Synthesis of Iriomoteolide-1a C12-C23 Fragment via Asymmetric Conjugate Addition and Julia-Kocienski Coupling

Yen-Jin Chin, Shun-Yi Wang and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Supporting Information

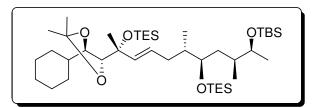
Table of Contents

General Methods	S2
Experimental Procedures and Characterization Data of Products ¹ H and ¹³ C NMR Spectra of Products	
	\$23

General Methods

Experiments involving moisture and/or air sensitive components were performed in oven-dried glassware under a positive pressure of nitrogen using freshly distilled solvents. Commercial grade solvents and reagents were used without further purification with the following exceptions: t-BuOMe and CH₂Cl₂ were distilled from calcium hydride. Diethyl ether was distilled from sodium.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectoline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.


Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditions. High Resolution Mass Spectrometry (HRMS) spectra were obtained using Finnigan MAT95XP GC/HRMS (Thermo Electron Corporation).

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 400 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.260, singlet) as the internal standard. Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The number of protons (n) for given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 77.03, triplet). The proportion of diastereomers and geometric isomers was determined from the integration of ¹H NMR and ¹³C NMR spectra.

Enantioselectivities were determined by capillary GC analysis (Chiraldex G-TA column (30 m x 0.25 mm)), using the flame ionization detector. Optical rotations were measured in $CHCl_3$ on a *Schmidt* + *Haensdch* polarimeter (Polartronic MH8) with 10.0 mm cell (*c* given in g/100 mL). Absolute configurations of the products were determined by comparison with known compounds.

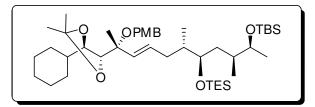
Experimental Procedures and Characterization Data of Products

(5*R*,9*S*,10*R*,12*S*,13*S*,*E*)-5-((4*R*,5*R*)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-3,3-diethyl-5,9,12,13,15,15,16,16-octamethyl-10-(triethylsilyloxy)-4,14-dioxa-3,15-disilaheptadec-6-ene (4a)

To a stirred solution of sulfone **6** (31.1 mg, 0.05 mmol) in anhydrous THF (1 mL) at -78 °C was added dropwise a solution of KHMDS (0.1 mL, 15% in toluene, 0.06 mmol) in THF over 5 minutes. The blue solution was stirred for 30 minutes during which time the solution became green. A solution of aldehyde **5** (27.8 mg, 0.075 mmol) in THF (0.5 mL) was added dropwise over 5 minutes and the mixture was stirred at -78 °C for 1 h. The cooling bath was removed and the mixture was stirred at ambient temperature overnight. The solution has changed from dark brown to light yellow. After a night, water was added and continued stirring for 1 h. The reaction was quenched with brine (10 mL) and extracted with Et₂O (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 100: 1) to afford the desired *trans*-product as colorless oil (11.0 mg, 29% yield; 48% total yield for the mixture of *E/Z* isomers, 60: 40).

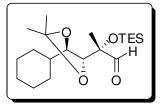
R_f value (hexane/Et₂O 14: 1): 0.52.

 $[\alpha]_{D}^{20} = -0.014 \ (c = 1.0, \text{CHCl}_3).$


¹**H** NMR (300 MHz, CDCl₃): δ 5.73 (d, J = 15.6 Hz, 1H), 5.58-5.48 (m, 1H), 3.85-3.80 (m, 2H), 3.72-3.68 (m, 2H), 2.10-1.58 (m, 10H), 1.47-1.44 (m, 2H), 1.38 (s, 6H), 1.29 (s, 3H), 1.19-1.17 (m, 4H), 1.08 (d, 2H), 0.99-0.85 (m, 33H), 0.65-0.58 (m, 12H), 0.04 (s, 3H), 0.03 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 134.9 (CH), 128.3 (CH), 106.3 (C), 83.9 (CH), 83.2 (CH), 77.0 (C), 75.1 (CH), 71.2 (CH), 38.2 (CH), 37.3 (CH₂), 36.2 (CH₂), 35.6 (CH), 34.5 (CH), 31.6 (CH₂), 30.2 (CH₂), 27.3 (CH₃), 26.9 (CH₂), 26.6 (CH₂), 25.9 (CH₂), 25.8 (CH₃), 25.1 (CH₃), 20.8 (CH₃), 18.1 (C), 15.4 (CH₃), 15.0 (CH₃), 7.2 (CH₂), 7.0 (CH₃), 6.8 (CH₂), 5.3 (CH₃), -4.0 (CH₃), -4.8 (CH₃).

FTIR (NaCl, neat): v 2955, 1377, 1254, 1065, 1005, 835, 743 cm⁻¹.


HRMS (ESI) calcd. for C₄₂H₈₇O₅Si₃ (M+1) 755.5861, found 755.5818.

(5*S*,6*S*,8*R*)-8-((2*S*,6*R*,*E*)-6-((4*R*,5*R*)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-6-(4methoxybenzyloxy)hept-4-en-2-yl)-10,10-diethyl-2,2,3,3,5,6-hexamethyl-4,9-dioxa-3,10-disiladodecane (4b)

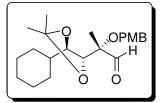
To a stirred solution of sulfone **6** (31.1 mg, 0.05 mmol) in anhydrous THF (1 mL) at -78 °C was added dropwise a solution of KHMDS (0.1 mL, 15% in toluene, 0.06 mmol) in THF over 5 minutes. The blue solution was stirred for 30 minutes during which time the solution became green. A solution of aldehyde **5** (28.2 mg, 0.075 mmol) in THF (0.5 mL) was added dropwise over 5 minutes and the mixture was stirred at -78 °C for 1 h. The cooling bath was removed and the mixture was stirred at ambient temperature overnight. The solution has changed from dark brown to light yellow. After a night, water was added and stirring was continued for 1 h. The reaction was quenched with brine (10 mL) and extracted with Et₂O (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. From the ¹H NMR analysis, the desired product was in trace amount.

(S)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-2-(triethylsilyloxy)propanal (5)

Alkene **12a** (0.369 g, 1.00 mmol) and CH₂Cl₂ (2 mL) were added to a round bottom flask equipped with a magnetic stirrer bar and cooled to -78 °C. The reaction mixture was purged with O_2 for a few minutes followed by supplying of O_3 . The completion of the reaction was indicated by color changing of the solution (from colorless to blue). After the completion of the reaction, the supply of O_3 was stopped. The reaction mixture was purged with O_2 for a few minutes and quenched with PPh₃ (0.289 g, 1.10 mmol). The reaction was cooled to room temperature and stirred vigorously for 10 min. CH₂Cl₂ was evaporated *in vacuo* and the resulting residue was purified by flash column chromatography (hexane/Et₂O 80: 1) to afford the desired product as colorless oil (0.274 g, 74% yield).

R_f value (hexane/ Et₂O 8: 1): 0.45.

 $[\alpha]_{D}^{20} = -0.042 \ (c = 1.06, \text{CHCl}_3).$

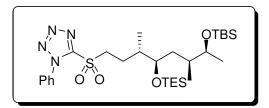

¹**H** NMR (400 MHz, CDCl₃): δ 9.80 (s, 1H), 4.00 (d, J = 5.2 Hz, 1H), 3.87-3.83 (m, 1H), 2.00-1.92 (m, 3H), 1.70-1.66 (m, 3H), 1.40 (s, 3H), 1.37 (s, 3H), 1.29 (s, 3H), 1.25-1.15 (m, 3H), 0.96 (t, J = 7.9 Hz, 9H), 0.98-0.94 (m, 2H), 0.62 (q, J = 7.7 Hz, 6H).

¹³C NMR (**75** MHz, CDCl₃): δ 202.3 (C), 107.2 (C), 83.2 (CH), 82.9 (CH), 81.7 (C), 36.3 (CH), 31.3 (CH₂), 30.2 (CH₂), 26.5 (CH₂), 25.5 (CH₂), 25.4 (CH₂), 25.0 (CH₃), 21.8 (CH₃), 6.9 (CH₂), 6.4 (CH₃).

FTIR (NaCl, neat): v 2930, 1736, 1381, 1217, 1049, 745 cm⁻¹.

HRMS (ESI) calcd. for C₂₀H₃₉O₄Si (M+1) 371.2618, found 371.2603.

(S)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-2-(4-methoxybenzyloxy)propanal (5a)



Alkene **12b** (0.375 g, 1.00 mmol) and CH₂Cl₂ (2 mL) were added to a round bottom flask equipped with a magnetic stirrer bar and cooled to -78 °C. The reaction mixture was purged with O_2 for a few minutes followed by supplying of O_3 . The completion of the reaction was indicated by color changing of the solution (from colorless to blue). After the completion of the reaction, the supply of O_3 was stopped. The reaction mixture was purged with O_2 for a few minutes and quenched with PPh₃ (0.289 g, 1.10 mmol). The reaction was cooled to room temperature and stirred vigorously for 10 min. CH₂Cl₂ was evaporated *in vacuo* and the resulting residue was purified by flash column chromatography (hexane/Et₂O 40: 1) to afford the desired product as colorless oil (0.290 g, 77% yield).

R_f value (hexane/Et₂O 4: 1): 0.34.

