Determination of basic strength of aliphatic amines through ion pair formation in some ionic liquid solutions

Francesca D'Anna * Paola Vitale and Renato Noto*

Dipartimento di Chimica Organica "E. Paternò", Università degli Studi di Palermo, Viale delle

Scienze-Parco d'Orleans II, 90128 Palermo, Italy

Figure 3. Uv-vis spectra as a function of the time for $[bmi_2im][NTf_2]/p$ -nitrophenol/diisopropylamine (0.01 M). Page 2

Figure 4. ¹H NMR spectra of: (a) neat $[bm_2im][NTf_2]$. (b) $[bm_2im][NTf_2]$ (500 µL) and 1,4-dioxane (75 µL). (c) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (25 µL) and *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane). (d) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (25 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane) and diisopropylamine (25 µL, 0.01 M in 1,4-dioxane). Pages 2-4

Figure 5. RLS spectra for: (a) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (25 µL) and *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane). (b) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (50 µL), and butylamine (25 µL, 0.01 M in 1,4-dioxane). (c) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (50 µL), and pyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (d) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (50 µL), and methylpyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (e) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and butylamine (25 µL, 0.01 M in 1,4-dioxane). (f) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL), *p*-nitrophe

Figure 3. Uv-vis spectra as a function of the time for [bmi₂im][NTf₂]/p-nitrophenol/diisopropylamine (0.01 M).

Figure 4. ¹H NMR spectra of: (a) neat $[bm_2im][NTf_2]$. (b) $[bm_2im][NTf_2]$ (500 µL) and 1,4-dioxane (75 µL). (c) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (25 µL) and *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane). (d) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (25 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane) and diisopropylamine (25 µL, 0.01 M in 1,4-dioxane).

Figure 5. RLS spectra for: (a) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (25 µL) and *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane). (b) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (50 µL), and butylamine (25 µL, 0.01 M in 1,4-dioxane). (c) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (50 µL), and pyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (d) $[bm_2im][NTf_2]$ (500 µL), 1,4-dioxane (50 µL), and methylpyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (e) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and butylamine (25 µL, 0.01 M in 1,4-dioxane). (f) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and pyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (g) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and pyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (g) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and pyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (g) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and pyrrolidine (25 µL, 0.01 M in 1,4-dioxane). (g) $[bm_2im][NTf_2]$ (500 µL), *p*-nitrophenol (50 µL, 2·10⁻³ M in 1,4-dioxane), and methylpyrrolidine (25 µL, 0.01 M in 1,4-dioxane).