for
the
communication
entitled

An Enamide-Benzyne [2 + 2] Cycloaddition:
 Stereoselective Tandem [2+2]Pericyclic Ring-Opening-Intramolecular N-Tethered [4+2] Cycloadditions.

authored by

John B. Feltenberger, Ryuji Hayashi, Yu Tang, Eric S. C. Babiash, and Richard P. Hsung*

Department of Chemistry and Division of Pharmaceutical Sciences 7111 Rennebohm Hall, 777 Highland Avenue University of Wisconsin at Madison, Madison, WI 53705-2222

GENERAL EXPERIMENTAL INFORMATION

All reactions were performed in flame-dried glassware under nitrogen atmosphere. Solvents were distilled prior to use. Reagents were used as purchased from Aldrich, Acros, Alfa Aesar, or TCI unless otherwise noted. Chromatographic separations were performed using Silicycle 43-60 $\AA \mathrm{SiO}_{2} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Varian VI-400 and VI-500 spectrometers using CDCl_{3} with TMS or residual solvent as standard unless otherwise noted. Melting points were determined using a Laboratory Devices MEL-TEMP and are uncorrected/calibrated. Infrared spectra were obtained on Bruker EQUINOX 55 FTIR. TLC analysis was performed using Aldrich 254 nm polyester-backed plates ($60 \AA, 250 \mu \mathrm{~m}$) and visualized using UV, anisaldehyde and I_{2} stains. Low-resolution mass spectra were obtained using an Agilent 1100 series LS/MSD and are APCI. All spectral data obtained for new compounds are reported here.

Synthesis of \boldsymbol{N}-Alkenyl Tethered Amides

Wittig olefination of $\mathbf{S 1}$ was demonstrated by the literature method. ${ }^{\text {i }}$

General Procedure.

To an oven-dried round bottom flask with magnetic stir bar was added bromide (1.1 equiv), TsNH_{2} (1.0 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) and acetone (1.0 M). The round bottom flask was heated at $60^{\circ} \mathrm{C}$. Upon completion of the reaction (16 h), the solution was cooled to RT, filtered through a plug of Celite ${ }^{\mathrm{TM}}$ and rinsed with EtOAc, and solvent was removed in vacuo to afford a crude product. Purification of the resulting crude residue via silica gel flash column chromatography (gradient eluent: EtOAc in hexane) afforded the desired alkylated product.

Characterizations.

S7: $R_{f}=0.48[25 \% \mathrm{EtOAc} /$ hexanes $]$; colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.21-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.52(\mathrm{p}, 2 \mathrm{H}, J=7.0$
$\mathrm{Hz}), 1.91(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.02(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $4.28(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 5.24$ (dddd, $1 \mathrm{H}, J=7.5,9.5,11.0,13.0 \mathrm{~Hz}), 5.37(\mathrm{dddd}, 1 \mathrm{H}, J=7.5$, $9.5,11.0,13.0 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$.

S8: $R_{f}=0.22[25 \% \mathrm{EtOAc} /$ hexanes $]$; colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(\mathrm{p}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.31(\mathrm{dq}, 2 \mathrm{H}, J=1.5,7.0 \mathrm{~Hz}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.96(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.22(\mathrm{bs}, 1 \mathrm{H}), 5.54(\mathrm{dq}, 1 \mathrm{H}, J=7.5,11.5 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.5 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.24-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz})$.

Tosyl protection of commercially available amine $\mathbf{S 9}$ was accomplished, with characterizations in accord with literature precedent. ${ }^{\text {ii }}$

General Procedure for Enamide Synthesis via Cross Coupling

Procedure A: To an oven-dried screw-cap vial fitted with magnetic stir bar was added amide (1.0 equiv), vinyl bromide (1.0 M soln in THF, 2.0 equiv), CuI (0.05 equiv), N, N ’dimethylethylenediamine (0.10 equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv). The vial was tightly sealed using Teflon tape and heated to $80^{\circ} \mathrm{C}$ to stir overnight. Upon completion of the reaction, the mixture was filtered through a pad of Celite ${ }^{\mathrm{TM}}$, rinsing with EtOAc, and solvent was removed in vacuo to afford a crude product. Purification of the resulting crude residue via silica gel flash chromatography (gradient elution: EtOAc in n - hexanes) afforded the desired enamide.

Procedure B: Same as procedure A, except performed in a sealed tube at $115{ }^{\circ} \mathrm{C}$ overnight.

Characterizations.

5
Enamide 5 ($638.0 \mathrm{mg}, 2.22 \mathrm{mmol}$) was isolated in 58% yield from N-Benzyl-ptoluenesulfonamide $(1.00 \mathrm{~g}, 3.83 \mathrm{mmol})$ according to the general procedure A .

5: $R_{f}=0.56\left[1: 4 \mathrm{EtOAc} /\right.$ hexanes]; yellow solid; $\mathrm{mp} 99-100{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=1.2,15.6 \mathrm{~Hz}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=$ $1.2,9.2 \mathrm{~Hz}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{dd}, 1 \mathrm{H}, J=9.2,15.6 \mathrm{~Hz}), 7.21-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ Hz ;
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 21.8,49.1,94.9,127.1,127.2,127.7,128.8,130.1,132.4,135.7$, 136.4, 144.2;

IR (thin film) $\mathrm{cm}^{-1} 3066 \mathrm{w}, 2981 \mathrm{~m}, 2886 \mathrm{w}, 2362 \mathrm{w}$, 1920w, 1625m, 1495m, 1455m, 1347s, $1318 \mathrm{~m}, 1238 \mathrm{~m}, 1163 \mathrm{~s}$;
mass spectrum (APCI): m/e (\% relative intensity) $288.2(100)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 7 ($384.0 \mathrm{mg}, 1.20 \mathrm{mmol}$) was isolated in 69% yield from N-Benzyl-4nitrobenzenesulfonamide $(511.0 \mathrm{mg}, 1.75 \mathrm{mmol})$ according to the general procedure A .