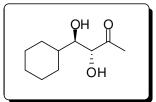
¹**H NMR (400 MHz, CDCl₃):** δ 9.92 (s, 1H), 7.00 (m, 2H), 6.87 (d, J = 8.2 Hz, 2H), 4.44 (d, J = 10.4 Hz, 1H), 4.32 (d, J = 10.3 Hz, 1H), 4.07 (d, J = 4.88 Hz, 1H), 3.90-3.86 (m, 1H), 3.86 (s, 3H), 2.08-0.84 (m, 20H).

5-((3*S*,4*R*,6*S*,7*S*)-7-(*tert*-butyldimethylsilyloxy)-3,6-dimethyl-4-(triethylsilyloxy)octylsulfonyl)-1-phenyl-1*H*-tetrazole (6)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, sulfone **22** (0.496 g, 1.00 mmol) was dissolved in 2 mL of dry pyridine. DMAP (0.012 g, 0.10 mmol) and TESCI (0.301 g, 2.00 mmol) were added to the reaction mixture and stirred at room temperature. After stirring for 12 h, the reaction was diluted with Et_2O and washed with brine. The organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 10: 1) to afford the desired product as colorless oil (0.605 g, 99% yield).

R_f value (hexane/Et₂O 2: 1): 0.55.

 $[\alpha]_{D}^{20} = -0.007 \ (c = 0.9, \text{CHCl}_3).$


¹**H NMR** (**400 MHz, CDCl₃**): δ 7.71-7.68 (m, 2H), 7.62-7.59 (m, 3H), 3.97-3.89 (m, 1H), 3.71-3.64 (m, 3H), 1.99-1.96 (m, 1H), 1.88-1.86 (m, 1H), 1.78-1.77 (m, 1H), 1.64-1.57 (m, 1H), 1.39-1.36 (m, 1H), 1.31-1.25 (m, 1H), 1.07 (d, *J* = 5.6 Hz, 3H), 1.02 (d, *J* = 7.5 Hz, 3H), 0.95 (t, *J* = 7.9 Hz, 9H), 0.86 (s, 9H), 0.85 (d, *J* = 7.5 Hz, 3H), 0.58 (q, *J* = 7.9 Hz, 6H), 0.03 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 153.4 (C), 133.1 (C), 131.3 (CH), 129.6 (CH), 125.0 (CH), 74.5 (CH), 71.6 (CH), 54.4 (CH₂), 37.6 (CH₂), 37.1 (CH), 35.1 (CH₂), 25.8 (CH₃), 22.5 (CH), 20.7 (CH₃), 18.0 (C), 16.2 (CH₃), 14.3 (CH₃), 6.9 (CH₂), 5.1 (CH₃), -4.2 (CH₃), -4.9 (CH₃).

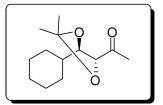
FTIR (NaCl, neat): v 2957, 1595, 1499, 1339, 1153, 837, 762 cm⁻¹.

HRMS (ESI) calcd. for C₂₉H₅₅N₄O₄SSi₂ (M+1) 611.3483, found 611.3475.

(3R,4R)-4-cyclohexyl-3,4-dihydroxybutan-2-one (9)

To a mixture of anhydrous DMSO (6 mL) and hydroxyacetone **8** (2 mL) was added the aldehyde **7** (0.112 g, 1.00 mmol) followed by *D*-proline (0.023 g, 20 mol%) respectively, and the resulting homogenous reaction mixture was stirred at room temperature for 60 h. Then, half saturated NH₄Cl solution (10 mL) and ethyl acetate (10 mL) were added with stirring. The layers were separated and the aqueous phase was extracted with ethyl acetate (10 mL x 3). The combined organic layers were dried over anhydrous magnesium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography (hexane/EtOAc 5: 1) to afford the desired product as white solid (0.111 g, 60% yield; dr > 20: 1). The enantiomeric excess was determined by HPLC analysis (chiral Daicel Chiralpak AS, hexane: *i*-PrOH = 85: 15, flow rate 1.0 mL/min., λ = 285 nm: t_R= 7.70 min).

R_f value (hexane/EtOAc 1: 2): 0.45.


 $[\alpha]_D^{20} = -81.6 \ (c = 1.0, \text{CHCl}_3) \text{ Lit.}[\alpha]_D = +83 \ (c = 1.0, \text{CHCl}_3) \text{ of } (3S,4S)-4-cyclohexyl-3,4-dihydroxybutan-2-one.$ ¹**H NMR (300 MHz, CDCl}_3):** δ 4.23 (d, J = 5.4 Hz, 2H), 3.51-3.54 (m, 2H), 2.31 (s, 4H), 1.53-1.93 (m, 6H), 1.04-1.29 (m, 5H).

¹³C NMR (**75** MHz, CDCl₃): δ 209.8 (C), 78.3 (CH), 77.6 (CH), 39.8 (CH), 29.7 (CH₂), 27.7 (CH₂), 27.4 (CH₂), 26.2 (CH₃), 26.1 (CH₂), 25.8 (CH₂).

FTIR (KBr, neat): v 3381, 2920, 2850, 1697 (C=O), 1421, 1359, 1076, 1039, 983 cm⁻¹.

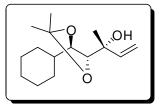
HRMS (ESI) calcd. for C₁₀H₁₉O₃ (M+1) 187.1329, found 187.1334.

1-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanone (10)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, diol **9** (0.186 g, 1.00 mmol) was dissolved in CH₂Cl₂ (2 mL) at 25 °C. 2-Methoxy-propene (1.041 g, 10.0 mmol) and (1*S*)-(+)-camphor-10-sulfonic acid (0.013 g, 0.05 mmol) were added to the reaction mixture. The reaction mixture was stirred at room temperature for overnight. The reaction mixture was quenched with water (10 mL) and the biphasic reaction mixture was extracted with diethyl ether (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 40: 1) to afford the desired product as colorless oil (0.204 g, 90% yield).

R_f value (hexane/Et₂O 8: 1): 0.34.

 $[\alpha]_{D}^{20} = +0.87 (c = 1.2, \text{CHCl}_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 4.32 (d, J = 7.6 Hz, 1H), 4.02 (dd, J = 8.8, 7.6 Hz, 1H), 2.26 (s, 3H), 1.63-1.87 (m, 5H), 1.60 (s, 3H), 1.34 (s, 3H), 0.92-1.25 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 209.7 (C), 109.4 (C), 82.8 (CH), 82.6 (CH), 37.6 (CH), 29.7 (CH₂), 29.3 (CH₂), 28.4(CH₂), 26.6 (CH₂), 26.2 (CH₂), 25.4 (CH₃), 24.8 (CH₃).

FTIR (KBr, neat): v 2927, 2854, 1708 (C=O), 1450, 1355, 1060 cm⁻¹.

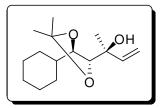
HRMS (ESI) calcd. for C₁₃H₂₃O₃ (M+1) 227.1650, found 227.1647.

(R)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-2-ol (11a)

To an oven-dried two neck round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added magnesium (0.048 g, 2.00 mmol) and one crystal of iodine. Vinylbromide (0.5 mL, 1.0 M solution in THF, 0.50 mmol) was added to the flask and heated the mixture at reflux until the iodine color had disappeared. The vinylbromide solution (1.5 mL, 1.50 mmol) was added dropwise at such a rate that a gentle reflux was maintained. After refluxing for another 3 h, the reaction mixture was cooled to room temperature and immersed into 0 °C cryobath. Precursor **10** (0.226 g, 1.00 mmol) in THF (1 mL) was added dropwise over 2 h via syringe pump. After stirring at 0 °C overnight, the reaction mixture was quenched with NH₄Cl solution and the biphasic reaction mixture was extracted with diethyl ether (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 40: 1) to afford the desired product **11a** as colorless oil (0.211 g, 83% yield; 92% total yield for the two isomers, dr = 90: 10).

R_f value (hexane/Et₂O 4: 1): 0.25.

 $[\alpha]_{\rm D}^{20} = -29.1 \ (c = 1.0, \text{CHCl}_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 6.05 (dd, J = 23.2, 14.4 Hz, 1H), 5.34 (dd, J = 23.2, 2.0 Hz, 1H), 5.16 (dd, J = 14.4, 2.0 Hz, 1H), 3.95 (d, J = 2.0 Hz, 1H), 3.87 (dd, J = 12.0, 8.0 Hz, 1H), 2.23 (s, 1H), 1.66-2.04 (m, 5H), 1.50 (s, 3H), 1.34 (s, 3H), 1.33 (s, 3H), 1.23-1.28 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 142.5 (CH), 113.3 (CH₂), 106.7 (C), 82.7 (CH), 82.4 (CH), 74.7 (C), 36.3 (CH), 31.7 (CH₂), 30.3 (CH₂), 28.7 (CH₃), 26.4 (CH₃), 25.7 (CH₂), 25.5 (CH₂), 25.4 (CH₂), 25.0 (CH₃).

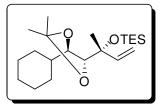
FTIR (KBr, neat): v 3425, 2989, 2927, 2852, 1651, 1381, 1255, 1033, 758 cm⁻¹.

HRMS (ESI) calcd. for C₁₅H₂₇O₃ (M+1) 255.1958, found 255.1960.

(S)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-2-ol (11b)

R_f value (hexane/Et₂O 4: 1): 0.33.

