the cyclic acetals

The epimeric ratio of crude reaction mixture was determined by GC using a β-Dex chiral column (column temp. $140{ }^{\circ} \mathrm{C}$ isotherms, $1 \mathrm{~mL} / \mathrm{min}$ column flow, injector temp. $200{ }^{\circ} \mathrm{C}$, and detector temp $220{ }^{\circ} \mathrm{C}$, R_{t} $($ major $)=13.21 \mathrm{~min}$ and $\mathrm{R}_{\mathrm{t}}($ minor $)=12.91 \mathrm{~min}$.
$[\alpha]^{20}{ }_{\mathrm{D}}+63.5\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;$ IR (neat, NaCl$): 3456.2,2944.2,1442.0,1372.4,1199.4,1125.0,1030.6$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(\mathrm{ddd}, J=5.9,10.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $(\mathrm{d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 2 \mathrm{H})$,
 ppm.; GC-HRMS (EI): Found $140.0835[\mathrm{M}-\mathrm{MeOH}]^{+}, \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires 140.0837.

$[\alpha]^{20}{ }_{\mathrm{D}}-53.3\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.99-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=1.5,17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=1.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=2.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, 3.46 (ddd, $J=2.1,4.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.31(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=136.5,116.4,103.6,78.6,74.6,56.0,31.0,24.3,21.6 \mathrm{ppm}$. The IR and HRMS data are identical to its epimer 2.

Diastereomeric ratio was $0.70 / 0.3 ;[\alpha]^{20}{ }_{\mathrm{D}}=+127.9\left(\mathrm{c}=1.45, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (neat, NaCl$): 3422.3,2945.2$, 2930.9, 1380.8, 1112.2, $1046.8 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.28(\mathrm{~m}$, $1 \mathrm{H}), 5.21(\mathrm{dt}, J=1.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.75-4.72(\mathrm{~m}, 0.3 \mathrm{H}), 4.21-4.11(\mathrm{~m}$, $1 \mathrm{H}), 3.87(\mathrm{dt}, J=3.9,10.7 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.75(\mathrm{ddd}, J=2.3,3.6,11.8 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H})$, $2.26(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.22(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.66(\mathrm{~m}, 1.7 \mathrm{H}), 1.59-$ $1.52(\mathrm{~m}, 0.7 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 0.3 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 1.2 \mathrm{H}), 1.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-1.00(\mathrm{~m}$, $0.7 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ Major diastereomer 136.5, 116.4, 98.9, $74.6,71.3,54.6,38.2,33.2,24.0,22.2 \mathrm{ppm}$, and minor diastereomer 136.7, 116.5, 99.6, 74.6, 67.4, 54.9, 35.2, 30.6, 23.8, 20.8 ppm . GC-HRMS (EI): Found 155.1078 [M-MeO] ${ }^{+}, \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$ requires 155.1067. The diasteromeric ratio was determined by GC using β-Dex chiral column (isothermal $130{ }^{\circ} \mathrm{C}, 0.99 \mathrm{ml} / \mathrm{min}$ column flow, injector temp. $200^{\circ} \mathrm{C}$ and detector temp $220{ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{t}}($ major $)=8.86 \mathrm{~min}$ and $\mathrm{R}_{\mathrm{t}}($ minor $)=$ 10.18 min.

Diastereomeric ratio was $0.67 / 0.33 ;[\alpha]^{20}{ }_{\mathrm{D}}=-41.9\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 5.90 (ddd, $J=6.0,11.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{ddt}, J=1.6,3.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=1.5,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{dd}, J=2.7,7.4 \mathrm{~Hz}, 0.33 \mathrm{H}), 4.36(\mathrm{dd}, J=2.1,9.6 \mathrm{~Hz}, 0.67 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.72(\mathrm{~m}$, $0.33 \mathrm{H}), 3.49(2 \mathrm{xs}, 3 \mathrm{H}), 3.76(\mathrm{ddd}, J=11.5,3.9,2.1 \mathrm{~Hz}, 0.67 \mathrm{H}), 2.87(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.33 \mathrm{H}), 2.27(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 0.65 \mathrm{H}), 1.81-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 0 . .99 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $2.01 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); major diastereomer, $\delta 136.4,116.5,103.2,77.7,74.4,56.2$, 39.6, 32.9, 28.7, 21.8 ppm , and minor diastereomer, $\delta 136.7,116.3,99.5,75.1,74.3,56.1,37.0,30.2$, 23.9, 20.0 ppm ; The IR and HRMS data are identical to its epimer 9. The diasteromeric ratio was determined by GC using β-Dex chiral column (isothermal $130{ }^{\circ} \mathrm{C}, 0.99 \mathrm{ml} / \mathrm{min}$ column flow, injector temp. $200^{\circ} \mathrm{C}$ and detector temp. $\left.220^{\circ} \mathrm{C}\right), \mathrm{R}_{\mathrm{t}}($ major $)=10.13 \mathrm{~min}$ and $\mathrm{R}_{\mathrm{t}}($ minor $)=10.85 \mathrm{~min}$.

