Exploring Symmetry-Based Logic for a Synthesis of Palau'amine

Qingyi Li, Paul Hurley, Hui Ding, Andrew G. Roberts, Radha Akella and Patrick G. Harran*

Department of Chemistry and Biochemistry
University of California Los Angeles
607 Charles E. Young Drive East
Los Angeles, CA 90095-1569
And
Department of Biochemistry
University of Texas Southwestern Medical Center at Dallas
5323 Harry Hines Blvd
Dallas, Texas 75390-9038

SUPPORTING INFORMATION

Experimental

Unless stated otherwise, reactions were performed under an argon atmosphere in flame-dried glassware. Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$, benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were passed through Glass Contour solvent drying systems prior to use. Chemical reagents were obtained from commercial sources and used without further purification. Column chromatography was performed on silica gel 60 (240-400 mesh). Thin layer chromatography and preparative layer chromatography utilized pre-coated plates (silica gel $60 \mathrm{PF} 254,0.25 \mathrm{~mm}$ or 0.5 mm).

o-Xylylene diamine (B)

To a solution of o-xylylene dibromide ($100 \mathrm{~g}, 378 \mathrm{mmol}$) in THF (1.3 L), EtOH (1 L) and $\mathrm{H}_{2} \mathrm{O}(0.33$ L) was added $\mathrm{NaN}_{3}(53.7 \mathrm{~g}, 826 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.33 \mathrm{~L})$. The solution was heated at reflux for 1 h . After cooling to $\mathrm{rt}, \mathrm{PPh}_{3}(248 \mathrm{~g}, 947 \mathrm{mmol})$ was added in small portions. When the evolution of $\mathrm{N}_{2}(\mathrm{~g})$ ceased, the solution was heated at reflux for 2 h . Upon cooling to rt and standing overnight, needle shaped crystals had formed, which partially dissolved with the addition of $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. Solid NaOH was added to the aqueous solution until a pink oily layer appeared. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The slightly pink oil obtained was used without further purification.

2, 5-Dihydro-3-(methylthio)-1H-2,4-benzodiazepine hydroiodide (9)

These procedures were carried out as described in Elslager, E.; Worth, D. F.; Haley, N. F.; Perricone, S. C. J. Heterocycl. Chem. 1968, 5, 609-613.

Methyl 5-bromo-2-oxopentanoate (7)

A solution of lactone C ($46.6 \mathrm{~g}, 249 \mathrm{mmol}$ - prepared according to Cushman, M.; Gerhardt, S.; Huber, R.; Fischer, M.; Kis, K.; and Bacher, A. J. Org. Chem. 2002, 67, 5807-5816. Note: the EtOH used was freshly distilled from Mg turnings) in $30 \% \mathrm{HBr} / \mathrm{AcOH}\left(150 \mathrm{~mL}\right.$) was heated at $110^{\circ} \mathrm{C}$ for 2 h . An additional 100 mL of $30 \% \mathrm{HBr} / \mathrm{HOAc}$ was added and the reaction maintained at $110^{\circ} \mathrm{C}$ for 14 h . The mixture was concentrated in vacuo to afford a brown oil that was dissolved in 250 mL MeOH . Concentrated aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ was added and the solution stirred at rt for 14 h . The reaction was concentrated and the incipient residue dissolved in $\mathrm{Et}_{2} \mathrm{O}$. Saturated aqueous NaHCO_{3} was carefully added until gas evolution ceased. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo provided a brown oil that was used without further purification.