 $[\alpha]_{D}^{20} = -42.2 \ (c = 1.5, \text{CHCl}_3).$


¹**H NMR (300 MHz, CDCl₃):** δ 6.01 (dd, J = 17.1, 10.8 Hz, 1H), 5.40 (dd, J = 17.4, 1.8 Hz, 1H), 5.34 (dd, J = 10.5, 1.5 Hz, 1H), 3.90 (d, J = 5.4 Hz, 1H), 3.80-3.85 (m, 1H), 2.56 (s, 1H), 1.61-2.07 (m, 5H), 1.37 (s, 3H), 1.32 (s, 6H), 1.20-1.31 (m, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 142.7 (CH), 112.7 (CH₂), 106.8 (C), 82.7 (CH), 81.9 (CH), 75.5 (C), 36.0 (CH), 31.4 (CH₂), 30.2 (CH₂), 27.0 (CH₃), 26.8 (CH₃), 26.3 (CH₂), 25.6 (CH₂), 25.2 (CH₂), 24.8 (CH₃).

FTIR (KBr, neat): v 3552, 2893, 2926, 2852, 1614, 1450, 1045 cm⁻¹.

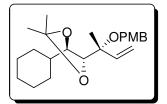
HRMS (ESI) calcd. for C₁₅H₂₇O₃ (M+1) 255.1953, found 255.1960.

((R)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-2-yloxy)triethylsilane (12a)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, alcohol **11a** (0.254 g, 1.00 mmol) was dissolved in CH_2Cl_2 (2 mL). Then 2,6-lutidine (0.34 mL, 3.00 mmol) followed by TESOTF (0.32 mL, 1.50 mmol) was added to the reaction mixture at -78 °C. After stirring at -78 °C for 1h, the reaction mixture was quenched with water and the biphasic reaction mixture was extracted with diethyl ether (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 10: 1) to afford the desired product as colorless oil (0.361 g, 98% yield).

R_f value (hexane/Et₂O 8: 1): 0.65.

 $[\alpha]_{D}^{20} = -0.017 \ (c = 1.0, \text{ CHCl}_3).$


¹**H** NMR (300 MHz, CDCl₃): δ 6.16 (dd, J = 10.8, 17.4 Hz, 1H), 5.23 (dd, J = 1.7, 17.4 Hz, 1H), 5.10 (dd, J = 1.7, 10.8 Hz, 1H), 3.89-3.79 (m, 2H), 2.11-1.89 (m, 3H), 1.66-1.63 (m, 3H), 1.42 (s, 3H), 1.40 (s, 3H), 1.30 (s, 3H), 1.22-1.17 (m, 3H), 0.96 (t, J = 7.9 Hz, 9H), 0.98-0.93 (m, 2H), 0.62 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 142.0 (CH), 113.2 (CH₂), 106.4 (C), 83.6 (CH), 83.3 (CH), 77.4 (C), 35.5 (CH), 31.6 (CH₂), 30.3 (CH₂), 26.9 (CH₂), 26.6 (CH₂), 25.7 (CH₃), 25.7 (CH₃), 25.1 (CH₃), 7.2 (CH₂), 6.8 (CH₃).

FTIR (NaCl, neat): v 2922, 1639, 1379, 1368, 1215, 1249, 872, 743 cm⁻¹.

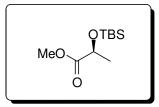
HRMS (ESI) calcd. for C₂₁H₄₁O₃Si (M+1) 369.2825, found 369.2813.

(4R,5R)-4-cyclohexyl-5-((R)-2-(4-methoxybenzyloxy)but-3-en-2-yl)-2,2-dimethyl-1,3-dioxolane (12b)

To an oven-dried round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added sodium hydride (0.080 g, 60% dispersion in oil, 2.00 mmol) and anhydrous DMF (1 mL). The reaction mixture was cooled to 0 °C. A solution of alcohol **11a** (0.254 g, 1.00 mmol) in DMF (1 mL) was added dropwise and stirred for half an hour at 0 °C. Subsequently, PMBCl (0.188 g, 1.20 mmol) was introduced and the reaction mixture was allowed to proceed at room temperature for 12 h. The mixture was quenched by pouring the reaction mixture into ice water slowly with stirring. The mixture was then extracted with diethyl ether (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 40: 1) to afford the desired product as needle-shaped crystal (0.337 g, 90% yield).

R_f value (hexane/Et₂O 8: 1): 0.32.

 $[\alpha]_{D}^{20} = +7.5 \ (c = 1.1, \text{CHCl}_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.22 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.19 (dd, J = 17.6, 5.2 Hz, 1H), 5.35 (ddd, J = 24.0, 10.8, 1.2 Hz, 1H), 4.28 (s, 2H), 3.99 (d, J = 5.6 Hz, 1H), 3.80-3.82 (m, 4H), 1.48-2.06 (m, 5H), 1.43 (s, 3H), 1.42 (s, 3H), 0.77-1.37 (m, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 158.9 (C), 139.5 (CH), 131.4 (C), 129.4 (CH), 117.8 (CH₂), 113.6 (CH), 106.6 (C), 83.2 (CH), 82.6 (C), 80.1 (CH), 64.3 (CH₂), 55.3 (CH₃), 36.3 (CH), 31.4 (CH₂), 30.5 (CH₂), 26.9 (CH₃), 26.5 (CH₃), 25.8 (CH₂), 25.2 (CH₂), 25.1 (CH₂), 20.1 (CH₃).

FTIR (KBr, neat): v 3007, 2927, 2852, 1612, 1857, 1369, 1053, 767 cm⁻¹.

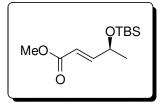
HRMS (ESI) calcd. for C₂₃H₃₅O₄ (M+1) 375.2519, found 375.2535.

(S)-methyl 2-(tert-butyldimethylsilyloxy)propanoate (14)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added imidazole (0.136 g, 2.00 mmol) and CH_2Cl_2 (2 mL). Then alcohol **13** (0.104 g, 1.00 mmol) was added dropwise and the reaction mixture was cooled to 0 °C. *Tert*-butylchlorodimethylsilane (0.226 g, 1.50 mmol) was added slowly and the resulting reaction mixture was stirred overnight at room temperature. The mixture was diluted with CH_2Cl_2 (10 mL), H_2O (10 mL) and extracted with CH_2Cl_2 (20 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/EtOAc 50: 1) to afford the desired product as pale yellow oil (0.216 g, 99% yield).

R_f value (hexane/EtOAc 9: 1): 0.55.

 $[\alpha]_{D}^{20} = -0.029 \ (c = 1.0, \text{ CHCl}_3).$


¹**H NMR (300 MHz, CDCl₃):** δ 4.32 (q, J = 6.7 Hz, 1H), 3.70 (s, 3H), 1.38 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃): *δ* 174.5 (C), 68.4 (CH), 51.7 (CH₃), 25.6 (CH₃), 21.3 (CH₃), 18.3 (C), -5.0 (CH₃), -5.3 (CH₃).

FTIR (NaCl, neat): v 2953, 1759, 1740, 1373, 1362, 1148 cm⁻¹

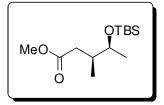
HRMS (ESI) calcd. for C₁₀H₂₃O₃Si (M+1) 219.1416, found 219.1419.

(S,E)-methyl 4-(*tert*-butyldimethylsilyloxy)pent-2-enoate (15)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, the ester **14** (0.218 g, 1.00 mmol) was dissolved in hexane (1.0 mL) and cooled to -78 °C. DIBAL-H (pre-cooled to -78 °C, 1.1 mL, 1.0 M in heptane, 1.1 mmol) was added carefully over at least 2 portions. After stirring for another 1 h, MeOH (pre-cooled to -78 °C, 0.096 g, 3.3 mmol) was added carefully over 2 portions and stirred for a further half an hour until a white suspension was observed. The ylide MeO₂CCH=PPh₃ (0.669 g, 2.00 mmol) was added in one portion followed by THF (5.0 mL) and the reaction mixture was allowed to warm slowly to room temperature over 30 minutes. The reaction mixture was stirred for another 30 minutes and refluxed for an additional 6 h. After that, the reaction mixture was cooled to room temperature and diluted with Et₂O (5 mL) and saturated potassium sodium tartrate (5 mL). The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with Et₂O (10 mL x 3). The combined organic extracts were washed with saturated NaHCO₃ (15 mL x 2), brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/EtOAc 100: 1) to afford the desired *trans*-product as colorless oil (0.169 g, 69% yield; 88% total yield for the mixture of *E/Z* isomers, *E/Z* = 78: 22).

R_f value (hexane/EtOAc 10: 1): 0.54.

 $[\alpha]_{D}^{20} = +0.001 \ (c = 1.0, \text{CHCl}_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 6.93 (dd, J = 4, 15.5 Hz, 1H), 5.99 (dd, J = 1.4, 15.2 Hz, 1H), 4.46-4.43 (m, 1H), 3.72 (s, 3H), 1.25 (d, J = 6.6 Hz, 3H), 0.90 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 167.2 (C), 152.2 (CH), 118.5 (CH), 67.6 (CH), 51.5 (CH₃), 25.8 (CH₃), 23.5 (CH₃), 18.2 (C), -4.9 (CH₃).

FTIR (NaCl, neat): v 2930, 1715, 1659, 1368, 1152, 837, 775 cm⁻¹.

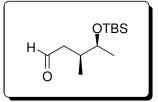
HRMS (ESI) calcd. for C₁₂H₂₄O₃SiNa (M+Na) 267.1392, found 267.1394.