7: $R_{f}=0.48$ [1:4 EtOAc/hexanes]; yellow solid; mp 122-123 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.32(\mathrm{dd}, 1 \mathrm{H}, J=1.6,16.0 \mathrm{~Hz}), 4.42(\mathrm{dd}, 1 \mathrm{H}, J=1.6,9.2 \mathrm{~Hz})$, $4.61(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{dd}, 1 \mathrm{H}, 9.2,16.0 \mathrm{~Hz}), 7.22-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.32(\mathrm{~d}$, $2 \mathrm{H}, J=9.2 \mathrm{~Hz}$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 49.2,96.9,124.7,127.2,128.0,128.4,128.9,131.6,134.8,144.9$, 150.4;

IR (thin film) $\mathrm{cm}^{-1} 3106 \mathrm{w}, 2981 \mathrm{~m}, 2886 \mathrm{w}, 2361 \mathrm{w}$, 1943w, 1749w, 1627m, 1528s, 1455m, $1401 \mathrm{~m}, 1348 \mathrm{~s}, 1314 \mathrm{~s}, 1237 \mathrm{~m}, 1166 \mathrm{~s}$;
mass spectrum (APCI): m/e (\% relative intensity) $319.1(100)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 9 ($152.0 \mathrm{mg}, 0.94 \mathrm{mmol}$) was isolated in 47% yield from acetanilide (270.0 mg , 2.00 mmol) according to the general procedure A .

9: $R_{f}=0.36$ [1:4 EtOAc/hexanes]; white solid; mp 47-50 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$,
7.16-7.21 (m, 2H), 7.40-7.46 (m, 1H), 7.46-7.52 (m, 2H), 7.64-7.76 (m, 1H);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.5,96.4,128.9,129.1,130.2,133.9,139.4,168.9$;
IR (thin film) $\mathrm{cm}^{-1} 3118 \mathrm{w}, 3061 \mathrm{w}, 3006 \mathrm{w}, 2632 \mathrm{w}, 1959 \mathrm{w}, 1681 \mathrm{~s}, 1629 \mathrm{~s}, 1597 \mathrm{~m}, 1494 \mathrm{~m}, 1451 \mathrm{w}$, 1427w, 1410w, 1369s, 1303s;
mass spectrum (APCI): m/e (\% relative intensity) $120.1(100), 162.1(10)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 13a ($268.0 \mathrm{mg}, 2.37 \mathrm{mmol}$) was isolated in 95% yield from 2-oxazolidinone $(218.0 \mathrm{mg}, 2.50 \mathrm{mmol})$ according to the general procedure A . Characterization has been previously reported in the literature. ${ }^{\text {iii }}$

Enamide 13b ($472.0 \mathrm{mg}, 2.49 \mathrm{mmol}$) was isolated in 95% yield from (R)-4-Phenyl-2oxazolidinone ($408.0 \mathrm{mg}, 2.50 \mathrm{mmol}$) according to the general procedure A. Characterization has been previously reported in the literature. ${ }^{\text {iv }}$

Enamide 13c ($246.0 \mathrm{mg}, 1.21 \mathrm{mmol}$) was isolated in 43% yield from (R)-4-Benzyl-2oxazolidinone ($500.0 \mathrm{mg}, 2.82 \mathrm{mmol}$) according to the general procedure A. Characterization has been previously reported in the literature. ${ }^{\text {iv }}$

Enamide 13d (150.0 mg , 0.97 mmol) was isolated in 62% yield from (R)-4-Isopropyl-2oxazolidinone ($200.0 \mathrm{mg}, 1.55 \mathrm{mmol}$) according to the general procedure A. Characterization for the enantiomer has been previously reported in the literature. ${ }^{\vee}$

Enamide 13e ($208.0 \mathrm{mg}, 0.78 \mathrm{mmol}$) was isolated in 78% yield from ($4 S, 5 R$)-(-)-cis-4,5-Diphenyl-2-oxazolidinone ($239.0 \mathrm{mg}, 1.00 \mathrm{mmol}$) according to the general procedure A. Characterization has been previously reported in the literature. ${ }^{\text {vi }}$

Enamide $\mathbf{1 5}(444.0 \mathrm{mg}, 1.67 \mathrm{mmol})$ was isolated in 84% yield from $\mathbf{S 5}(478.0 \mathrm{mg}, 2.00$ mmol) according to the general procedure B. Characterization has been previously reported in the literature. ${ }^{\text {vii }}$

Enamide 20 ($223.0 \mathrm{mg}, 0.89 \mathrm{mmol}$) was isolated in 40% yield from $\mathbf{S 6}$ ($500.0 \mathrm{mg}, 2.22$ mmol) according to the general procedure A. Characterization has been previously reported in the literature. ${ }^{\text {vii }}$

Enamide 23a ($58.4 \mathrm{mg}, 0.17 \mathrm{mmol}$) was isolated in 32% yield from $\mathbf{S 7}(169.0 \mathrm{mg}, 0.55$ mmol) according to the general procedure B .

23a: $R_{f}=0.67$ [25\% EtOAc/hexanes]; purple oil;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.22-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{p}, 2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 1.99(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.05(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$,
$4.25(\mathrm{dd}, 1 \mathrm{H}, J=1.0,7.5 \mathrm{~Hz}), 4.33(\mathrm{dd}, 1 \mathrm{H}, J=1.5,9.5 \mathrm{~Hz}), 5.33(\mathrm{dddd}, 1 \mathrm{H}, J=0.5,7.0,8.5$, $10.5 \mathrm{~Hz}), 5.40(\mathrm{dddd}, 1 \mathrm{H}, J=0.5,7.0,8.5,10.5 \mathrm{~Hz}), 6.89(\mathrm{dd}, 1 \mathrm{H}, J=9.5,16.0 \mathrm{~Hz}), 7.29(\mathrm{~d}$, $2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;$
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3,21.8,22.8,24.7,27.0,27.5,29.6,31.8,44.7,93.0,127.1$, 128.2, 130.0, 131.6, 132.4, 136.7, 143.9;

IR (neat) $\mathrm{cm}^{-1} 3293 \mathrm{w}, 2926 \mathrm{~m}, 2858 \mathrm{~m}, 2360 \mathrm{~m}, 1726 \mathrm{~m}, 1623 \mathrm{~m}, 1461 \mathrm{~m}, 1355 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) $336(100)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 23b ($123.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) was isolated in 24% yield from $\mathbf{S 8}(475.0 \mathrm{mg}, 1.51$ mmol) according to the general procedure B .