Methyl-1,4,5,6-tetrahydro-3-pyridazinecarboxylate (D)

16
Hydrazine hydrate (20.4 g , 398 mmol) was dissolved in a mixture of $\mathrm{MeOH}(300 \mathrm{~mL})$ and water (37.5 mL). Glacial $\mathrm{AcOH}(7 \mathrm{~mL})$ was added and the solution cooled in an ice-bath. A solution of crude 7 in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added over 30 min wherein a white precipitate formed. The ice-bath was removed wherein the solids dissolved. The pH of the mixture was maintained between 4 and 7 with $3 \mathrm{M} \mathrm{aq} \mathrm{K}_{2} \mathrm{CO}_{3}$. After the pH had stabilized at rt , the reaction was immersed into an oil-bath pre-heated to $60^{\circ} \mathrm{C}$ and 3 M aq $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used to adjust the pH to ~ 5. The reaction was heated at $60^{\circ} \mathrm{C}$ for 1 h at which time the pH was 6. After removing MeOH in vacuo, the residue was dissolved in a minimum amount of water and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford a solid that was recrystallized from EtOAc to afford 16 ($42.5 \mathrm{~g}, 81 \%$).

16: colorless crystals [m.p. $72{ }^{\circ} \mathrm{C}$]; $\mathrm{R}_{\mathrm{f}}=0.5\left(2: 3 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film): 3200, 2957, 1694, 1588, 1442, 1303, 1237, 1190, 115, $972,743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.1-5.9$ (bs, 1 H), 3.78 (s, 3 H), 3.23 (t, 2H, $J=5.2 \mathrm{~Hz}$), $2.45\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}\right.$), 2.02-1.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8$, 132.0, 52.1, 41.9, 21.2, 17.6. MS (positive electrospray) calcd for $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$: 143.07; found: 143.06.

Methyl-1-allyl-1,4,5,6-tetrahydro-3-pyridazinecarboxylate (E)

E
A solution of $16(5.2 \mathrm{~g}, 35.9 \mathrm{mmol})$ in THF (180 mL) was cooled to $-30{ }^{\circ} \mathrm{C}$. KHMDS (0.5 M in toluene, 73.3 mL) was added over 5 min . The reaction was stirred for 10 min before adding allyl bromide ($3.8 \mathrm{~mL}, 43.2 \mathrm{mmol}$). The reaction was stirred at $-25^{\circ} \mathrm{C}$ for 1 h , quenched with MeOH , warmed to rt , and filtered through a pad of Celite. Concentration in vacuo followed by flash chromatography on silica gel (3:7 EtOAc/hexanes) afforded $\mathbf{E}(5.88 \mathrm{~g}, 90 \%)$ as colorless solid.
$\mathbf{E}: \mathrm{R}_{\mathrm{f}}=0.5$ (1:1 EtOAc/Hexanes); IR (film): 3079, 2925, 2844, 1700, 1562, 1439, 1261, 1108, 983, 744 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.88-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{tdd}, 2 \mathrm{H}, \mathrm{J}=6.2,10.1,16.5 \mathrm{~Hz}$), 4.01-3.95 $(\mathrm{m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.98-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (ロाप MHz, CDCl_{3}): $\delta 165.4,133.5,129.5,118.1,61.3,51.7,44.6,20.3,17.6$. MS (positive electrospray) calcd for $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$: 183.11; found: 183.11.

1-Allyl-1,4,5,6-tetrahydro-3-pyridazinecarboxylic acid (8)

Solid LiOH ($0.78 \mathrm{~g}, 32.7 \mathrm{mmol}$) was added to a solution of ester $\mathbf{E}(5.4 \mathrm{~g}, 29.7 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} / 15 \mathrm{~mL} / 20 \mathrm{~mL})$. The resultant solution was stirred at rt for 3 h and then neutralized with 10% aq citric acid. The solvents were removed in vacuo and the residue dissolved in EtOAc. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude acid was pure by ${ }^{1} \mathrm{H}$ NMR and was used in the next step without purification.