(3S,4S)-methyl 4-(tert-butyldimethylsilyloxy)-3-methylpentanoate (16)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, (*R*)-Tol-BINAP (0.020 g, 0.03 mmol) and CuI (0.004 g, 0.02 mmol) were stirred in CH₂Cl₂ (2 mL) for 20 minutes, concentrated in *vacuo* and then stirred in *t*-BuOMe (4 mL) till a bright yellow suspension was observed. The mixture was then cooled to -20 $^{\circ}$ C and MeMgBr (0.83 mL, 3.0 M solution in Et₂O, 2.50 mmol) was added carefully into the reaction mixture. After stirring for 15 minutes, a pre-cooled solution of ester **15** (0.244 g, 1.00 mmol) in *t*-BuOMe (1.2 mL) was added dropwise over 1 h via syringe pump. After stirring at -20 $^{\circ}$ C for another one and an half hour, the reaction mixture was quenched with MeOH (1 mL), and 1 M NH₄Cl solution (4 mL). The aqueous layer was extracted with Et₂O (15 mL x 3) and the combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 90: 1) to afford the desired product as pale yellow oil (0.164 g, 63% yield; 94% *de*).

R_f value (hexane/Et₂O 8: 1): 0.27.

 $[\alpha]_D^{20} = +0.012 (c = 0.65, \text{CHCl}_3).$

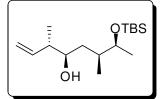

¹**H** NMR (300 MHz, CDCl₃): δ 3.79-3.76 (m, 1H), 3.66 (s, 3H), 2.48 (dd, J = 4.7, 14.5 Hz, 1H), 2.13-2.00 (m, 2H), 1.06 (d, J = 6.3 Hz, 3H), 0.88 (d, J = 4.9 Hz, 3H) 0.88 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃): *δ* 174.2 (C), 70.6 (CH), 51.4 (CH₃), 37.3 (CH), 37.2 (CH₂), 25.8 (CH₃), 20.0 (CH₃), 18.1 (C), 14.3 (CH₃), -4.3 (CH₃), -5.0 (CH₃).

FTIR (NaCl, neat): v 2930, 1742, 1381, 1252, 1038 cm⁻¹.

HRMS (ESI) calcd. for C₁₃H₂₉O₃Si (M+1) 261.1886, found 261.1886.

(3S,4S)-4-(tert-butyldimethylsilyloxy)-3-methylpentanal (17)



In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, the ester **16** (0.260 g, 1.00 mmol) was dissolved in hexane (4 mL) and cooled to -78 °C. DIBAL-H (pre-cooled to -78 °C, 1.1 mL, 1.0 M in heptane, 1.10 mmol) was added carefully over at least 2 portions. After stirring for another 1 h, MeOH (pre-cooled to -78 °C, 0.106 g, 3.30 mmol) was added carefully over 2 portions and stirred for a further 15 minutes till a white suspension was observed. The reaction mixture was then added saturated potassium sodium tartrate solution (5 mL), diluted with Et₂O (5 mL) and warmed to room temperature. The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with Et₂O (10 mL x 3). The combined organic extracts were washed with saturated NaHCO₃ (15 mL x 2), brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 20: 1) to afford the desired product as pale yellow oil (0.200 g, 87% yield).

R_f value (hexane/Et₂O 8: 1): 0.36.

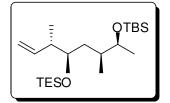
¹**H NMR (400 MHz, CDCl₃):** δ 9.76 (m, 1H), 3.80-3.77 (m, 1H), 2.61-2.53 (m, 1H), 2.22-2.17 (m, 2H), 1.06 (d, *J* = 6.3 Hz, 3H), 0.9 (d, *J* = 6.5 Hz, 3H), 0.87 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H).

(3S,4S,6S,7S)-7-(tert-butyldimethylsilyloxy)-3,6-dimethyloct-1-en-4-ol (18)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added KOrBu (1.5 mL, 1.0 M in THF, 1.50 mmol), dry THF (8 mL) and was allowed to cool to -78 °C. *Trans*-2-butene (0.168 g, 3.00 mmol) was condensed from a gas lecture bottle into the mixture at -78 °C. *n*-Butyllithium (0.94 mL, 1.6 M in hexane, 1.50 mmol) was then added dropwise. After complete addition of *n*-butyllithium, the mixture was stirred at -45 °C for 15 minutes. The resulting orange solution was re-cooled back to -78 °C, and to it was added a solution of (-)-methoxydiisopinocampheylborane (0.949 g, 3.00 mmol) in THF (3 mL). The solution became colorless. The reaction mixture was allowed to stir at -78 °C for 30 minutes followed by addition of boron trifluoride etherate (1.47 mL, 11.0 mmol). After that, a solution of aldehyde **17** in THF (1 mL) was added via a syringe pump over a period of 30 minutes. The mixture was allowed to stir at -78 °C for 3 h and then treated with with 3 N NaOH solution (3 mL, 9 mmol) and 3 mL of 30% H₂O₂ and the content was stirred for 15 minutes at room temperature. The aqueous layer was extracted with Et₂O (15 mL x 3). The combined organic extracts were washed with brine (20 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 40: 1) to afford the desired product as pale yellow oil (0.221 g, 77% yield; 84% *de*).

R_f value (hexane/Et₂O 8: 1): 0.23.

 $[\alpha]_{D}^{20} = +0.007 \ (c = 1.0, \text{CHCl}_3).$


¹**H** NMR (400 MHz, CDCl₃): δ 5.86-5.77 (m, 1H), 5.10-5.06 (m, 2H), 3.82-3.80 (m, 1H), 3.59-3.56 (m, 1H), 2.23-2.18 (m, 1H), 2.14 (d, *J* = 4.9 Hz, 1H), 1.81-1.78 (m, 1H), 1.67-1.61 (m, 1H), 1.25-1.20 (m, 1H), 1.08 (d, *J* = 6.2 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.88 (s, 9H), 0.87 (d, *J* = 4.8 Hz, 3H), 0.06 (s, 3H), 0.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 140.5 (CH), 115.6 (CH₂), 73.0 (CH), 71.4 (CH), 43.8 (CH), 37.1 (CH₂), 36.5 (CH), 25.9 (CH₃), 19.2 (CH₃), 18.1 (C), 16.7 (CH₃), 16.4 (CH₃), -4.3 (CH₃), -4.8 (CH₃).

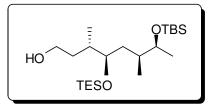
FTIR (NaCl, neat): v 3381, 2959, 1639, 1377, 1043, 835, 773 cm⁻¹.

HRMS (ESI) calcd. for C₁₆H₃₅O₂Si (M+1) 287.2406, found 287.2401.

(5S,6S,8R)-8-((S)-but-3-en-2-yl)-10,10-diethyl-2,2,3,3,5,6-hexamethyl-4,9-dioxa-3,10-disiladodecane (19)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added alcohol **18** (0.287 g, 1.00 mmol), dry pyridine (2 mL) and DMAP (0.024 g, 0.20 mmol). TESCI (0.301 g, 2.00 mmol) was then added and the reaction mixture was allowed to stir for 12 h at room temperature. After stirring for 12 h, the reaction mixture was added saturated NH₄Cl solution (10 mL) and diluted with CH_2Cl_2 (10 mL). The mixture was stirred until a clear biphasic separation was observed. Subsequently, the aqueous layer was extracted with CH_2Cl_2 (10 mL x 3). The combined organic extracts were washed with brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 100: 1) to afford the desired product as colorless oil (0.373 g, 93% yield).

R_f value (hexane): 0.25.


 $[\alpha]_{D}^{20} = +0.004 \ (c = 1.0, \text{CHCl}_3).$

¹**H** NMR (300 MHz, CDCl₃): δ 5.89-5.77 (m, 1H), 5.03-4.98 (m, 2H), 3.72-3.65 (m, 2H), 2.35-2.30 (m, 1H), 1.60-1.55 (m, 1H), 1.48-1.45(m, 1H), 1.10-1.20 (m, 1H), 1.08 (d, *J* = 6.2 Hz, 3H), 1.05 (d, *J* = 6.9 Hz, 3H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.90 (s, 9H), 0.87 (d, *J* = 6.8 Hz, 3H), 0.62 (q, *J* = 7.9 Hz, 6H), 0.05 (s, 3H), 0.04 (s, 3H).

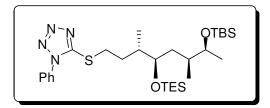
¹³C NMR (100 MHz, CDCl₃): δ 140.4 (CH), 114.6 (CH₂), 74.3 (CH), 71.4 (CH), 42.7 (CH), 37.5 (CH₂), 36.9 (CH), 25.9 (CH₃), 21.0 (CH₃), 18.1 (C), 16.3 (CH₃), 14.6 (CH₃), 7.0 (CH₃), 5.3 (CH₂), -4.1 (CH₃), -4.8 (CH₃). **FTIR (NaCl, neat):** *v* 3073, 2957, 1640, 1379, 1037, 835 cm⁻¹.

HRMS (ESI) calcd. for C₂₂H₄₈O₂Si₂Na (M+Na) 423.3091, found 423.3148.

