
Supporting Information

Figure S1 TEM image of a blade-like bicrystal nanoflake base and a cylindrical single crystal nanoflake tip that likely broke from the parent blade-like nanoflake during sample preparation. The blade-like nanoflakes taper gradually and also in abrupt steps. At the base of the nanoflake shown, a central tunnel, much like those imaged by Voss *et al.*,²⁶ is observed.

Figure S2 SAD pattern from the base of a single α -Fe₂O₃ nanoflake grown at 800 °C in the postflame region. The pattern shows an apparent mirror plane and, when indexed, resolves into two complete, coincident zones, the [0001] and the [0111], with a common (2110) reflection. This is the same nonstructural twin identified by Voss *et al.*,²⁶ with twin plane (0111) and shear direction [01 12]. The axial growth direction in these twinned "bicrystal" nanoflakes was found to be <1120> type, or <110>_{hex.} These twinned nanoflakes have a broad side formed by the {1101} or {111}_{hex} type planes, as a consequence of the twin plane.

Figure S3 α -Fe₂O₃ nanoflakes were grown in a tube furnace for 20 minutes at 700 °C with 5 SLPM air flow and (A) a small heating rate of approximately 100 °C/min and (B) a large heating rate of 1400 °C/min. The resulting total oxide layers are shown here, with both images to the same scale.

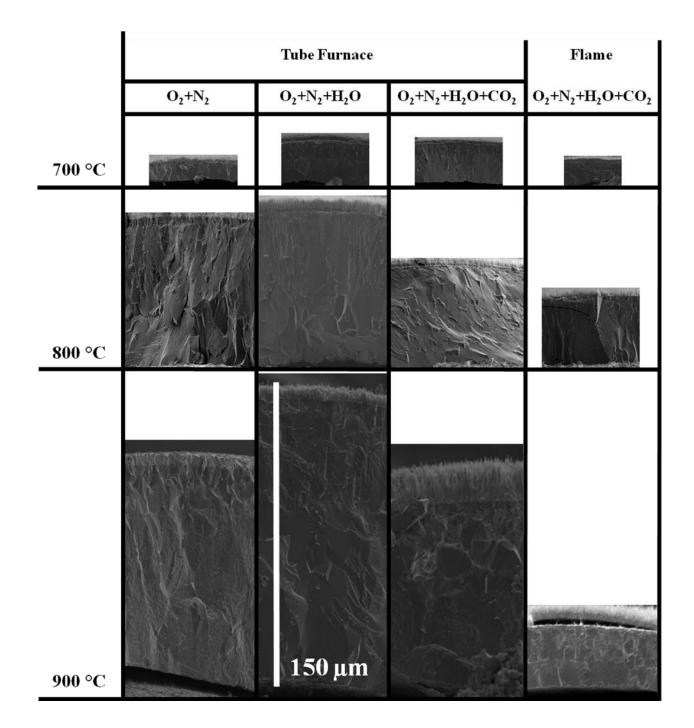


Figure S4 α -Fe₂O₃ nanoflakes were grown in a tube furnace for 20 minutes at 700, 800 and 900 °C with gas phase compositions including air (O₂ + N₂), air and water vapor (O₂ + N₂ + H₂O) and air, water vapor and carbon dioxide (O₂ + N₂ + H₂O + CO₂). The resulting total oxide layers are shown here, with all images to the same scale.