Heterocycle 11

9

11

TBTU ($0.27 \mathrm{~g}, 0.84 \mathrm{mmol}$) was added to a portion of crude $8(0.14 \mathrm{~g}, 0.94 \mathrm{mmol})$ and $9(0.3 \mathrm{~g}, 0.94$ mmol) in DMF (4.5 mL). i- $\mathrm{Pr}_{2} \mathrm{NEt}(0.44 \mathrm{~mL}, 2.51 \mathrm{mmol})$ was added and the resultant yellow solution stirred at rt for 2 h . The mixture was placed under house vacuum and heated at $70^{\circ} \mathrm{C}$ overnight. The residue was dissolved in 20 mL EtOAc and washed with saturated NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica gel chromatography (4:1 EtOAc/hexanes) provided 11 ($0.173 \mathrm{~g}, 71 \%$) as a light brown solid.

11: $\mathrm{R}_{\mathrm{f}}=0.45$ (2:3 EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film): 3411, 2947, 1734, 1620, 1451, 1409, 1180, 1013, 761, 667 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 7.40-7.25$ (m, 4H), 5.87 (tdd, $1 \mathrm{H}, J=6.7,10.2,17 \mathrm{~Hz}$), 5.7 (t, $1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=17.2 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 4.94,(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.33$ (d, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}$), $2.92(\mathrm{t}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.21(\mathrm{dd}, 2 \mathrm{H}, J=5.3,10.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 158.8,141.0,140.1,134.2,133.6,128.3,128.0,127.9,127.5,127.1,118.7,101.7,56.0,48.2,44.8,42.2$, 16.2. HRMS (ESI-TOF) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}+\mathrm{H}\right)^{+}$: 295.1553; found: 295. 1565.

Regioisomeric dimerization products 12, 13 and 14

11

12

14a (meso)

14b (\pm)

Procedure A: \mathbf{I}_{2} as oxidant

The THF used in this reaction was degassed via the freeze-pump-thaw method prior to use. Monomer $11(1.03 \mathrm{~g}, 3.51 \mathrm{mmol})$ was dissolved in THF (10 mL) and cooled to $-78^{\circ} \mathrm{C}$. This solution was added via cannulating needle to a flask containing KHMDS ($7.38 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene) at $-78^{\circ} \mathrm{C}$ and the resulting dark red mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. A solution of $\mathrm{I}_{2}(0.445 \mathrm{~g}, 1.76 \mathrm{mmol})$ in THF (0.5 mL) was then added and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The solvent was removed in vacuo and the residue purified by silica gel chromatography (4:1 EtOAc/hexanes) to afford 485 mg (47%) of α, α dimer 13 and 250 mg (24\%) of α, γ dimers 12.

13: light pink solid; $\mathrm{R}_{\mathrm{f}}=0.75$ (EtOAc); IR (film): 3412, 1743, 1671, 1394, 1371, 1287, 1154, 1064, 968, $741,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 7.42-7.18(\mathrm{~m}, 8 \mathrm{H}$), 5.97 (dd, $2 \mathrm{H}, J=4.0,9.9 \mathrm{~Hz}$), 5.79 (d, 2H, $J=9.9 \mathrm{~Hz}$), 5.62 (tdd, 2H, $J=6.2,10.3,12.3 \mathrm{~Hz}$), 5.07 (d, 2H, $J=17.2 \mathrm{~Hz}$), 4.92 (d, 2H, $J=10.3$ Hz), 4.90-4.49 (m, 8H), $3.80(\mathrm{~d}, 4 \mathrm{H}, J=5.8 \mathrm{~Hz}$), $3.50(\mathrm{~d}, 2 \mathrm{H}, J=16.8 \mathrm{~Hz}$), 2.87 (ddd, 2H, $J=1.3,5.0$, 16.6 Hz). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 170.2,168.3,147.4,140.9,135.5,135.3,129.4,128.7$, 128.6, 128.3, 128.0, 127.8, 123.4, 122.3, 117.6, 68.3, 62.6, 62.4, 58.4, 57.7, 49.4, 49.0, 44.6, 43.6. MS (Positive electrospray) calcd for $\left(\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$: 587.28; found: 587.25. Crystals of 13 suitable for Xray diffraction were grown from benzene (slow evaporation). Details of the crystallographic analysis are provided in a separate CIF file.
α, γ dimers 12: yellow solid; $\mathrm{R}_{\mathrm{f}}=0.3$ (EtOAc). Two diastereomers of this material were separated by preparative thin layer chromatography (1:19 MeOH/PhH).

