# Supporting Information 

Signal Amplification for Electrochemical Biosensing Using Amplification-by-Polymerization<br>Yafeng $\mathrm{Wu}^{1,2}$, Songqin $\mathrm{Liu}^{2, *}$, and $\mathrm{Lin} \mathrm{He}^{1, *}$<br>${ }^{1}$ Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA<br>${ }^{2}$ School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, P. R. China

Corresponding Author: Lin_He@NCSU.EDU, 919-515-2993 (Tel), 919-515-8920 (Fax). liusq@ seu.edu.cn, 86-25-52090613 (Tel).

Supporting Information Scheme 1. Polymer grafting in AGET ATRP using ascorbic acid as the reducing agent. ${ }^{21}$


## AA = Ascorbic Acid

Wu, et al, "Electrochemical Sensing ..." Supporting Information Scheme 1.


Supporting Information Figure 1. Quantification of the surface density of ssDNA*. ssDNA ${ }^{*}$ was pre-mixed with the unmodified ssDNA of the same sequence at various ratios from 10 ppm to $100 \%$ while the total DNA concentration was maintained at 1 $\mu \mathrm{M}$. The linear fitting was plotted using all data points except the $(0,0)$ point.

Wu, et al, "Electrochemical Sensing using Amplification-by-Polymerization" SI Fig. 1.


Supporting Information Figure 2. Reproducibility of polymerization-assisted biosensing in detection of DNA hybridization. The electrodes were prepared on three separated days following the protocol described in the experimental section. Cyclic voltammetric curves were obtained in $0.1 \mathrm{M} \mathrm{HClO}_{4}$ solution at a scan rate of 100 mV $\mathrm{s}^{-1}$.

Wu, et al, "Electrochemical Sensing using Amplification-by-Polymerization" SI Fig. 2.