(3S,4R,6S,7S)-7-(tert-butyldimethylsilyloxy)-3,6-dimethyl-4-(triethylsilyloxy)octan-1-ol (20)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added alkene **19** (1.202 g, 3.00 mmol). The flask was cooled to 0 °C and hydroboration was initiated by dropwise addition of BH₃-THF (1.0 mL, 1.0 M in THF, 1.00 mmol) for 15 minutes. The mixture was stirred at room temperature for 2 h. After stirring for 2 h, the organoborane was dissolved in 5 ml of THF. A solution of 3 N NaOH (1.0 mL, 3.00 mmol) was added followed by the slow addition 1 mL of 30% of hydrogen peroxide aqueous solution. The reaction mixture was heated to 50 °C for 1 h to ensure completion of the oxidation. The mixture was saturated with potassium carbonate. The two phases were separated and extracted with Et₂O (10 mL x 3). The combined organic extracts were washed with brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 8: 1) to afford the desired product as colorless oil (0.967 g, 77% yield).

R_f value (hexane/Et₂O 2: 1): 0.18.


 $[\alpha]_{D}^{20} = -0.005 \ (c = 1.0, \text{CHCl}_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 3.71-3.64 (m, 3H), 3.53 (m, 1H), 3.06 (m, 1H), 1.76-1.70 (m, 2H), 1.55-1.48 (m, 1H), 1.38 (m, 1H), 1.29-1.25 (m, 2H), 1.07 (d, *J* = 6.2 Hz, 3H), 0.96 (d, 3H), 0.96 (t, *J* = 8.1 Hz, 9H), 0.88 (s, 9H), 0.84 (d, *J* = 6.7 Hz, 3H), 0.62 (q, *J* = 7.9 Hz, 6H), 0.03 (s, 3H), 0.02 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 74.8 (CH), 71.8 (CH), 59.0 (CH₂), 37.2 (CH₂), 37.1 (CH), 33.4 (CH), 32.7 (CH₂), 25.6 (CH₃), 20.5 (CH₃), 18.1 (C), 16.3 (CH₃), 14.3 (CH₃), 6.9 (CH₃), 5.1 (CH₂), -4.2 (CH₃), -4.8 (CH₃). **FTIR (NaCl, neat):** *v* 3347, 2957, 1379, 1063 cm⁻¹.

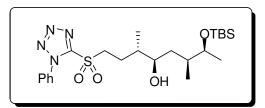
HRMS (ESI) calcd. for C₂₂H₅₁O₃Si₂ (M+1) 419.3377, 419.3369.

5-((3*S*,4*R*,6*S*,7*S*)-(*tert*-butyldimethylsilyloxy)-3,6-dimethyl-4-(triethylsilyloxy)octylthio)-1-phenyl-1*H*-tetrazole (21)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, triphenylphosphine (0.393 g, 1.50 mmol) and alcohol **20** (0.419 g, 1.00 mmol) were dissolved in THF (5 mL). DIAD (0.364 g, 1.80 mmol) was next added over 2 minutes at 0 °C resulting in yellow suspension. Subsequently, a solution of 1-phenyl-1*H*-tetrazole-5-thiol in THF (1 mL) was added over 5 minutes and the reaction mixture was warmed to room temperature. After stirring for 3 h, the reaction was quenched with brine (10 mL) and extracted with Et_2O (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 20: 1) to afford the desired product as colorless oil (0.498 g, 86% yield).

R_f value (hexane/Et₂O 8: 1): 0.21.

 $[\alpha]_{D}^{20} = -0.014 \ (c = 1.1, \text{CHCl}_3).$


¹**H NMR** (**500 MHz, CDCl₃**): δ 7.57-7.55 (m, 5H), 3.68-3.64 (m, 2H), 3.58-3.52 (m, 1H), 3.34-3.30 (m, 1H), 1.88-1.83 (m, 1H), 1.71-1.65 (m, 2H), 1.58-1.55 (m, 1H), 1.41-1.40 (m, 1H), 1.21-1.17 (m, 1H), 1.03 (d, *J* = 6.2 Hz, 3H), 0.99 (d, *J* = 0.66 Hz, 3H), 0.94 (t, *J* = 7.9 Hz, 9H), 0.85 (s, 9H), 0.84 (d, *J* = 7.1 Hz, 3H), 0.58 (q, *J* = 7.9 Hz, 6H), 0.02 (s, 3H), -0.02 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 154.4 (C), 133.4 (C), 130.0 (CH), 129.7 (CH), 123.8 (CH), 74.7 (CH), 71.4 (CH), 37.2 (CH), 36.6 (CH₂), 36.4 (CH), 31.9 (CH₂), 29.9 (CH₂), 25.9 (CH₃), 20.5 (CH₃), 18.0 (C), 15.7 (CH₃), 14.7 (CH₃), 7.0 (CH₂), 5.2 (CH₃), -4.1 (CH₃), -4.8 (CH₃).

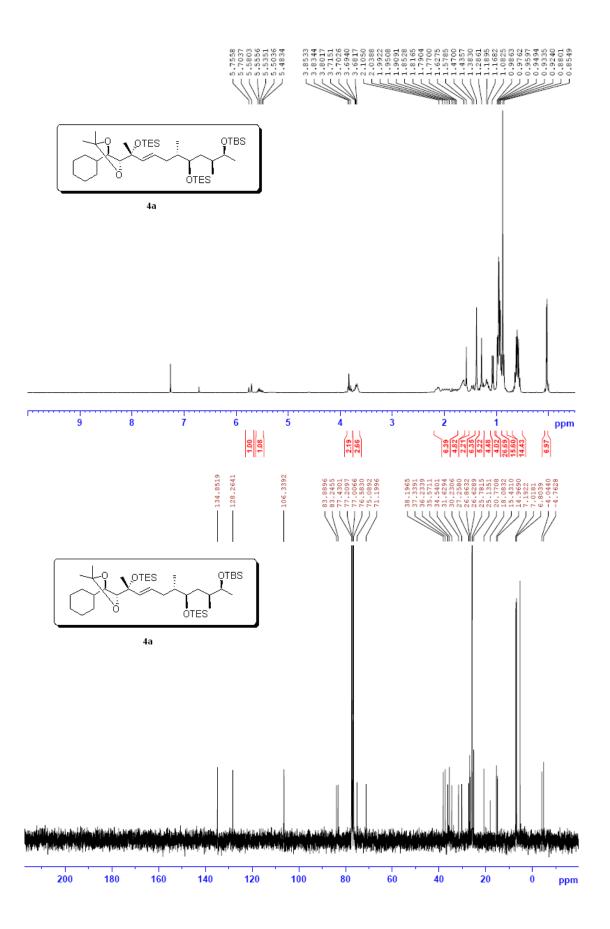
FTIR (NaCl, neat): v 2955, 1599, 1500, 1383, 1084, 837, 760 cm⁻¹.

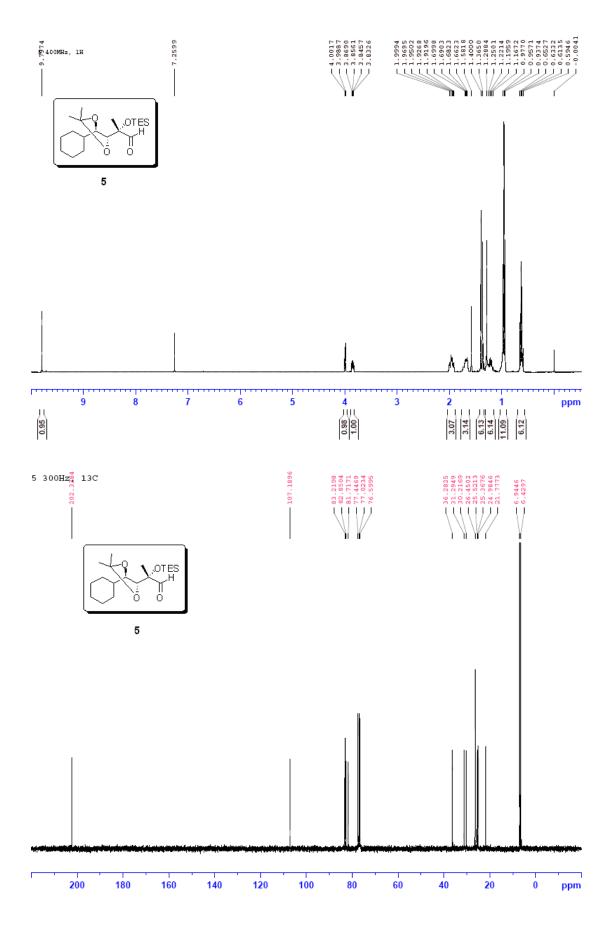
HRMS (ESI) calcd. for C₂₉H₅₅N₄O₂SSi₂(M+1) 579.3584, found 579.3567.