Diastereomer 1: yellow crystals, $\mathrm{R}_{\mathrm{f}}=0.65$ (1:19 MeOH/PhH), IR (film): 3640, 2980, 1739, 1675, 1413, 1150, 820, 740, $558 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.40-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.05$ (ddd, $1 \mathrm{H}, \mathrm{J}=1.4,5.2$, 9.9 Hz), 5.92-5.78 (m, 2H), 5.68 (dddd, $1 \mathrm{H}, J=5.5,7.2,10.2,17.4 \mathrm{~Hz}$), $5.42(\mathrm{t}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}$), $5.24-5.03$ (m, 3H), $4.91(\mathrm{~s}, 2 \mathrm{H}), 4.90-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.78-4.61(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{tdd}, 1 \mathrm{H}, \mathrm{J}=1.5,5.3,13.8$ Hz), 3.78 (dd, $1 \mathrm{H}, J=7.2,13.8 \mathrm{~Hz}$), 3.69-3.50 (m, 1H), 3.48 (dd, 1H, $J=5.0,13.2 \mathrm{~Hz}$), 3.38-3.23 (m, 2 H), 3.11 (ddd, $1 \mathrm{H}, J=2.4,5.0,10.5 \mathrm{~Hz}$), 3.01-2.92 (m, 1H), 2.28-2.25 (m, 1H); HRMS (ESI-TOF) calcd for $\left(\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$: calcd: 587.2877; found: 587.2878. Crystals of this material suitable for X-ray diffraction were grown from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ (slow evaporation). Details of the crystallographic analysis are provided in a separate CIF file.

Diastereomer 2. Yellow solid, $\mathrm{R}_{\mathrm{f}}=0.60$ (1:19 MeOH/PhH), IR (film): 3640, 2980, 1739, 1675, 1413, 1150, 820, 740, $558 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.40-7.21$ (m, 8H), 6.08 (ddd, $1 \mathrm{H}, \mathrm{J}=1.5,5.2$, 9.9 Hz), 5.87-5.78 (m, 2H), 5.76-5.60 (m, 2H), 5.13-5.02 (m, 4H), 4.91 (s, 2H), 4.86-4.80 (m, 2H), 4.784.57 (m, 4H), 4.05-3.99 (m, 1H), 3.67 (ddd, 1H, $J=1.7,4.9,13.5 \mathrm{~Hz}$), 3.58-3.42 (m, 1H), 3.37-2.85 (m, $5 \mathrm{H})$, 2.28-2.12 (m, 1H). MS (positive electrospray) calcd for $\left(\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{2}+\mathrm{H}\right)^{+}$: 587.28; found: 587.25.

Procedure $\mathrm{B} . \mathrm{FeCl}_{2}(\mathrm{DMF})_{3} \mathrm{FeCl}_{4}$ as oxidant