23b: $R_{f}=0.59$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.34(\mathrm{dq}, 2 \mathrm{H}, J=2.0,6.0 \mathrm{~Hz}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=1.5,15.5 \mathrm{~Hz}), 4.33(\mathrm{dd}, 1 \mathrm{H}, J=1.5,9.5 \mathrm{~Hz})$, $5.62(\mathrm{ddd}, 1 \mathrm{H}, J=7.5,12.0,14.5 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 6.88(\mathrm{dd}, 1 \mathrm{H}, J=9.0,15.5 \mathrm{~Hz})$, $7.20-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,26.1,27.3,44.7,93.0,127.0,127.1,128.5,129.0,130.1$, 130.2, 131.4, 132.4, 136.6, 137.6, 144.0;

IR (neat) $\mathrm{cm}^{-1} 2928 \mathrm{w}, 2361 \mathrm{w}, 1737 \mathrm{w}, 1624 \mathrm{~m}, 1494 \mathrm{w}, 1447 \mathrm{w}, 1352 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) $342(100)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 27 ($610.0 \mathrm{mg}, 2.00 \mathrm{mmol}$) was isolated in 100% yield from S10 ($558.0 \mathrm{mg}, 2.00$ mmol) according to the general procedure A .

27: $R_{f}=0.61$ [1:4\% EtOAc/hexanes]; white solid, $\mathrm{mp} 46-49{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{dd}, 2 \mathrm{H}, J=8.0,8.0$ $\mathrm{Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, 1 \mathrm{H}, J=1.6,16.0 \mathrm{~Hz}), 4.32(\mathrm{dd}, 1 \mathrm{H}, J=1.6,9.6 \mathrm{~Hz})$, $5.42(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dd}, 1 \mathrm{H}, J=9.6,16.0 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.8,22.4,23.0,25.4,28.6,35.2,44.2,92.7,123.7,127.1,130.0$,
132.3, 134.6, 136.8, 143.9;

IR (neat) $\mathrm{cm}^{-1} 2926 \mathrm{w}, 2835 \mathrm{w}, 2360 \mathrm{w}, 1918 \mathrm{w}, 1622 \mathrm{~m}, 1598 \mathrm{w}, 1494 \mathrm{w}, 1459 \mathrm{w}, 1410 \mathrm{w}, 1353 \mathrm{~m}$, 1316m, 1231w, 1162s;
mass spectrum (APCI): m/e (\% relative intensity) $306.2(100)(\mathrm{M}+\mathrm{H})^{+}$.

Cyclic enamides 11a and 11b were prepared according to literature precedent. ${ }^{\text {vii }}$

Preparation of Chiral Enamide 31.

Characterization for $\mathbf{S 1 1}$ has been previously reported in the literature. ${ }^{\text {viii }}$

s12
Enamide $\mathbf{S 1 2}(1.21 \mathrm{~g}, 4.47 \mathrm{mmol})$ was isolated in 55% yield from $\mathbf{S 1 1}(2.00 \mathrm{~g}, 8.16$ mmol) according to the general procedure A .

S12: $R_{f}=0.35[1: 4 \mathrm{EtOAc} /$ hexanes $] ;[\alpha]{ }_{\mathrm{D}}{ }^{23}=+38.6^{\circ}\left[\mathrm{c} 0.1076 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$; clear oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.73$ (dddd, $1 \mathrm{H}, J=4.0,6.4,9.2,13.2$ Hz), 2.19 (dddd, $1 \mathrm{H}, J=2.4,4.0,6.4,13.2 \mathrm{~Hz}$), $3.73(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{tt}, 1 \mathrm{H}, J=2.8,8.8 \mathrm{~Hz}), 4.31$ $(\mathrm{dd}, 1 \mathrm{H}, J=3.2,8.4 \mathrm{~Hz}), 4.40(\mathrm{dd}, 1 \mathrm{H}, J=1.2,16.0 \mathrm{~Hz}), 4.43(\mathrm{td}, 1 \mathrm{H}, J=0.8,8.0 \mathrm{~Hz}), 4.45(\mathrm{dd}$, $1 \mathrm{H}, J=1.2,9.6 \mathrm{~Hz}), 6.77(\mathrm{dd}, 1 \mathrm{H}, J=9.6,16.0 \mathrm{~Hz}) ;$
${ }^{13}{ }^{3}$ NMR (100 MHz, CDCl_{3}) $\delta 0.00,23.7,31.4,38.6,57.6,65.0,74.0,99.3,134.4,160.9 ;$
IR (thin film) $\mathrm{cm}^{-1} 2954 \mathrm{w}, 2930 \mathrm{w}, 2857 \mathrm{w}, 2360 \mathrm{w}, 1760 \mathrm{~s}, 1637 \mathrm{~m}, 1472 \mathrm{w}, 1427 \mathrm{~m}, 1399 \mathrm{~m}$, 1361w, 1327w, 1243m, ;
mass spectrum (APCI): m/e (\% relative intensity)246.2 (100), $272.2(10)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 29 ($519.0 \mathrm{mg}, 3.28 \mathrm{mmol}$) was isolated in 90% yield from $\mathbf{S 1 2 (9 8 9 . 0 \mathrm { mg } , 3 . 6 5}$ mmol).

29: $R_{f}=0.06[2: 3 \mathrm{EtOAc} /$ hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=+69.2^{\circ}\left[\mathrm{c} 0.0215 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$ clear oil;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.60$ (brs, 1 H), 1.82 (dddd, $1 \mathrm{H}, J=4.4,6.4,8.8,10.8 \mathrm{~Hz}$), 2.20 (dddd, $1 \mathrm{H}, J=2.4,5.2,7.2,12.4 \mathrm{~Hz}$), $3.80(\mathrm{~m}, 2 \mathrm{H}), 4.27$ (dddd, $1 \mathrm{H}, J=3.2,3.2,8.4,8.8 \mathrm{~Hz}$), 4.32 (dd, $1 \mathrm{H}, J=2.8,8.8 \mathrm{~Hz}), 4.42-4.49(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{dd}, 1 \mathrm{H}, J=9.2,16.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.0,52.2,58.7,69.7,94.7,128.7,155.9 ;$
IR (thin film) $\mathrm{cm}^{-1} 3432 \mathrm{~m}, 2958 \mathrm{w}, 2360 \mathrm{w}, 1729 \mathrm{~s}, 1637 \mathrm{~s}, 1481 \mathrm{w}, 1429 \mathrm{~m}, 1402 \mathrm{~m}, 1354 \mathrm{w}, 1322 \mathrm{~m}$, 1275m, 1238s;
mass spectrum (APCI): m/e (\% relative intensity) $158.1(100)(\mathrm{M}+\mathrm{H})^{+}$.