Diastereomeric ratio was 0.64/0.36; $[\alpha]^{20}{ }_{\mathrm{D}}+159.1\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right.$); IR (neat, NaCl): 3457.7, 3081.2, 2931.9, 1456.1, 1380.8, 1102.1, 1044.8, $941.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.81(\mathrm{~m}, 1 \mathrm{H})$, 5.34 (ddt, $J=1.6,3.2,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.64 \mathrm{H}), 4.42(\mathrm{bs}, 0.36 \mathrm{H})$, $4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 0.36 \mathrm{H}), 2.17(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 0.64 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 0.36 \mathrm{H}), 1.86-1.63(\mathrm{~m}, 1.34 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 2.64 \mathrm{H}), 1.44-1.23(\mathrm{~m}$, $1.0 \mathrm{H}), 1.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1.08 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1.92 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; major diastereomer, $\delta=136.6,116.4,102.1,74.6,70.6,54.8,34.7,25.6,24.9,16.6 \mathrm{ppm}$, minor diastereomer $\delta=$ $136.4,116.5,103.3,74.8,71.1,54.6,31.2,23.5,19.1,16.1 \mathrm{ppm}$. GC-HRMS (EI): Found $186.1256[\mathrm{M}]^{+}$, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$ requires 186.1256.

Diastereomeric ratio was $0.70 / 0.3 ;[\alpha]^{20}{ }_{\mathrm{D}}-40.3\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.98-$ $5.84(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 0.3 \mathrm{H}), 4.22(\mathrm{~m}, 0.7 \mathrm{H}), 4.12(\mathrm{dd}, J$ $=14.3,7.1 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 0.3 \mathrm{H}), 3.49(\mathrm{~s}, 2.1 \mathrm{H}), 3.47-3.42(\mathrm{~m}$, $0.7 \mathrm{H}), 2.24(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.18(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 1.88-1.12(\mathrm{~m}, 5 \mathrm{H}), 1.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $0.9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2.1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$); major diastereomer, $\delta=136.5,116.4$, $108.5,78.6,74.5,56.3,35.7,24.9,16.4 \mathrm{ppm}$, minor diastereomer $\delta=136.4,116.5,103.3,74.5,71.1,54.6$, 31.2, 22.3, 19.1, 16.1 ppm . The IR and HRMS data are identical to its epimer 11.

$[\alpha]^{20}{ }_{\mathrm{D}}=+168.7\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$; IR (neat, NaCl): 3446.0, 3072.8, 2943.6, 1443.6, 1385.9, 1149.2, $1074.2,1032.3 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.96-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=12.3,13.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.74(\mathrm{bs}, 1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{bs}, 1 \mathrm{H})$, $1.88-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=134.9,117.7,98.7,72.8,70.9$, 54.5, 37.0, 29.7, 24.7, 17.5 ppm . GC-HRMS (EI): Found $186.1264[\mathrm{M}]^{+}, \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$ requires 186.1256.

$[\alpha]^{20}{ }_{\mathrm{D}}=-53.0\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.10(\mathrm{~m}, 2 \mathrm{H})$, $4.33(\mathrm{dd}, J=2.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.32-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.51(\mathrm{ddt}, J=3.7,12.9,25.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=134.7$, $117.8,103.5,78.2,72.7,56.0,37.2,31.1,24.9,21.6 \mathrm{ppm}$. The IR and HRMS data are identical to its epimer 13.