The THF used in this reaction was degassed via the freeze-pump-thaw method prior to use. Monomer $11(0.150 \mathrm{~g}, 0.51 \mathrm{mmol})$ in THF (2.6 mL) was cooled to $-78^{\circ} \mathrm{C}$ and added via cannulating needle to a flask containing KHMDS ($1.12 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene) at $-78^{\circ} \mathrm{C}$. After stirring the resulting dark red mixture at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes, a solution of $\left[\mathrm{FeCl}_{2}(\mathrm{DMF})_{3}\right]\left[\mathrm{FeCl}_{4}\right](0.141 \mathrm{~g}, 0.26 \mathrm{mmol})$ in THF (0.4 mL) was added via syringe. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 hours. The reaction was quenched with pH 8.0 EDTA (3 mL). The majority of the solvent was removed in vacuo and the residue diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with pH 8.0 EDTA $(0.35 \mathrm{M}, 3 \mathrm{x} 10 \mathrm{~mL})$, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica gel chromatography (progression from 4:1 EtOAc/hexanes \rightarrow EtOAc \rightarrow 99:1 EtOAc/MeOH) to afford α, α dimer 13 ($16 \mathrm{mg}, 11 \%$), α, γ dimers 12 ($87 \mathrm{mg}, 55 \%$) and γ, γ dimers $\mathbf{1 4 a} / \mathbf{b}$ ($16 \mathrm{mg}, 11 \%$) as orange solids.
γ, γ dimers 14a/b; $\mathrm{R}_{\mathrm{f}}=0.2\left(3: 7 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{CHCl}_{3}\right)$; IR (film): 3400, 1669, 1456, 1404, 1181, $1066 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.25(\mathrm{~m}, 8 \mathrm{H}), 6.03-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.53(\mathrm{~m}, 2 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 4 \mathrm{H})$, 5.02-4.86 (m, 4H), 4.80-4.62 (m, 4H), 3.62-3.57 (m, 2H), 3.28-3.08 (m, 4H), 2.80-2.42 (m, 4H). ${ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7,141.2,140.9,134.0,133.2,129.1,128.9,128.8,128.7,120.0,119.9,102.4$, 101.8, 58.2, 58.1, 49.7, 49.3, 48.4, 29.2, 28.5. HRMS (ESI-TOF) calcd for $\left(\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{2}+\mathrm{H}\right)^{+}: 587.2877$; found: 587.2885.

Procedure C. $\mathrm{Cu}(\mathrm{OTf})_{2}$ as oxidant.

The THF used in this reaction was degassed via the freeze-pump-thaw method prior to use. Monomer $11(0.20 \mathrm{~g}, 0.68 \mathrm{mmol})$ was dissolved in THF (3.4 mL) and cooled to $-78^{\circ} \mathrm{C}$. This solution was added via cannulating needle to a flask containing KHMDS ($1.23 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene) at $-78^{\circ} \mathrm{C}$. After stirring the resulting dark red mixture at $-78^{\circ} \mathrm{C}$ for 30 min , a solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(0.177 \mathrm{~g}, 0.7 \mathrm{mmol})$ in THF $(0.7$ mL) was added via syringe. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 h and quenched with aq pH 8.0 EDTA $(0.35 M)$ solution (3 mL). The mixture was concentrated in vacuo and diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with aqueous pH 8.0 EDTA solution (3 x 10 mL), water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (progression from 4:1 EtOAc/Hexanes $\rightarrow \mathrm{EtOAc} \rightarrow 99: 1 \mathrm{EtOAc} / \mathrm{MeOH}$) to afford α, α dimer 13 (47 mg , 24%), α, γ dimers 12 ($73 \mathrm{mg}, 37 \%$) and γ, γ dimers $\mathbf{1 4 a} / \mathbf{b}$ ($50 \mathrm{mg}, 25 \%$) as orange solids.

Procedure D . Using $[i-\mathrm{PrCp}]_{2} \mathrm{TiCl}_{2}$ additive and $\mathrm{Cu}(\mathrm{OTf})_{2}$ as oxidant.

The THF used in this reaction was degassed via the freeze-pump-thaw method prior to use. KHMDS ($7.3 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene) was added dropwise to a solution of $\mathbf{1 1}(0.98 \mathrm{~g}, 3.33 \mathrm{mmol})$ in THF (18 mL) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was added to a solution of $[i-\mathrm{PrCp}]_{2} \mathrm{TiCl}_{2}$ $(1.2 \mathrm{~g}, 3.53 \mathrm{mmol})$ in THF (24 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h before being added to a solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(1.97 \mathrm{~g}, 5.39 \mathrm{mmol})$ in THF $(26.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 3.75 hours and quenched with aq pH 8.0 EDTA (0.35 M) solution (20 mL). The reaction mixture was concentrated in vacuo and diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with aqueous pH 8.0 EDTA solution ($3 \times 50 \mathrm{~mL}$), water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent in vacuo, the residue was purified by silica gel chromatography (gradient from EtOAc to 99:1 EtOAc/MeOH) to afford $\mathbf{1 4 a} / \mathbf{b}$ as an orange solid $(0.78 \mathrm{~g}, 80 \%)$.