Enamide 31 ($78.8 \mathrm{mg}, 0.35 \mathrm{mmol}$) was isolated in 55% yield from 29 ($100.0 \mathrm{mg}, 0.63$ mmol) according to known procedure. ${ }^{\mathrm{ix}}$

31: $R_{f}=0.38[2: 3 \mathrm{EtOAc} /$ hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=+51.5^{\circ}\left[\mathrm{c} 0.0229 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right]$ clear oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.53(\mathrm{dtd}, 1 \mathrm{H}, J=1.5,8.5,15.0 \mathrm{~Hz}), 2.79$ (ddt, 1H, $J=2.5,6.5,15.0 \mathrm{~Hz}), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.22(\mathrm{~m}$, $1 \mathrm{H}), 4.41(\mathrm{dd}, 1 \mathrm{H}, J=1.5,16.0 \mathrm{~Hz}), 4.42(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.53(\mathrm{dd}, 1 \mathrm{H}, J=1.5,9.5 \mathrm{~Hz}), 5.95$ (dt, 1H, $J=1.5,16.0 \mathrm{~Hz}), 6.78(\mathrm{dd}, 1 \mathrm{H}, J=9.5,16.0 \mathrm{~Hz}), 6.80(\mathrm{ddd}, 1 \mathrm{H}, J=6.5,8.5,16.0 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.4,33.2,52.4,60.6,60.9,67.0,94.6,126.3,128.8,140.7$, 155.1, 165.7;

IR (thin film) $\mathrm{cm}^{-1} 2982 \mathrm{w}, 2360 \mathrm{w}, 1751 \mathrm{~s}, 1715 \mathrm{~s}, 1639 \mathrm{~m}, 1479 \mathrm{w}, 1428 \mathrm{~m}, 1403 \mathrm{~m}, 1369 \mathrm{~m}$, $1325 \mathrm{~m}, 1270 \mathrm{~m}, 1242 \mathrm{~s}, 1173 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) $226.1(100)(\mathrm{M}+\mathrm{H})^{+}$.

General Procedure for Enamide-Benzyne [2 + 2] Cycloaddition.

To an oven-dried screw-cap vial fitted with magnetic stir bar was added enamide (1.0 equiv), CsF (4.0 equiv) and anhydrous 1,4-dioxane (0.05 M). Ortho-(trimethylsilyl)phenyl triflate (3.0 equiv) was added dropwise via gastight syringe and the vial was heated at $110{ }^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the solution was cooled to RT, filtered through a plug of celite and rinsed with EtOAc, and solvent was removed in vacuo to afford a crude product. Purification of the resulting crude residue via silica gel flash column chromatography (gradient elution: EtOAc in n - hexanes) afforded the desired amidobenzocyclobutane.

Characterizations.

6
Amidobenzocyclobutane $6(24.7 \mathrm{mg}, 0.068 \mathrm{mmol})$ was isolated in 87% yield from enamide $5(22.4 \mathrm{mg}, 0.078 \mathrm{mmol})$ according to the general procedure.

6: $R_{f}=0.27$ [1:9 EtOAc/hexanes]; white solid; mp 119-121 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, 1 \mathrm{H}, J=2.4,15.2 \mathrm{~Hz}), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=$ $5.6,15.2 \mathrm{~Hz}), 4.08(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 5.60(\mathrm{dd}, 1 \mathrm{H}, J=2.4,5.6 \mathrm{~Hz})$, $6.21(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.99(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.14-7.29(\mathrm{~m}, 6 \mathrm{H})$, $7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,37.6,48.3,58.0,123.1,123.9,127.3,127.5,127.6,127.8$, $128.5,129.5,130.1,137.4,138.8,142.6,143.7,143.8 ;$
IR (thin film) $\mathrm{cm}^{-1} 3066 \mathrm{w}, 3032 \mathrm{w}, 2929 \mathrm{w}, 2361 \mathrm{~m}, 1598 \mathrm{~m}, 1495 \mathrm{~m}, 1456 \mathrm{~m}, 1340 \mathrm{~s}, 1210 \mathrm{w}, 1161 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $364.2(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S} 386.1186$, found 386.1197.

8
Amidobenzocyclobutane $8(13.7 \mathrm{mg}, 0.035 \mathrm{mmol})$ was isolated in 63% yield from enamide $7(17.4 \mathrm{mg}, 0.055 \mathrm{mmol})$ according to the general procedure.

8: $R_{f}=0.45$ [1:4 EtOAc/hexanes]; white solid; mp $163-164{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.81(\mathrm{dd}, 1 \mathrm{H}, J=1.6,14.8 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=5.2,14.8 \mathrm{~Hz})$,
$4.22(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.41(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 5.60(\mathrm{dd}, 1 \mathrm{H}, J=1.6,5.2 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 4 \mathrm{H})$, $8.05(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.38(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 37.9,48.7,57.9,123.4,123.8,124.6,127.7,127.9,127.9,128.6$, 128.7, 130.0, 137.5, 142.3, 142.9, 146.4, 150.3;

IR (thin film) $\mathrm{cm}^{-1} 3070 \mathrm{w}, 2928 \mathrm{w}, 2360 \mathrm{~m}, 1606 \mathrm{w}, 1530 \mathrm{~s}, 1496 \mathrm{w}, 1455 \mathrm{w}, 1401 \mathrm{w}, 1350 \mathrm{~s}, 1313 \mathrm{~m}$, 1210w, 1167s;
mass spectrum (APCI): m/e (\% relative intensity) $395.1(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}$ 417.0880, found 417.0876.