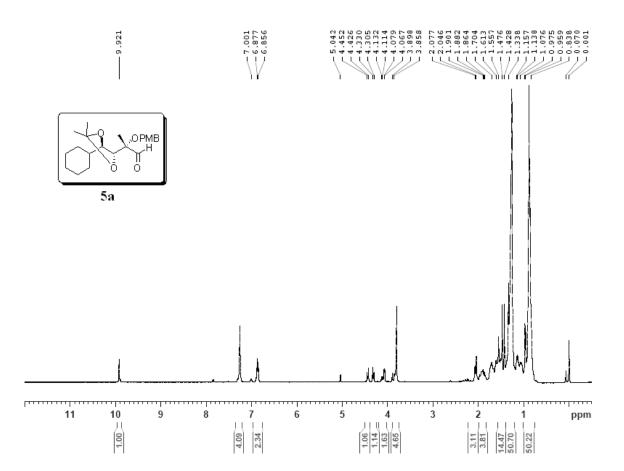
(3*S*,4*R*,6*S*,7*S*)-7-(*tert*-butyldimethylsilyloxy)-3,6-dimethyl-1-(1-phenyl-1*H*-tetrazol-5-ylsulfonyl)octan-4-ol (22)

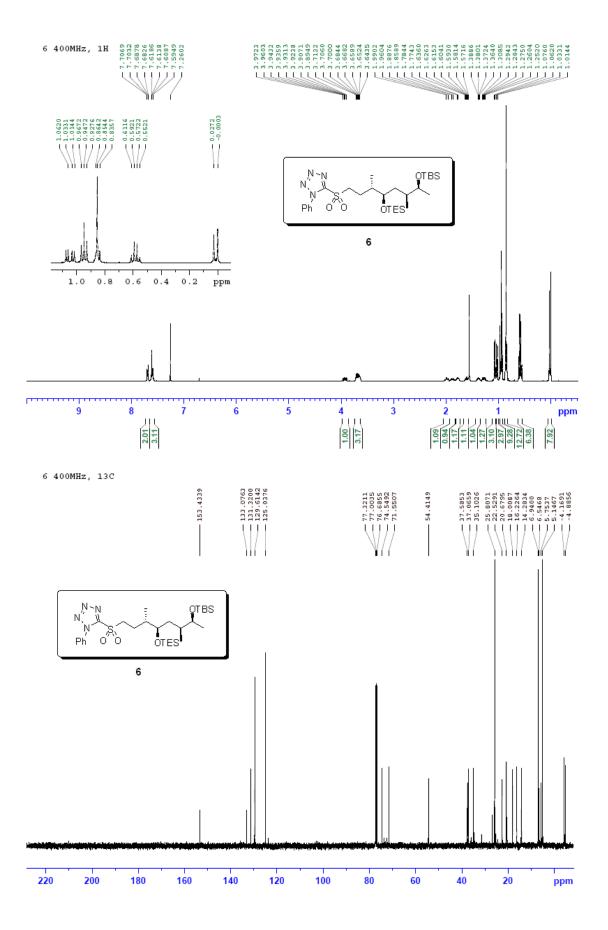
In a round bottom flask equipped with rubber a septum and a magnetic stirrer bar, thiol **21** (0.579 g, 1.00 mmol) was dissolved in EtOH (4 mL). A solution of hexaammonium heptamolybdate tetrahydrate (0.024 g, 0.10 mmol) in 2 mL of 30% hydrogen peroxide was added to the reaction mixture at room temperature and stirred overnight. The reaction was diluted with EtOAc, washed with water and brine. The organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated *in vacuo*. The resulting residue was purified by flash chromatography (hexane/Et₂O 2: 1) to afford the desired product as yellow oil (0.353 g, 71% yield).

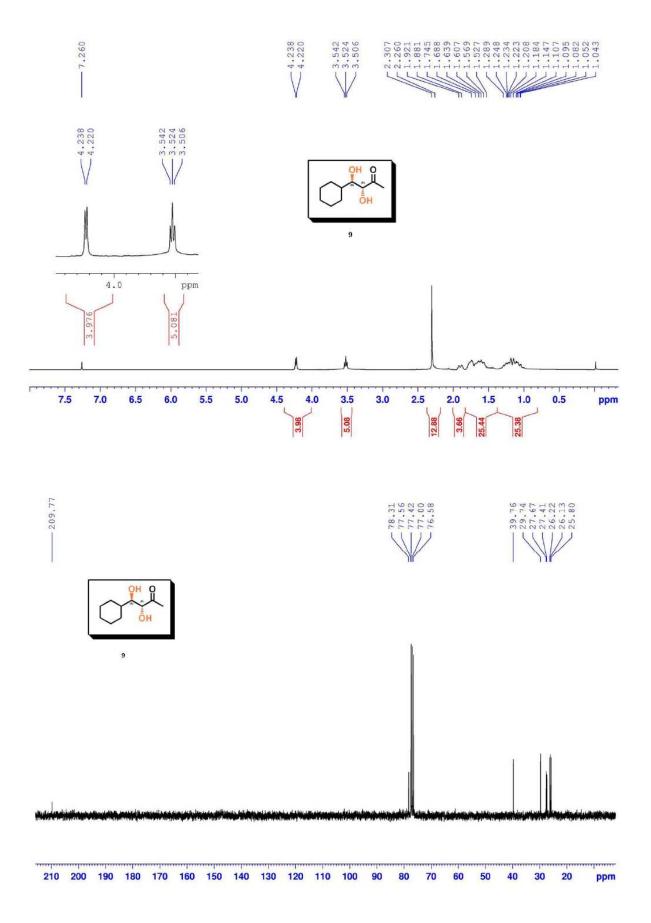
R_f value (hexane/EtOAc 2: 1): 0.30.

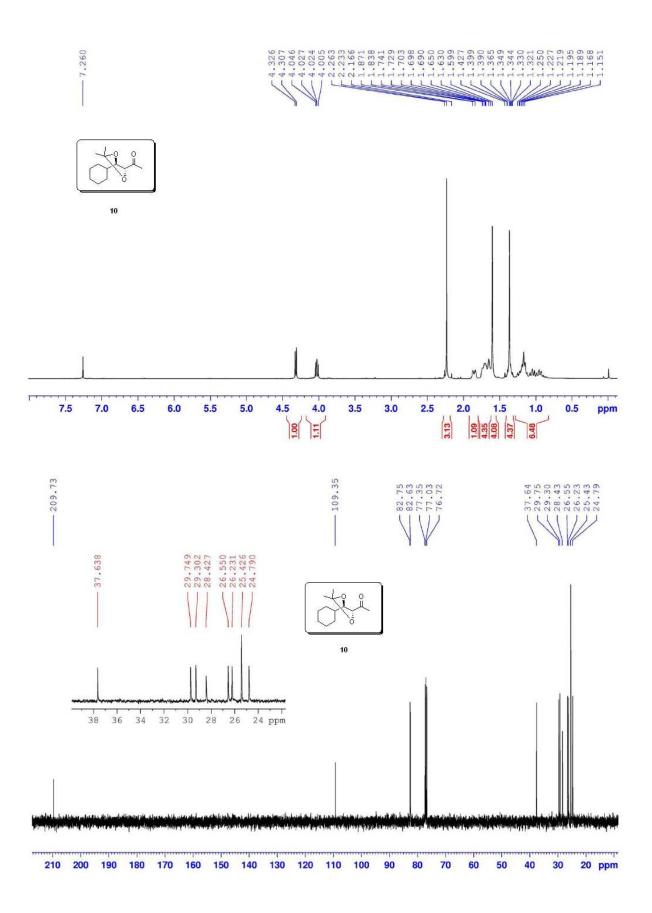

 $[\alpha]_{D}^{20} = +0.004 \ (c = 1.0, \text{ CHCl}_3).$

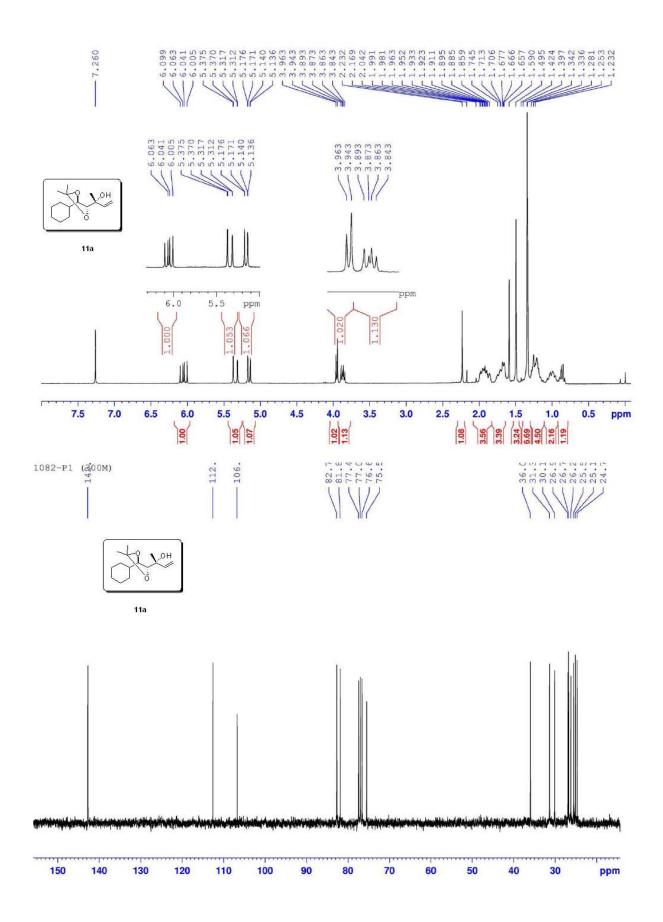

¹**H** NMR (400 MHz, CDCl₃): δ 7.70-7.68 (m, 2H), 7.63-7.59 (m, 3H), 3.87-3.81 (m, 3H), 3.60-3.55 (m, 1H), 3.14 (d, *J* = 5.4 Hz, 1H), 2.23-2.17 (m, 1H), 1.95-1.86 (m, 2H), 1.70-1.56 (m, 2H), 1.40-1.30 (m, 1H), 1.08 (d, *J* = 6.3 Hz, 3H), 0.97 (d, *J* = 6.8 Hz, 3H), 0.89 (s, 9H), 0.88 (d, *J* = 5.8 Hz, 3H), 0.08 (s, 3H), 0.07 (s, 3H).