4,5-Dibromo-1H-pyrrole-2-carboxylate ethyl ester (G)

Sodium ($0.66 \mathrm{~g}, 28.7 \mathrm{mmol}$) was dissolved in dry 180 mL EtOH. 2-(trichloroacetyl) pyrrole ($50 \mathrm{~g}, 235$ mmol) was added to the NaOEt solution over 10 minutes. The resultant dark red solution was stirred at rt for 40 min . The solvent was removed in vacuo and the residue diluted in $\mathrm{Et}_{2} \mathrm{O}$. The ether solution was washed with 3 N HCl . The black cotton-like solid was removed by filtration. The acidic aqueous washings were extracted with ether. The combined organic layers were washed the saturated NaHCO_{3}, dried over MgSO_{4}, filtered and concentrated in vacuo to give a light brown solid (32.1 g, 98\%) that was used without further purification.

The crude ester from the previous step was dissolved in glacial AcOH (1275 mL). A solution of bromine ($23.7 \mathrm{~mL}, 462 \mathrm{mmol}$) in $\mathrm{AcOH}(272 \mathrm{~mL}$) was added via addition funnel over 2 h . The resultant solution was stirred at rt for 3 h . Removal of acetic acid in vacuo provided a pink solid ($67.6 \mathrm{~g}, 99 \%$) that was used without further purification.

4,5-Dibromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrole-2-carboxylate ethyl ester (H)

$\mathrm{Et}_{3} \mathrm{~N}(38.4 \mathrm{~mL}, 274 \mathrm{mmol})$ was slowly added to a solution of $\mathbf{G}(67.6 \mathrm{~g}, 228 \mathrm{mmol})$ in THF (900 mL). The reaction was stirred at rt for 10 minutes and treated with SEM-Cl ($38.34 \mathrm{~g}, 230 \mathrm{mmol}$). The reaction was stirred at rt for 2 h . The mixture was concentrated and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford H as a brown oil ($94.4 \mathrm{~g}, 97 \%$). This material was used without further purification.

4,5-Dibromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrole-2-carboxylic acid (I)

A solution of $\mathrm{NaOH}(17.6 \mathrm{~g}, 439 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(218 \mathrm{~mL})$ was added to a solution of $\mathbf{H}(94.4 \mathrm{~g}, 221$ mmol) in THF/MeOH ($1000 \mathrm{~mL} / 70 \mathrm{~mL}$). The resulting solution was stirred at $65^{\circ} \mathrm{C}$ for 5 hours. The reaction was quenched with 10% aq citric acid. The solvents were removed in vacuo and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine. The organic layer was
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give I as an off white solid ($86.5 \mathrm{~g}, 98 \%$). This material was used without further purification.
I: IR (film): 3400, 1652, 1635, 1338, 1250, 1148, $667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21$ (s, 1H), $5.81(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 0.91(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 0.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75MHz, CDCl $)^{2}$: δ 164.3, 123.2, 122.7, 115.3, 101.1, 75.5, 66.3, 17.8, -1.5. MS (positive electrospray) for $\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{H}\right)^{+}$calcd: 399.93; found: 400.10.