10
Amidobenzocyclobutane $10(15.6 \mathrm{mg}, 0.066 \mathrm{mmol})$ was isolated in 63% yield from enamide $9(17.0 \mathrm{mg}, 0.105 \mathrm{mmol})$ according to the general procedure.

10: $R_{f}=0.17$ [1:4 EtOAc/hexanes]; white solid; mp 69-72 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87$ (br. s, 3 H), $3.03(\mathrm{dd}, 1 \mathrm{H}, J=2.8,14.4 \mathrm{~Hz}), 3.60(\mathrm{dd}, 1 \mathrm{H}, J=$ $5.2,14.4 \mathrm{~Hz}$), 6.16 (br. s, 1H), $6.89(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.06-7.11(\mathrm{~m}$, $3 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.24-7.32(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.5,38.0,55.7,123.1,123.6,127.2,128.9,129.4,129.5,140.2$, 142.6, 145.0, 170.9;

IR (thin film) $\mathrm{cm}^{-1} 3066 \mathrm{~m}, 2930 \mathrm{~m}, 2361 \mathrm{~s}, 1772 \mathrm{w}, 1654 \mathrm{~s}, 1594 \mathrm{~m}, 1494 \mathrm{~m}, 1382 \mathrm{~s}, 1307 \mathrm{~s}, 1263 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) $238.1(100)(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI, m/e) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}$ 260.1046, found 260.1053.

Amidobenzocyclobutane 12a ($21.0 \mathrm{mg}, 0.067 \mathrm{mmol}$) was isolated in 100% yield from enamide $11 \mathbf{a}(16.0 \mathrm{mg}, 0.067 \mathrm{mmol})$ according to the general procedure.

12a: $R_{f}=0.55$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.19(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dddd}, 1 \mathrm{H}, J=4.0,8.0,13.0,17.0 \mathrm{~Hz}), 1.91$ (dd, 2H, $J=4.0,8.0 \mathrm{~Hz}$), $2.48(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{ddd}, 1 \mathrm{H}, J=3.5,8.5,12.0 \mathrm{~Hz}), 3.48(\mathrm{ddd}, 1 \mathrm{H}, J=$ $0.5,9.0,17.0 \mathrm{~Hz}), 3.98(\mathrm{dd}, 1 \mathrm{H}, J=4.5,9.0 \mathrm{~Hz}), 5.31(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=7.5$
$\mathrm{Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.24(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,21.9,24.1,41.5,44.8,55.7,122.7,123.9,127.7,127.9$, 129.5, 130.1, 136.7, 143.6, 145.3, 146.0;

IR (neat) $\mathrm{cm}^{-1} 2926 \mathrm{w}, 2258 \mathrm{w}, 1741 \mathrm{w}, 1600 \mathrm{w}, 1456 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) $314(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S} 314.1210$, found 314.1206.

Amidobenzocyclobutane 12b ($22.4 \mathrm{mg}, 0.075 \mathrm{mmol}$) was isolated in 100% yield from enamide 11b ($16.7 \mathrm{mg}, 0.075 \mathrm{mmol}$) according to the general procedure.

12b: $R_{f}=0.45$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.62-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dd}, 1 \mathrm{H}, J=6.0,13.0 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, 2.99 (ddd, 1H, $J=6.0,11.5,17.0 \mathrm{~Hz}$), $3.77(\mathrm{dd}, 1 \mathrm{H}, J=8.0,11.0 \mathrm{~Hz}), 4.11(\mathrm{dd}, 1 \mathrm{H}, J=4.0,8.0$ $\mathrm{Hz}), 5.40(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,28.4,47.0,50.0,63.5,122.3,124.0,127.6,128.5,129.8$, 130.0, 137.5, 142.4, 143.7, 145.2;

IR (neat) $\mathrm{cm}^{-1} 2938 \mathrm{w}, 2361 \mathrm{w}, 1598 \mathrm{w}, 1457 \mathrm{w}$;
mass spectrum (APCI): m/e (\% relative intensity) $300(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S} 300.1053$, found 300.1067.

14a
Amidobenzocyclobutane $\mathbf{1 4 a}(17.1 \mathrm{mg}, 0.090 \mathrm{mmol})$ was isolated in 62% yield from enamide $\mathbf{1 3 a}(14.5 \mathrm{mg}, 0.128 \mathrm{mmol})$ according to the general procedure.

14a: $R_{f}=0.29$ [2:3 EtOAc/hexanes]; yellow solid; mp $81-83{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.24(\mathrm{dd}, 1 \mathrm{H}, J=2.4,14.4 \mathrm{~Hz}$), 3.44 (ddd, $1 \mathrm{H}, J=7.6,8.4,8.4$ Hz), 3.49 (ddd, $1 \mathrm{H}, J=7.6,8.4,8.4 \mathrm{~Hz}$), $3.62(\mathrm{dd}, 1 \mathrm{H}, J=4.8,14.4 \mathrm{~Hz}$), 4.35 (dd, $2 \mathrm{H}, J=8.4$, $8.4 \mathrm{~Hz}), 5.57(\mathrm{dd}, 1 \mathrm{H}, J=2.4,4.8 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.26(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.32$ (t, 1H, J = 7.6 Hz);
${ }^{13}{ }^{1} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.7,41.4,53.8,62.3,123.4,123.5,127.8,129.8,142.8,143.5$, 158.0;

IR (thin film) $\mathrm{cm}^{-1} 2929 \mathrm{w}, 2361 \mathrm{w}, 1735 \mathrm{~s}, 1637 \mathrm{~m}, 1482 \mathrm{~m}, 1457 \mathrm{~m}, 1418 \mathrm{~s}, 1268 \mathrm{~s}, 1240 \mathrm{~s}$;
mass spectrum (APCI): m/e (\% relative intensity) $190.1(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}$ 190.0863, found 190.0869.

14b

Amidobenzocyclobutane $\mathbf{1 4 b}$ ($14.5 \mathrm{mg}, 0.055 \mathrm{mmol}$) was isolated in 55% yield, $2: 1 \mathrm{dr}$ from enamide $\mathbf{1 3 b}(18.9 \mathrm{mg}, 0.10 \mathrm{mmol})$ according to the general procedure.