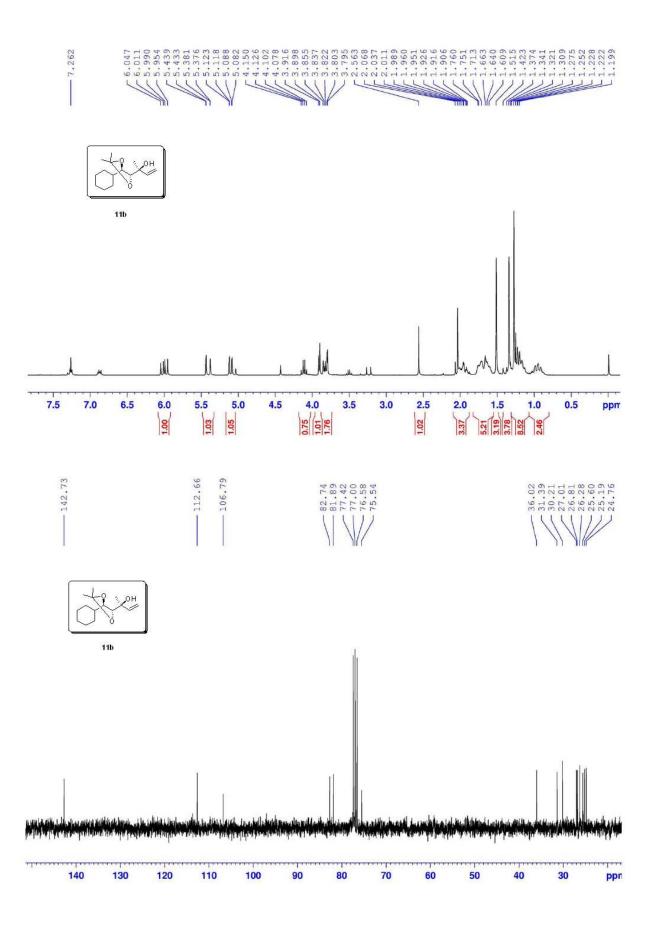

¹³C NMR (100 MHz, CDCl₃): δ 153.5 (C), 133.1 (C), 131.4 (CH), 129.7 (CH), 125.1 (CH), 73.1 (CH), 72.5 (CH), 54.7 (CH₂), 37.7 (CH), 36.9 (CH₂), 35.8 (CH), 25.7 (CH₃), 25.3 (CH₂), 18.3 (CH₃), 18.1 (C), 17.7 (CH₃), 16.1 (CH₃), -4.3 (CH₃), -4.8 (CH₃).

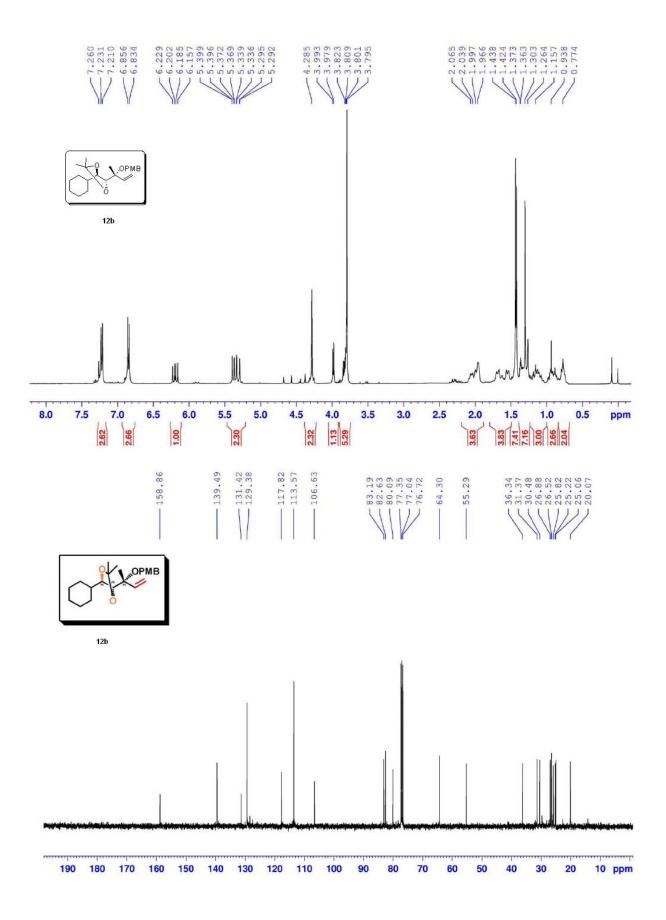

FTIR (NaCl, neat): v 3418, 2957, 1595, 1499, 1339, 1152, 835, 773 cm⁻¹.

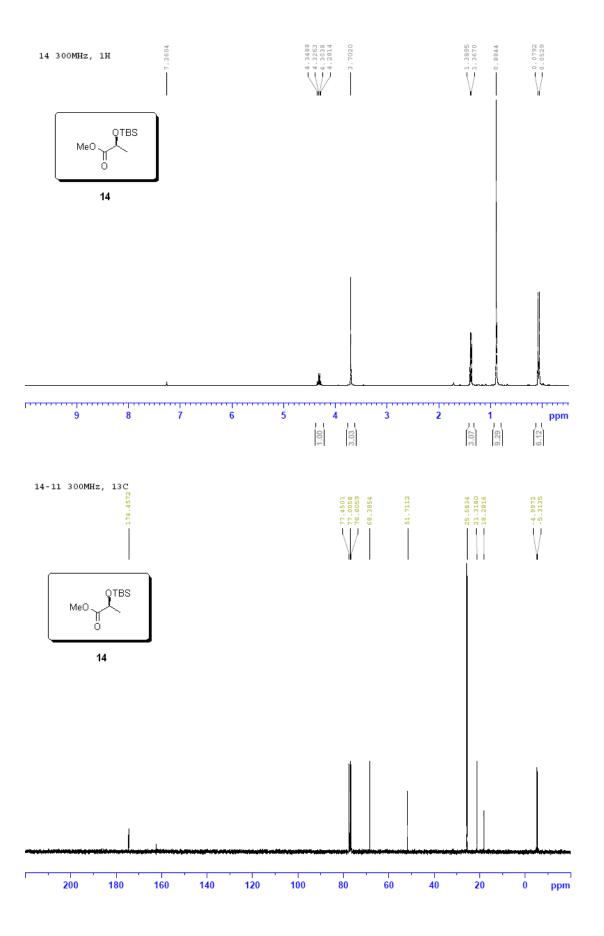

HRMS (ESI) calcd. for C₂₃H₄₁N₄O₄Ssi (M+1) 496.2618, found 497.2618.