Methyl 1-(4,5-dibromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrole-2-carbonyl)-1,4,5,6-tetra-hydropyridazine-3-carboxylate (J)

Oxalyl chloride ($20.3 \mathrm{~mL}, 236 \mathrm{mmol}$) was added to a solution of acid $\mathbf{I}(47.1 \mathrm{~g}, 118 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (400 mL). DMF (0.5 mL) was added and the resulting mixture was stirred at rt for 1 hour. The solvent was removed in vacuo to give a brown oily residue (17) that was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(370 \mathrm{~mL})$. To this solution was added $16(16.8 \mathrm{~g}, 118 \mathrm{mmol})$, pyridine ($19 \mathrm{~mL}, 236 \mathrm{mmol}$) and DMAP (50 mg) and the resulting mixture was stirred at rt overnight. The solvent was removed in vacuo and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica gel chromatography ($10 \rightarrow 20 \%$ EtOAc/hexanes) provided \mathbf{J} ($58 \mathrm{~g}, 94 \%$) as a white solid.
$\mathbf{J}: \mathrm{R}_{\mathrm{f}}=0.3\left(1: 4 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (film): 1711, 1648, 1413, 1337, 1267, 1239, 1090, 973, $834 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$: $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 5 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 2.56(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$), $1.96(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=6.3,12.4 \mathrm{~Hz}), 0.89(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 164.5,160.0,139.3,125.2,124.1,113.2,100.3,76.0,66.0,52.5,39.6,21.8,17.8,16.6,-1.5$. HRMS (ESI-TOF) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}\right)^{+}$522.0054; found: 522.0057.

1-(4,5-Dibromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrole-2-carbonyl)-1,4,5,6-tetrahydropyridazine-3-carboxylic acid (18)

A solution of ester $\mathbf{J}(66 \mathrm{~g}, 126 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(520 \mathrm{~mL} / 250 \mathrm{~mL})$ was stirred for 30 min in an ice-water bath. A solution of $\mathrm{LiOH}\left(30 \mathrm{~mL}\right.$. aq 0.5 M) was added and the resulting mixture stirred at $4{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with 10% aq citric acid and concentrated in vacuo. The residue was taken up in EtOAc and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting white solid ($62.2 \mathrm{~g}, 97 \%$) was used without further purification.
18: IR (film): 3203, 2951, 1715, 1652, 1422, 1240, 1179, 1096, 1096, 969, 860. 742, 684, $612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{bs}, 1 \mathrm{H}) 5.74(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.55(\mathrm{t}, 2 \mathrm{H}, J$ $=8 \mathrm{~Hz}), 2.61(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.01(\mathrm{td}, 2 \mathrm{H}, J=6.3,12.3 \mathrm{~Hz}), 0.88(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75MHz, CDCl_{3}): $\delta 163.8,160.5,139.8,128.3,125.2,121.5,113.0,100.4,75.8,66.4,40.0,21.0$, 17.7, 16.4, -1.5. HRMS (ESI-TOF) calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}\right)^{+}$507.9897; found: 507.9898.
(4,5-Dibromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrrol-2-yl)(3-(3-(methylthio)-2,5-dihydro-1H-benzo[e][1,3]diazepine-2-carbonyl)-5,6-dihydropyridazin-1(4H)-yl)methanone (19)

18

19

HI salt 9 ($9.2 \mathrm{~g}, 28.9 \mathrm{mmol}$) was added to a solution of $\mathbf{1 8}(14 \mathrm{~g}, 27.5 \mathrm{mmol})$ in DMF (183 mL) at $0^{\circ} \mathrm{C}$. TBTU ($9.7 \mathrm{~g}, 30.3 \mathrm{mmol}$) was added, followed by the slow addition of (i-Pr) ${ }_{2} \mathrm{NEt}(14.4 \mathrm{~mL}, 82.5 \mathrm{mmol})$. The resulting mixture was stirred at rt for 3 h . The reaction mixture was diluted with 1L EtOAc and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 200 \mathrm{~mL})$, water ($8 \times 200 \mathrm{~mL}$) and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford 19 as a slightly pink foam (18.5 g, 99\%). This material was used without further purification.