14b: $R_{f}=0.23$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.50(\mathrm{dd}, 1 \mathrm{H}, J=2.5,14.0 \mathrm{~Hz}$, major), $3.23(\mathrm{dd}, 1 \mathrm{H}, J=5.0,14.5$ Hz , major), 3.39 (dd, $1 \mathrm{H}, J=2.5,14.0 \mathrm{~Hz}$, minor), 3.59 (dd, $1 \mathrm{H}, J=4.5,14.0 \mathrm{~Hz}$, minor), 4.17 (dd, $1 \mathrm{H}, J=5.0,8.5 \mathrm{~Hz}$, minor), $4.23(\mathrm{dd}, 1 \mathrm{H}, J=6.0,9.0 \mathrm{~Hz}$, major), $4.65(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$, major and minor), $4.75(\mathrm{dd}, 1 \mathrm{H}, J=5.5,9.0 \mathrm{~Hz}$, major and minor), $5.42(\mathrm{dd}, 1 \mathrm{H}, J=2.5,5.0 \mathrm{~Hz}$, minor), 5.49 (dd, 1H, $J=2.5,5.0 \mathrm{~Hz}$, major), 6.15 (d, 1H, $J=7.5 \mathrm{~Hz}$, minor), 6.81-6.87 (m, 1H, minor and major), 7.00-7.31 (m, 8H, major and minor);
IR (neat) $\mathrm{cm}^{-1} 3483 \mathrm{w}, 2919 \mathrm{w}, 2360 \mathrm{w}, 2250 \mathrm{w}, 1741 \mathrm{~s}, 1458 \mathrm{~m}, 1407 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) $266(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}$ 266.1176, found 266.1177.

14 c
Amidobenzocyclobutane $14 \mathrm{c}(25.5 \mathrm{mg}, 0.091 \mathrm{mmol})$ was isolated in 55% yield, $1: 1 \mathrm{dr}$ from enamide 13c ($20.3 \mathrm{mg}, 0.10 \mathrm{mmol}$) according to the general procedure.

14c: $R_{f}=0.20$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.56-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, 0.5 \mathrm{H}, J=3.5,13.5 \mathrm{~Hz}), 2.97$ (dd, $0.5 \mathrm{H}, J=3.0,13.5 \mathrm{~Hz}), 3.28(\mathrm{dd}, 0.5 \mathrm{H}, J=2.0,14.5 \mathrm{~Hz}), 3.48(\mathrm{dd}, 0.5 \mathrm{H}, J=2.5,15.0 \mathrm{~Hz}), 3.66$ (dd, $0.5 \mathrm{H}, J=5.0,14.5 \mathrm{~Hz}), 3.77(\mathrm{dd}, 0.5 \mathrm{H}, J=5.0,14.5 \mathrm{~Hz}), 4.01-4.15(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{dd}$, $0.5 \mathrm{H}, J=2.5,5.0 \mathrm{~Hz}), 5.57(\mathrm{dd}, 1 \mathrm{H}, J=2.5,5.0 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 7.01(\mathrm{~d}, 1 \mathrm{H}, J=$
7.0 Hz), 7.18-7.41 (m, 7H);

IR (neat) $\mathrm{cm}^{-1} 2933 \mathrm{w}, 2361 \mathrm{w}, 1744 \mathrm{~s}, 1455 \mathrm{w}, 1411 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) $280(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}$ 280.1333, found 280.1320 .

14d
Amidobenzocyclobutane $14 \mathrm{~d}(14.7 \mathrm{mg}, 0.064 \mathrm{mmol})$ was isolated in 64% yield, $1: 1 \mathrm{dr}$ from enamide 13d ($15.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) according to the general procedure.

14d: $R_{f}=0.18$ [1:4 EtOAc/hexanes]; yellow oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.71(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.63(\mathrm{dqq}, 1 \mathrm{H}, J=3.2,7.2,7.2 \mathrm{~Hz}), 1.80(\mathrm{dqq}, 1 \mathrm{H}, J=3.2,7.2$, $7.2 \mathrm{~Hz}), 3.24(\mathrm{dd}, 1 \mathrm{H}, J=2.8,14.4 \mathrm{~Hz}), 3.45(\mathrm{dd}, 1 \mathrm{H}, J=2.8,14.4 \mathrm{~Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=5.2$, $14.4 \mathrm{~Hz}), 3.65(\mathrm{dd}, 1 \mathrm{H}, J=5.2,14.4 \mathrm{~Hz}$), 3.82 (ddd, $1 \mathrm{H}, J=3.6,4.4,9.2 \mathrm{~Hz}$), 3.89 (ddd, $1 \mathrm{H}, J=$ $3.6,4.4,8.8 \mathrm{~Hz}), 4.09-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.24(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.42(\mathrm{dd}$, $1 \mathrm{H}, J=2.4,5.2 \mathrm{~Hz}$), 5.47 (dd, 1H, $J=2.4,5.2 \mathrm{~Hz}$), 7.12-7.35 (m, 8H);
IR (thin film) $\mathrm{cm}^{-1} 2963 \mathrm{~m}, 2361 \mathrm{w}, 1727 \mathrm{~s}, 1469 \mathrm{~m}, 1458 \mathrm{~m}, 1414 \mathrm{~s}, 1306 \mathrm{w}, 1254 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) $232.1(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2} 232.1333$, found 232.1338 .

14e
Amidobenzocyclobutane $\mathbf{1 4 e}(19.8 \mathrm{mg}, 0.058 \mathrm{mmol})$ was isolated in 77% yield, $1: 1 \mathrm{dr}$ from enamide $\mathbf{1 3 e}(19.9 \mathrm{mg}, 0.075 \mathrm{mmol})$ according to the general procedure.