$[\alpha]^{20}{ }_{\mathrm{D}}=-5.0\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;$ IR (neat, NaCl$): 3432.4,2935.4,1451.4,1126.0,1042.0 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.69(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 0.8 \mathrm{H}$), 4.31 (dd, $J=9.6,2.2,0.2 \mathrm{H}$), 3.49 ($\mathrm{s}, 0.6 \mathrm{H}$), $3.46-3.37$ $(\mathrm{m}, 0.8 \mathrm{H}), 3.36(\mathrm{~s}, 2.4 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 0.2 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 0.2 \mathrm{H}), 2.02-1.10$ $(\mathrm{m}, 10.8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}), major diastereomer, $\delta=98.0,72.9,69.8,54.4,48.5,35.1,31.4$, 29.8, 20.9, 20.8 ppm , and minor diastereomer $\delta=103.0,77.1,73.0,56.1,48.2,35.2,31.1,25.5,20.8 \mathrm{ppm}$. GC-HRMS (EI): Found $186.1258[M]^{+}, \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$ requires 186.1256.

$[\alpha]^{20}{ }_{\mathrm{D}}+72.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat, NaCl$): 2939.5,1602.9,1448.9,1377.6,1124.9,950.8,751.0$, $698.6 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{bs}, 1 \mathrm{H}), 4.76$ $(\mathrm{dd}, J=2.2,11.5,1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.0,128.3,127.4,126.1,99.0,70.8,54.6,33.1,29.5,18.6 \mathrm{ppm} . \mathrm{GC}-$ HRMS (EI): Found $192.1137[\mathrm{M}]^{+}, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires 192.1150.

17
$[\alpha]^{20}{ }_{\mathrm{D}}-100.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H})$, $4.87(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=2.2,11.5,1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.60(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,128.2,127.3,125.8,103.7,77.9,56.1,33.0,30.9$, 22.6 ppm . The IR and HRMS data are identical to its epimer 16.

IV. Synthesis of (S)-1-((R)-oxiran-2-yl)prop-2-en-1-ol (20)

Compound 20 was synthesized according to the literature ${ }^{2} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85$ (ddd, $J=$ $17.0,10.5,6.2,1 \mathrm{H}), 5.40(\mathrm{dt}, J=14.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{td}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.10$ $(\mathrm{dt}, J=3.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.5,117.6,70.2,53.9$, $43.5 \mathrm{ppm} .[\alpha]^{20}{ }_{\mathrm{D}}=+54.3\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right) ;\left[\mathrm{lit}^{2}[\alpha]^{22}{ }_{\mathrm{D}}=+46.7\left(\mathrm{c}=1.38, \mathrm{CHCl}_{3}\right)\right]$

V. Synthesis of 2-(2-bromoethyl)-2-methyl-1,3-dioxolane

The mixture of 3-butene-2-one ($4.05 \mathrm{~mL}, 50 \mathrm{mmol}$) and ethylene glycol ($11.2 \mathrm{~mL}, 4$ equiv) were cooled to $0-5{ }^{\circ} \mathrm{C}$ and then $\mathrm{TMSBr}(7.92 \mathrm{~mL}, 60 \mathrm{mmol})$ added slowly under an inert atmosphere. The resulting mixture was stirred for 2 h at room temperature. The conversion of crude mixture was checked by ${ }^{1} \mathrm{H}$ NMR. The reaction mixture was then poured on to the biphasic pentane (100 mL) over 5% sodium carbonate (50 mL) and the resulting mixture was stirred for 5 min . The organic layer was then washed with 5% sodium thiosulfate (50 mL), washed with water and dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. After removal of the solvent in vacuo, the residue was purified by vacuum distillation ($80{ }^{\circ} \mathrm{C}, 4 \mathrm{mbar}$ vacuum) to afforded 75% yield with 97.5% purity. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.32(\mathrm{~m}$, 2H), 2.37-2.21 (m, 2H), $1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 109.0,64.8,42.8,26.8,24.0$.

VI. Synthesis of (3S,4R)-7-(2-methyl-1,3-dioxolan-2-yl)hept-1-ene-3,4-diol (21)

Compound 21 was synthesized according to the literature ${ }^{1}$ with modification (temp - $78{ }^{\circ} \mathrm{C}$ and $10 \mathrm{~mol} \%$ of $\mathrm{CuI})$.