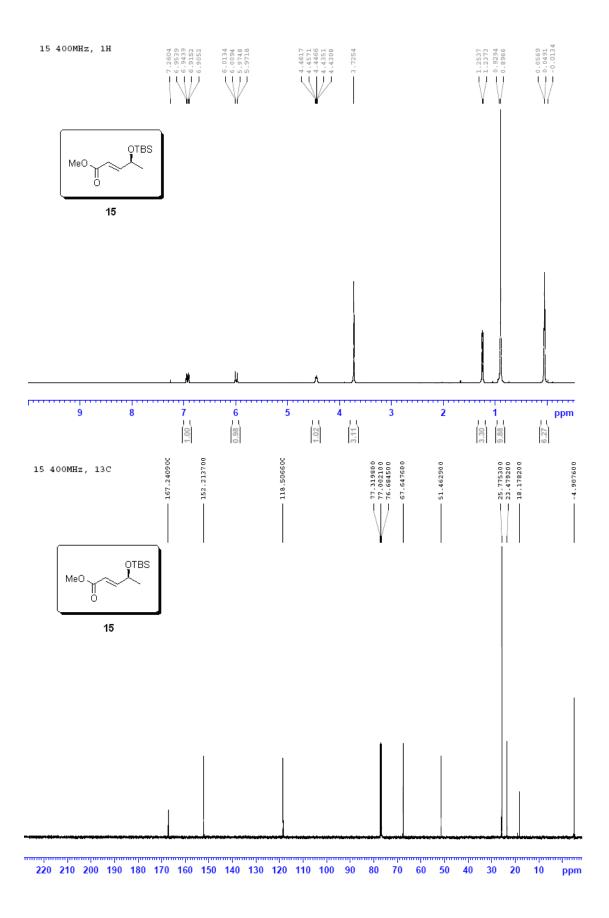


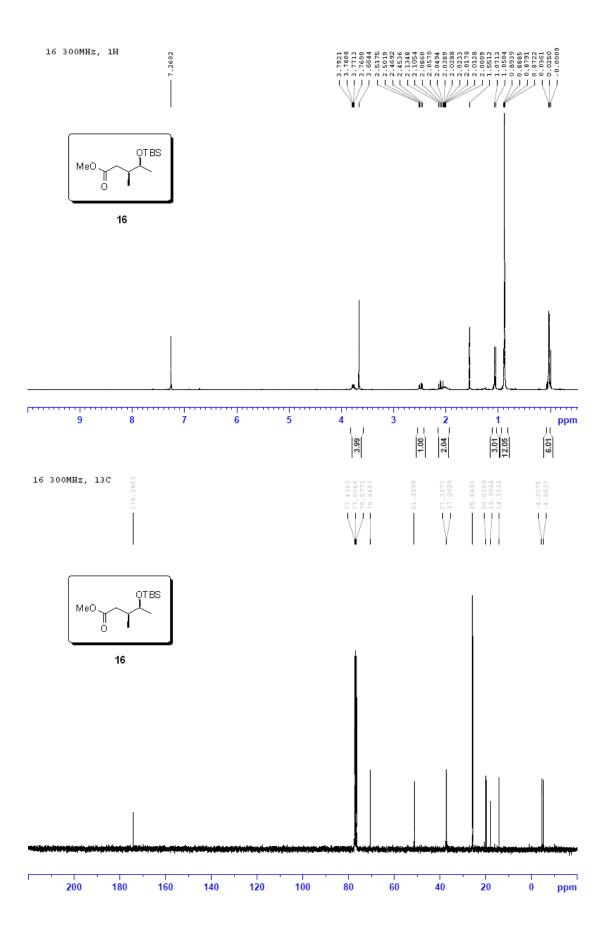


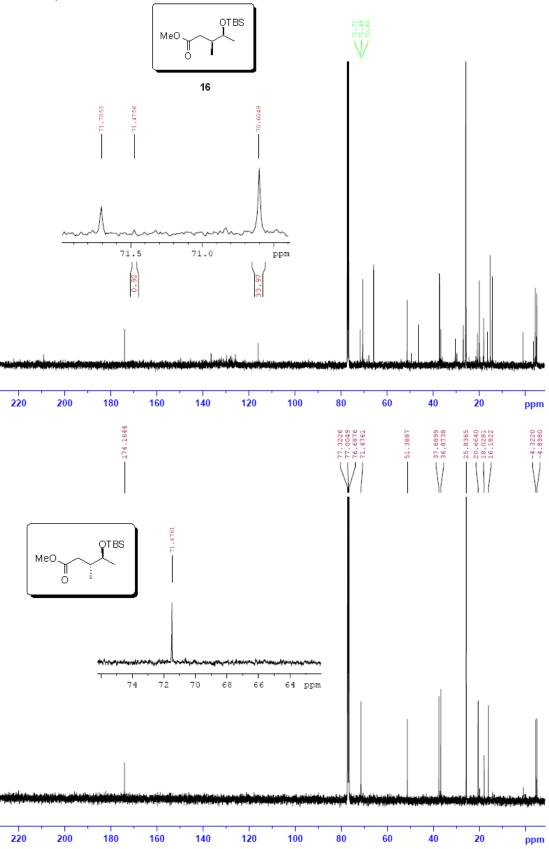


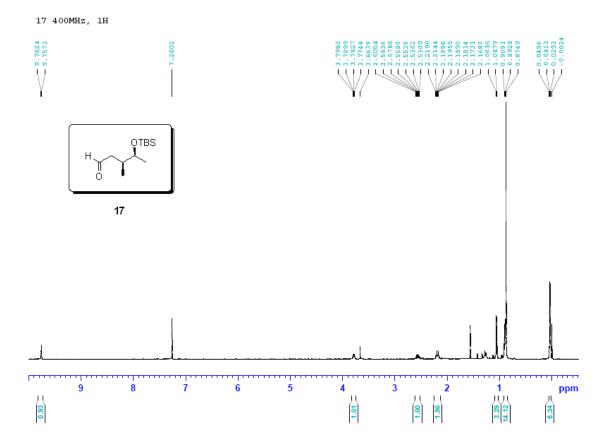


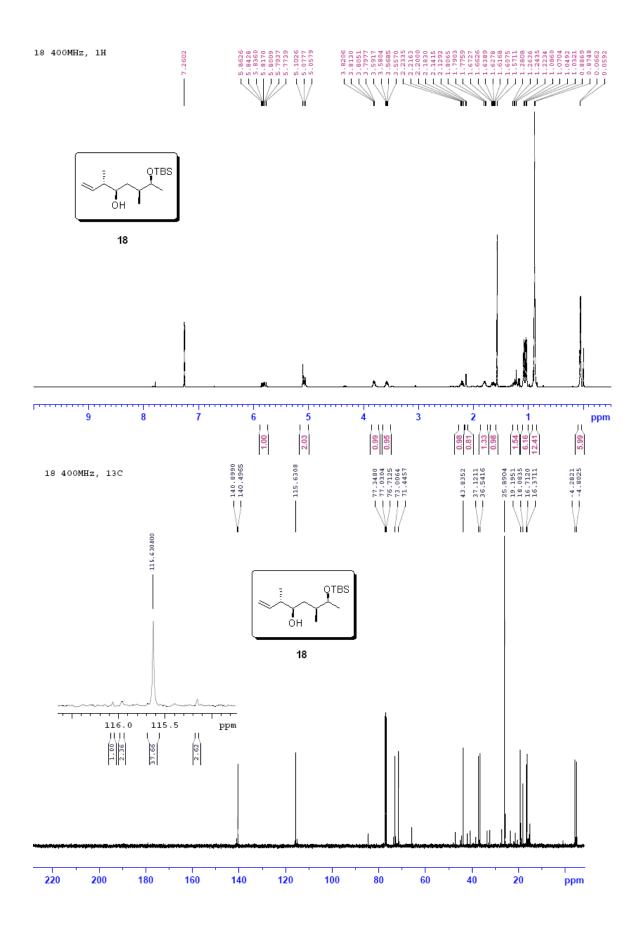


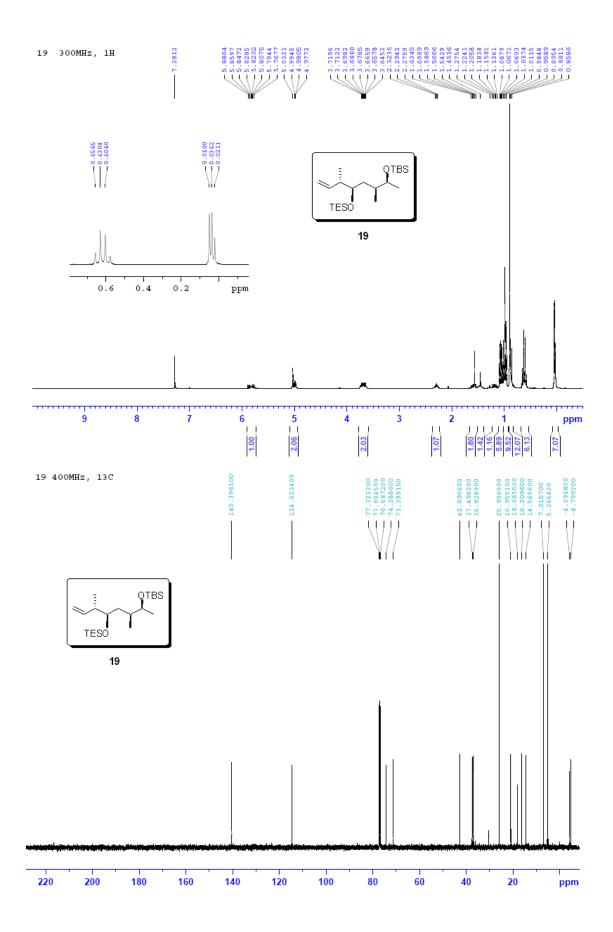


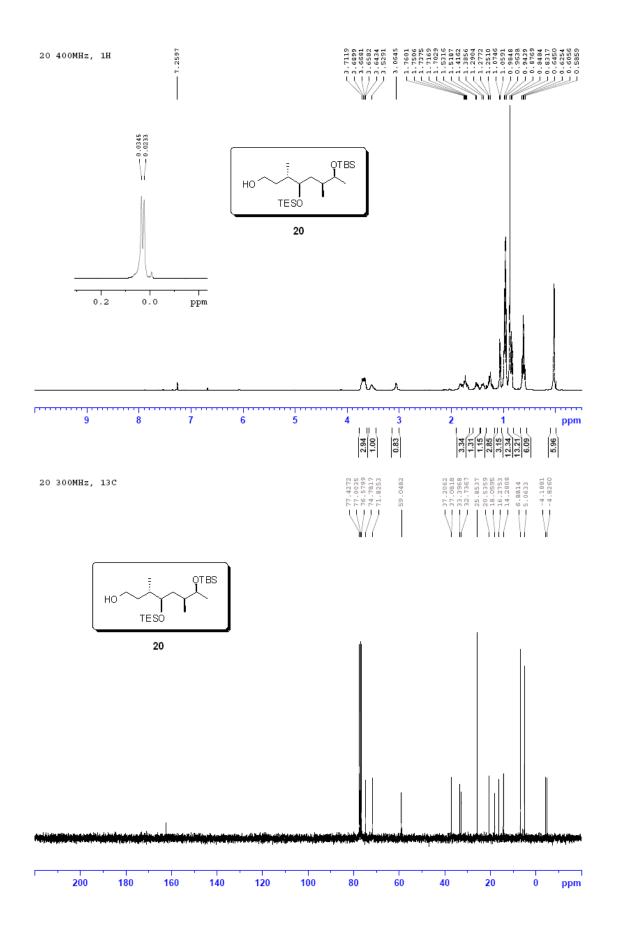











16 300MHz, crude 13C