14e: $R_{f}=0.32$ [25\% EtOAc/hexanes]; white solid; mp
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.78(\mathrm{dd}, 0.5 \mathrm{H}, J=2.5,14.5 \mathrm{~Hz}), 3.29(\mathrm{dd}, 0.5 \mathrm{H}, J=5.5,14.5$ $\mathrm{Hz}), 3.43(\mathrm{dd}, 0.5 \mathrm{H}, J=1.5,14.5 \mathrm{~Hz}), 3.72(\mathrm{dd}, 0.5 \mathrm{H}, J=5.0,14.5 \mathrm{~Hz}), 4.93(\mathrm{~d}, 0.5 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 5.00(\mathrm{~d}, 0.5 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.39(\mathrm{dd}, 0.5 \mathrm{H}, J=2.0,4.5 \mathrm{~Hz}), 5.54(\mathrm{dd}, 0.5 \mathrm{H}, J=2.0,5.0 \mathrm{~Hz})$, $5.85(\mathrm{~d}, 0.5 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.91(\mathrm{~d}, 0.5 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.15(\mathrm{~d}, 0.5 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.87-6.93(\mathrm{~m}$, $2 \mathrm{H}), 6.98-7.10(\mathrm{~m}, 9 \mathrm{H}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H})$;
IR (neat) $\mathrm{cm}^{-1} 2919 \mathrm{w}, 2361 \mathrm{~m}, 1746 \mathrm{~s}, 1456 \mathrm{~m}, 1404 \mathrm{~m}, 1351 \mathrm{w}$;
mass spectrum (APCI): m/e (\% relative intensity) $342(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{2}$ 364.1308, found 364.1292.

General Procedure for Tandem [2 + 2]-[4 + 2] Cycloadditions.

To an oven-dried screw-cap vial fitted with magnetic stir bar was added enamide (1.0 equiv), CsF (4.0 equiv) and anhyd 1,4-dioxane (conc $=0.05 \mathrm{M}$). Ortho-(trimethylsilyl)phenyl triflate (3.0 equiv) was added dropwise via gastight syringe and the vial was heated at $110{ }^{\circ} \mathrm{C}$ overnight. Upon completion of the reaction, the solution was cooled to RT, filtered through a plug of Celite ${ }^{\mathrm{TM}}$ and rinsed with EtOAc, and solvent was removed in vacuo to afford a crude product. Purification of the resulting crude residue via silica gel flash column chromatography (gradient eluent: EtOAc in hexane) afforded the desired cycloadduct.

Characterizations.

Aza-tricycle 19 ($22.2 \mathrm{mg}, 0.065 \mathrm{mmol}$) was isolated in 98% yield from enamide 15 (17.5 $\mathrm{mg}, 0.066 \mathrm{mmol}$) according to the general procedure.

19: $R_{f}=0.50$ [1:4 EtOAc/hexanes]; white solid; mp $180^{\circ} \mathrm{C}$ (decomp);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.83-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=2.0,14.5$ $\mathrm{Hz}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.16(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}) ;$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,23.8,24.4,24.6,27.6,32.7,41.1,56.5,126.8,127.1,127.2$, $127.5,129.1,130.0,134.1,137.2,139.4,143.2$;
IR (thin film) $\mathrm{cm}^{-1} 3061 \mathrm{w}, 2927 \mathrm{w}, 2859 \mathrm{w}, 2361 \mathrm{~m}, 2342 \mathrm{~m}, 1598 \mathrm{w}, 1491 \mathrm{w}, 1453 \mathrm{w}, 1374 \mathrm{~m}$, 1335w;
mass spectrum (APCI): m/e (\% relative intensity) $342.2(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S} 342.1523$, found 342.1518.

22
Aza-tricycle 22 ($12.0 \mathrm{mg}, 0.037 \mathrm{mmol}$) was isolated in 66% yield from enamide $\mathbf{2 0}$ (14.0 $\mathrm{mg}, 0.056 \mathrm{mmol}$) according to the general procedure.

22: $R_{f}=0.20$ [1:9 EtOAc/hexanes]; white solid; mp 127-129 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $2.05(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{ddd}, 1 \mathrm{H}, J=5.2,5.2,16.0 \mathrm{~Hz}$), 2.73 (ddd, 1H, 5.2, 9.6, 16.0 $\mathrm{Hz}), 3.29-3.42(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.17(\mathrm{t}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 7.27(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.78(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.6 Hz);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,24.4,25.9,29.1,37.3,48.1,60.8,126.9,127.2,127.9$, $128.0,130.0,130.0,135.5,135.9,136.8,143.7$;
IR (thin film) $\mathrm{cm}^{-1} 3059 \mathrm{w}, 2931 \mathrm{~m}, 2361 \mathrm{w}, 1922 \mathrm{w}, 1597 \mathrm{w}, 1492 \mathrm{~m}, 1455 \mathrm{~m}, 1339 \mathrm{~s}, 1204 \mathrm{~m}, 1156 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $328.1(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S} 350.1186$, found 350.1189.

26a
Aza-tricycle 26a ($13.3 \mathrm{mg}, 0.032 \mathrm{mmol}$) was isolated in 64% yield from enamide 23a $(17.0 \mathrm{mg}, 0.050 \mathrm{mmol})$ according to the general procedure.

26a: $R_{f}=0.55$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.18-1.38(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{bd}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 1.69-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, 1 \mathrm{H}, J$ $=2.0,12.5 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.05-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.44(\mathrm{dd}$, $1 \mathrm{H}, J=2.0,8.5 \mathrm{~Hz}), 7.83(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 14.4,18.8,21.8,223.0,24.2,26.8,32.2,33.2,36.6,37.3,41.7$, 58.1, 126.9, 127.2, 127.3, 129.1, 130.0, 134.1, 137.3, 139.4, 143.2;

IR (neat) $\mathrm{cm}^{-1} 2930 \mathrm{~m}, 2361 \mathrm{~m}, 1453 \mathrm{w}$;
mass spectrum (APCI): m/e (\% relative intensity) $412(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S} 412.2227$, found 412.2233.

26b
Aza-tricycle 26b ($13.3 \mathrm{mg}, 0.032 \mathrm{mmol}$) was isolated in 64% yield from enamide 23b $(17.0 \mathrm{mg}, 0.050 \mathrm{mmol})$ according to the general procedure.