21
$[\alpha]^{20}{ }_{\mathrm{D}}=+1.2\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right) ;$ IR (neat, NaCl$): 3422.3$, 2945.9, 1643.7, 1378.9, 1220.2. $1061.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$
NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92(\mathrm{ddd}, J=17.1,10.5,6.4,1 \mathrm{H}), 5.36-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dt}, J=6.3,4.2$, $1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.69(\mathrm{dq}, J=8.4,4.3,1 \mathrm{H}), 2.11(\mathrm{dd}, J=9.0,4.9,2 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.51$ $-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,117.4,110.0,75.9,74.0,64.6$ (2C), 38.9, 32.0, 23.7, 20.3 ppm. HRMS (ESI) Found $215.1282[\mathrm{M}-\mathrm{H}]^{+}, \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{4}$ requires 215.1282.

Synthesis of (3R,4S)-7-(2-methyl-1,3-dioxolan-2-yl)hept-1-ene-3,4-diol (21): All physical data is identical as above mentioned for compound 21.
$[\alpha]^{20}{ }_{\mathrm{D}}=-1.3\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right) ;$

VII. Synthesis of ($1 R, 5 S, 7 S$)-5-methyl-7-vinyl-6,8-dioxa-bicyclo[3.2.1]octane (22)

$\mathrm{ZrCl}_{4}(53 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and diol $21(500 \mathrm{mg}, 2.31 \mathrm{mmol})$ were dissolved in methanol (1 mL) and irradiated under MW (150 W) at $60{ }^{\circ} \mathrm{C}$ for 10 min . The compound was purified by flash column chromatography using pentane: $\mathrm{Et}_{2} \mathrm{O}(9 / 1)$ as the eluent and the compound was volatile, so the solvent was evaporated by rotavapour at $40^{\circ} \mathrm{C}$ and then remaining solvent was removed at $40^{\circ} \mathrm{C}$ at 150 mbar vaccum. The titled compound 22 was isolated as a colorless oil (306 mg) in 86% yield. Compound $\mathbf{2 3}$ was recovered in (51 mg) 12\% yield.

22
$[\alpha]^{20}{ }_{\mathrm{D}}=+64.9\left(\mathrm{c}=1.8, \mathrm{Et}_{2} \mathrm{O}\right)$; IR (neat, NaCl$): 3084.7,2942.7,1435.5,1382.4,1172.9,1016.1,998.4$, $849.5 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.03$ (ddd, $J=17.3,10.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (ddt, $J=64.9$, $10.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.59-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H})$, $1.68(\mathrm{dd}, J=10.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.8$, $118.9,107.8,81.2,77.7,34.3,24.9,24.2,17.1 \mathrm{ppm}$. HRMS (ESI) Found $154.1001[\mathrm{M}]^{+}, \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires 154.0994.

Synthesis of ($1 S, 5 R, 7 R$)-5-methyl-7-vinyl-6,8-dioxa-bicyclo[3.2.1]octane (22): All physical data is identical as above mentioned for compound 22.
$[\alpha]^{20}{ }_{D}=-74.6\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;$
(S)-1-((2R,6S)-6-methoxy-6-methyl-tetrahydro-2H-pyran-2yl)-prop-2-en-1-ol (23)

23
$[\alpha]^{20}{ }_{\mathrm{D}}=-114.1\left(\mathrm{c}=1.0, \mathrm{Et}_{2} \mathrm{O}\right) ;$ IR (neat, NaCl$): 3455.5,2944.3,1329.3,1224.1,1056.7,842.3 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88(\mathrm{ddd}, J=17.2,10.6,6.0,1 \mathrm{H}), 5.26(\mathrm{ddt}, J=42.4,10.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.16-4.08 (m, 1H), $3.61(\mathrm{ddd}, J=11.8,3.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-$ $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.6,116.2,98.4,74.8$, $72.9,47.7,35.4,23.9,23.8,18.4 \mathrm{ppm}$.; GC-HRMS (EI): Found $154.0990[\mathrm{M}-\mathrm{MeOH}]^{+}, \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires 154.0994.
(R)-1-((2S,6R)-6-methoxy-6-methyl-tetrahydro-2H-pyran-2yl)-prop-2-en-1-ol (23): All physical data is identical as above mentioned for compound 23.
$[\alpha]^{20}{ }_{D}=+108.0\left(c=2.0, \mathrm{CHCl}_{3}\right)$.