26b: $R_{f}=0.48$ [25\% EtOAc/hexanes]; colorless oil;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.07-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.91(\mathrm{ddd}, 1 \mathrm{H}, J=6.0,9.0,12.5 \mathrm{~Hz}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.76(\mathrm{dt}, 1 \mathrm{H}, J=2.5,15.5 \mathrm{~Hz}), 2.93(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 3.22-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.0 \mathrm{~Hz}), 5.44(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.16-7.34(\mathrm{~m}, 10 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.85(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 19.0,21.8,24.1,29.3,39.8,41.5,43.2,58.3,126.8,127.3,127.3$, $127.5,127.6,127.8,127.8,128.7,129.4,130.1,130.1,133.6,136.6,139.3,142.8,143.4 ;$
IR (neat) $\mathrm{cm}^{-1} 3028 \mathrm{w}, 2929 \mathrm{~m}, 2361 \mathrm{w}, 1599 \mathrm{~m}, 1495 \mathrm{~m}, 1452 \mathrm{~m}$;
mass spectrum (APCI): m/e (\% relative intensity) 418 (100) (M+H) ${ }^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S} 440.1655$, found 440.1669 .

Aza-tetracycle $28(8.30 \mathrm{mg}, 0.022 \mathrm{mmol})$ was isolated in 31% yield from enamide 27 $(21.7 \mathrm{mg}, 0.071 \mathrm{mmol})$ according to the general procedure.

28: $R_{f}=0.47$ [1:4 EtOAc/hexanes]; white residue;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.73(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,8.0,13.5 \mathrm{~Hz}), 0.81(\mathrm{~d}, 1 \mathrm{H}, J=13.5 \mathrm{~Hz})$, $1.16-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{ddd}, 1 \mathrm{H}, J=4.5,4.5,13.0 \mathrm{~Hz}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}$, $1 \mathrm{H}), 2.15(\mathrm{ddd}, 1 \mathrm{H}, J=9.5,9.5,12.5 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=6.0,17.5$ $\mathrm{Hz}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 3.26(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $7.17(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.27(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.8,23.3,25.9,30.3,33.1,34.0,34.9,38.1,45.4,45.5,61.3$, $126.9,127.3,128.1,128.9,129.8,131.4,134.5,135.9,136.0,143.6 ;$
IR (neat) $\mathrm{cm}^{-1} 2981 \mathrm{~m}, 2932 \mathrm{~m}, 2887 \mathrm{~m}, 1917 \mathrm{w}, 1654 \mathrm{w}, 1598 \mathrm{w}, 1493 \mathrm{~m}, 1473 \mathrm{~m}, 1381 \mathrm{~m}, 1341 \mathrm{~s}$, 1159s;
mass spectrum (APCI): m/e (\% relative intensity) $382.2(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S} 404.1655$, found 404.1670.

34
$34(21.2 \mathrm{mg}, 0.070 \mathrm{mmol})$ was isolated in 81% yield from enamide $31(19.6 \mathrm{mg}, 0.087$ mmol) according to the general procedure.

34: $R_{f}=0.44[2: 3 \mathrm{EtOAc} /$ hexanes $] ;[\alpha]{ }_{\mathrm{D}}{ }^{23}=-68.9^{\circ}\left[\mathrm{c} 0.0133 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$] yellow oil;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.90(\mathrm{ddd}, 1 \mathrm{H}, J=8.5,10.5,11.5 \mathrm{~Hz})$, $2.04(\mathrm{dd}, 1 \mathrm{H}, J=5.5,13.0 \mathrm{~Hz}), 2.43(\mathrm{td}, 1 \mathrm{H}, J=3.5,12.0 \mathrm{~Hz}), 2.82(\mathrm{dd}, 1 \mathrm{H}, J=12.5,15.0 \mathrm{~Hz})$, $2.95(\mathrm{dd}, 1 \mathrm{H}, J=3.5,15.0 \mathrm{~Hz}), 3.11(\mathrm{ddd}, 1 \mathrm{H}, J=8.5,8.5,11.5 \mathrm{~Hz}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, 2 \mathrm{H}$, $7.5 \mathrm{~Hz}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{td}, 1 \mathrm{H}, J=1.5,8.0 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.6,32.6,36.7,42.2,43.5,57.2,58.5,61.3,67.4,127.6,127.7$, 128.0, 129.8, 134.9, 135.0, 162.7, 174.6;

IR (thin film) $\mathrm{cm}^{-1} 3065 \mathrm{w}, 2981 \mathrm{~m}, 2908 \mathrm{~m}, 2361 \mathrm{w}, 1749 \mathrm{~s}, 1726 \mathrm{~s}, 1507 \mathrm{~m}, 1456 \mathrm{~m}, 1392 \mathrm{~s}, 1321 \mathrm{~m}$, 1235s, 1176s;
mass spectrum (APCI): m/e (\% relative intensity) $302.1(100)(\mathrm{M}+\mathrm{H})^{+}$;
HRMS (ESI, m/e) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4}$ 324.1207, found 324.1208.
References.

[^0]
[^0]: ${ }^{\text {i }}$ Vogel, J. C.; Butler, R.; Procter, D. J. Tetrahedron 2008, 64, 11876.
 ${ }^{\text {ii }}$ Marcotullio, M. C.; Campagna, V.; Sternativo, S.; Costantino, F.; Curini, M. Synthesis, 2006, 2760.
 ${ }^{\text {iii }}$ Gaulon, C.; Gizecki, P.; Dhal, R.; Dujardin, G. Synlett, 2002, 952.
 ${ }^{\text {iv }}$ Gaulon, C.; Dhal, R.; Dujardin, G. Synthesis, 2003, 2269.
 ${ }^{v}$ Brice, J. L.; Meerdink, J. E.; Stahl, S. S. Org. Lett. 2004, 6, 1845.
 ${ }^{\text {vi }}$ Akiba, T.; Tamura, O.; Terashima, S. Organic Syntheses 1998, 75, 45.
 vii Kinderman, S. S.; van Maarseveen, J. H.; Shoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. Org. Lett. 2001, 3, 2045.
 ${ }^{\text {viii }}$ Kiguchi, T.; Okazaki, M.; Naito, T. Heterocycles, 1999, 51, 2711.
 ${ }^{\text {ix }}$ Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.