VIII. The Synthesis of (1R, 5S, 7S)-7-ethyl-5-methyl-6,8-dioxa-bicyclo[3.2.1]octane (18)

Compound $22(308 \mathrm{mg}, 2 \mathrm{mmol})$ and $5 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{wt} \%, 15 \mathrm{mg})$ was added to in 2 ml of ethyl acetate. The resulting mixture was pressurized in an autoclave at 10 bar pressure of H_{2} for 1.5 h . The compound was filtered through a small pad of silica, the solvent was removed carefully at $40{ }^{\circ} \mathrm{C}$ and 150 mbar pressure by rotavapour. The compound was purified coloumn chromatography using pentane: $\mathrm{Et}_{2} \mathrm{O}(9 / 1)$ as the eluent. The (+)-endo-brevicomin 18 was isolated as a colorless volatile liquid (297 mg) in 95% yield.

18; (+)-endo-brevicomin
$[\alpha]^{20}{ }_{\mathrm{D}}=+77.9\left(\mathrm{c}=1.2, \mathrm{Et}_{2} \mathrm{O}, 99.3 \% e e\right)\left[\mathrm{lit}^{4}[\alpha]^{20}{ }_{\mathrm{D}}=+78.8\left(\mathrm{c}=0.5, \mathrm{Et}_{2} \mathrm{O}\right), \mathrm{lit}^{3}[\alpha]^{26}{ }_{\mathrm{D}}=+74.6(\mathrm{c}=1.06\right.$, $\left.\left.\left.\mathrm{Et}_{2} \mathrm{O}\right)\right], \operatorname{lit}^{5}[\alpha]^{21}{ }_{\mathrm{D}}=+79.5\left(\mathrm{c}=1.18, \mathrm{Et}_{2} \mathrm{O}\right)\right]$; IR (neat, NaCl$): 2943.2,1458.1,1381.4,1237.3,1179.9$, 1026.7, $849.5 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{td}, J=7.2,4.5,1 \mathrm{H}), 1.98$ $-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 106.7, 81.6, 76.5, 34.4, 25.0, 23.6, 21.9, 17.53, 10.9 ppm. HRMS (ESI) Found $156.1150[\mathrm{M}]^{+}, \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires 156.1156 .

18; (-)-endo-brevicomin

All physical data is identical as above mentioned for (+)-endo-brevicomin (18).
$[\alpha]^{20}{ }_{D}=-76.6\left(\mathrm{c}=1.5, \mathrm{Et}_{2} \mathrm{O}, 98.5 \% \mathrm{ee}\right),\left[\mathrm{lit}^{4}[\alpha]^{20}{ }_{\mathrm{D}}=-75.9\left(\mathrm{c}=0.717, \mathrm{Et}_{2} \mathrm{O}\right), \mathrm{lit}^{6}[\alpha]^{20}{ }_{\mathrm{D}}=-76.7(\mathrm{c}=2.0\right.$, $\left.\left.\mathrm{Et}_{2} \mathrm{O}\right), \mathrm{lit}^{5}[\alpha]^{22}{ }_{\mathrm{D}}=-78.9\left(\mathrm{c}=0.99, \mathrm{Et}_{2} \mathrm{O}\right)\right]$

IX. Synthesis of (R)-1-((R)-oxiran-2-yl)allyl 4-nitrobenzoate (24)

$\mathrm{PPh}_{3}(6.29 \mathrm{~g}, 24 \mathrm{mmol})$ and p-nitrobenzoic acid $(4.01 \mathrm{~g}, 24 \mathrm{mmol})$ were dissolved in THF (32 mL) and DEAD ($3.65 \mathrm{~mL}, 23.2 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. Then the epoxide $20(0.8 \mathrm{~g}, 8 \mathrm{mmol}$, in 4 ml THF) was added slowly and stirred for 5 min at $0^{\circ} \mathrm{C}$ and then warmed to $23^{\circ} \mathrm{C}$. The reaction mixture was stirred for 55 min at room temperature and the majority of solvent was removed by rotavapor. The residue was purified by column chromatography using pentane:EtOAc (9/1) as the eluent. Compound 24 was isolated as a pale yellow oil $(1.59 \mathrm{~g}, 80 \%$ yield $)$.

$[\alpha]^{20}{ }_{\mathrm{D}}=+31.1\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) ;$ IR (neat, NaCl$): 3113.0,2999.2,1728.5,1528.6,1271.4,1103.5,719.7$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42-8.18(\mathrm{~m}, 4 \mathrm{H}), 5.98(\mathrm{ddd}, J=16.9,13.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-$ $5.22(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{ddd}, J=6.4,4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=4.8,2.6,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.6,150.7,135.2,131.4,130.9,123.6,119.7,76.8,52.3,44.7 \mathrm{ppm} ;$ Elemental analysis; calcd. C 57.83; H 4.45; N 5.62, found C 57.72; H 4.49; N 5.54.

X. Synthesis of (R)-1-((R)-oxiran-2-yl)prop-2-en-1-ol (25)

The p-nitrobenzoate $24(1.49 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~g})$ were added to methanol $(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The methanol was removed under reduced pressure and water (5 mL) was added. The resulting mixture was extracted with ethyl acetate (5 X 30 mL) and the organic extracts were dried over anhydrous magnesium sulfate. The solvent was removed by column chromatography using pentane:EtOAc (7:3). (R)-1-((R)-oxiran-2-yl)prop-2-en-1-ol (25) was isolated as a liquid (450 $\mathrm{mg}, 75 \%$ yield.

25
$[\alpha]^{20}{ }_{\mathrm{D}}=+20.7\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right) ;$ IR (neat, NaCl$): 3428.4,2989.1,2874.3,1428.9,1251.7,1043.8,933.5$, $887.1 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94(\mathrm{ddd}, J=17.3,10.6,5.5,1 \mathrm{H}), 5.45-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.30-$ $5.21(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{ddd}, J=4.9,4.1,2.8,1 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=4.9$, $2.7,1 \mathrm{H}), 2.53-2.40(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,116.8,72.6,54.7,44.7 \mathrm{ppm}$. GCHRMS (EI) Found $100.0520[M]^{+}, \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ requires 100.0524.

XI. Synthesis of (3R,4R)-7-(2-methyl-1,3-dioxolan-2-yl)hept-1-ene-3,4-diol (26)

Compound 26 was synthesized similarly to the above mentioned compound 21.

26
$[\alpha]^{20}{ }_{\mathrm{D}}=+3.7\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.16(\mathrm{~m}, 2 \mathrm{H})$, $4.07-3.75(\mathrm{~m}, 5 \mathrm{H}), 3.68-3.31(\mathrm{bs}, 1 \mathrm{H}), 1.87-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.30(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.6,117.4,110.0,76.1,74.2,64.6,38.9,32.9,23.8,23.7,20.1 \mathrm{ppm}$. HRMS (ESI) Found $215.1282[\mathrm{M}-\mathrm{H}]^{+}, \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{4}$ requires 215.1282.

XII. (1R,5S,7R)-5-methyl-7-vinyl-6,8-dioxa-bicyclo[3.2.1]octane (27)

The entitled compound synthesized similar to compound 22.

27
$[\alpha]^{20}{ }_{\mathrm{D}}=+65.0\left(\mathrm{c}=1.0, \mathrm{Et}_{2} \mathrm{O}\right),\left[\mathrm{lit}^{7}[\alpha]^{20}{ }_{\mathrm{D}}=+87.2\left(\mathrm{c}=2.09, \mathrm{Et}_{2} \mathrm{O}\right)\right] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87$ (ddd, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 2.00-1.74$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,115.6,108.4,80.7,79.7$, 34.9, 27.8, 24.9, 17.1 ppm . GC-HRMS (EI) Found $154.1001[M]^{+}, \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires 154.0994.

XIII. Synthesis of (+)-exo-brevicomin

19; (+)-exo-brevicomin

The hydrogenation of compound 27 was carried out according to above stated procedure for the synthesis of (+)-endo-brevicomin. $[\alpha]^{20}{ }_{\mathrm{D}}=+76.3(\mathrm{c}=1.35$, ether, 99.3% ee $),\left[\mathrm{lit}^{8}[\alpha]^{20}{ }_{\mathrm{D}}=+84.2\left(\mathrm{c}=2.2, \mathrm{Et}_{2} \mathrm{O}\right)\right.$, $\operatorname{lit}^{7}[\alpha]^{20}{ }_{\mathrm{D}}=+67.9\left(\mathrm{c}=1.41, \mathrm{Et}_{2} \mathrm{O}\right)$, lit $\left.^{9}[\alpha]^{20}{ }_{\mathrm{D}}=+64.8\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.12(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=6.5,1 \mathrm{H}), 1.96-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.4$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 107.7,81.1,78.3,34.9,28.5,27.9,25.0,17.2,9.8 \mathrm{ppm}$. GC-HRMS (EI) Found $156.1150[\mathrm{M}]^{+}, \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires 156.1156.

XIV. References

(1) Singh S; Duffy, C. D.; Shah, S. T. A.; Guiry, P. J. J. Org. Chem. 2008, 73, 6429-6432.
(2) Romero, A.; Wong, C-H, J. Org. Chem. 2000, 65, 8264-8268.
(3) Hatakeyama, S.; Sakurai, K.; Takano, S. J. Chem. Soc., Chem. Commun. 1985, 1759-1761.
(4) Mori, K., Seu, Y. -B, Tetrahedron 1985, 41, 3429-3431.
(5) Yusufoglu, A.; Antones, S.; Scharf, H.-D. J. Org. Chem. 1986, 51, 3485-3487.
(6) Bernardi, R.; Fugani, C.; Grasselli, P. Tetrahedron Lett. 1981, 22, 4021-4024.
(7) Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J. Org. Chem. 1999, 64, 2524-2526
(8) Mori, K. 1974, 30, 4223-4227.
(9) Larcheveque, M.; Lalande, J. J. Chem. Soc., Chem. Commun. 1985, 83-84.

1D NOESY Experiments for the compound 3

(

1	1	1	1	1	,	1	1	1	-	1	,	1	1	,	,		
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

,	1	1	1	1	,	1	1	1	1	,	1	+	1	1	
150	140	130	120	110	100	90	${ }^{80}$ f1 ppm)	70	60	50	40	30	20	10	0

$\stackrel{\circ}{\stackrel{\infty}{0}} \stackrel{\stackrel{\text { ® }}{\sim}}{\stackrel{\text { ® }}{\sim}}$
$\stackrel{\ominus}{\infty}$
$\stackrel{\rightharpoonup}{\infty}{ }_{\mid}^{\infty}$
$\stackrel{\stackrel{g}{4}}{\substack{i \\ 1}}$

COMe

T	1	1		1	1	1	1	1 ,	1		1		,	1		,
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\text { a }}$	
\|		

1	1	1	,	1	,	1	1	+	1	+	1	1	,	1	
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

XV. GC Chromatogram

GC chromatogram of Table1, entry 1
GC conditions for the determination of epimeric ratio of compounds 2 and $\mathbf{3}: 30 \mathrm{~m} \beta$-dex column, 1 mL column flow rate, Column temperature $140^{\circ} \mathrm{C}$ Isotherms, Detector temperature $220^{\circ} \mathrm{C}$ and Injector temperature $200^{\circ} \mathrm{C}$.

Peak\#	Ret.Time	Area	Area\%	Compound Name
1	12.901	231877.7	24.7392	$\mathbf{3}$
2	13.189	705409.6	75.2608	$\mathbf{2}$

GC Conditions for ee determination for endo and exo-brevicomin

GC conditions for the determination enantiomeric exces of compounds 18: $30 \mathrm{~m} \beta$-dex column, column flow rate $0.57 \mathrm{~mL} / \mathrm{min}$, column temperature $100^{\circ} \mathrm{C}$ Isotherms, Detector temp. $250^{\circ} \mathrm{C}$ and Injector temp $200^{\circ} \mathrm{C}$.

Mixture of endo-(+) and endo-(-)-brevicomin

Peak\#	Ret.Time	Area	Area\%	Compound Name
1	18.883	515191.0	58.4968	(-)-endo-brevicomin
2	19.803	365525.5	41.5032	(+)-endo-brevicomin

(+)-endo-brevicomin (18)

Peak\#	Ret.Time	Area	Area \%	Compound Name
19.094	2228.3	241.6	0.7474	(-)-endo-brevicomin
19.847	295904.3	23487.7	99.2526	(+)-endo-brevicomin

(-)-endo-brevicomin (18)

Peak\#	Ret.Time	Area	Area\%	Compound Name
1	18.959	335248.8	99.6513	$(-)$-endo-brevicomin
2	19.999	1173.0	0.3487	$(+)$-endo-brevicomin

(+)-exo-Brevicomin (19)

Peak\#	Ret.Time	Area	Height	Area\%	Compound Name
1	15.003	451708.5	51012.3	99.4939	exo-(+)-Brevicomin
2	16.120	2297.5	278.9	0.5061	exo-(-)-Brevicomin