19: $\mathrm{R}_{\mathrm{f}}=0.9\left(1: 9 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}\right)$; IR (film): 3420, 1645, 1430, 1340, 1241, 1130, 835, 750, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.84$ (t, 2H, J = 5.6 Hz), 3.46 (t, 2H, $J=8.0 \mathrm{~Hz}$), $2.63(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}), 0.86$
(t, 2H, J = 8.0 Hz), -0.07 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,161.8,157.4,146.6,134.0,133.8$, $129.7,127.9,127.7,127.2,126.1,120.9,111.3,99.9,75.8,66.2,54.8,45.9,40.4,23.9,17.9,17.3,15.3,-$ 1.2. HRMS (ESI-TOF) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{SSi}+\mathrm{H}\right)^{+}$calcd: 682.0513; found: 682.0513.

Reduction products 27 and 28

$\mathbf{R}=\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SiMe}_{3}$
A solution of 21 meso ($40 \mathrm{mg}, 0.032 \mathrm{mmol}$) and $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(12 \mathrm{mg}, 0.047 \mathrm{mmol})$ in THF (0.3 mL) was stirred at rt for 10 min before evaporation of the solvent. The residue was re-dissolved in a stock solution of $\mathrm{Rh}(\mathrm{I})$ catalyst $31(1 \mathrm{mg})$, 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl (1.2 mg) and $\mathrm{HSiMe}_{2} \mathrm{Ph}(5.5 \mu \mathrm{~L}, 0.035 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.16 \mathrm{~mL})$. The resulting mixture was heated at $40^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was diluted with EtOAc , washed with saturated NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica gel chromatography (1:4 EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded polycycle 28 ($18 \mathrm{mg}, 45 \%$) and mono reduction product 27 (12 mg, 30\%).
28: white film; $\mathrm{R}_{\mathrm{f}}=0.9\left(1: 9 \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CHCl}_{3}\right)$; IR (film): 3430, 2950, 1751, 1695, 1684, 1448, 1418, 1409, 1247, 1091, 858, 835, 756, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.42-7.24$ (m, 8H), $6.70(\mathrm{~s}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H}), 5.63$ (dd, 2H, $J=2.8,10.5 \mathrm{~Hz}$), 5.58-5.42 (m, 2H), 5.18-4.90 (m, 4H), 4.68-4.55 (m 3H), 4.40 (dd, 1H, $J=7.1,13.1 \mathrm{~Hz}$), $4.26(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 3.74-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.41-$ $3.24(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz}), 2.58(\mathrm{t}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.66-2.45(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz}), 1.02-0.78(\mathrm{~m}, 4 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.6,167.8,163.8,159.4,146.3,142.4,140.2,134.4,133.1,128.8,128.7,128.5,128.4$,
128.0, 127.9, 127.8, 124.6, 118.4, 113.7, 111.3, 108.4, 100.8, 99.6, 75.5, 75.1, 67.7, 66.1, 53.2, 49.9, 49.3, 48.8, 44.0, 43.4, 40.8, 40.4, 33.6, 33.5, 31.5, 17.9, 17.8, -1.4, -1.4. MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}: 1271.08$; found 1270.94.

Treatment of 28 with excess BF_{3} etherate provided derivative 29. Crystals of 29 (PTLC purified) suitable for X-ray diffraction were grown from $\mathrm{CH}_{3} \mathrm{CN}$ (slow evaporation). Details of the crystallographic analysis are provided in a separate CIF file.

27: white foam; $\mathrm{R}_{\mathrm{f}}=0.65\left(1: 4 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{CHCl}_{3}\right.$); IR (film): 2951, 2873, 1749, 1630, 1403, 1248, 1092, 836, $667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.40-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.82-5.79(\mathrm{~m}$, 1 H), $5.62-5.38$ (m, 4H), 5.00-4.56 (m, 8H), 4.44 (ddd, 1H, $J=1.8,3.1,12.9 \mathrm{~Hz}$), 3.70 (dd, 1H, $J=11.6$ Hz), 3.63 (t, $4 \mathrm{H}, J=8.1 \mathrm{~Hz}$), $3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, 1 \mathrm{H}, J=11.6,12.8 \mathrm{~Hz}), 2.36(\mathrm{dt}, 1 \mathrm{H}, J=5.2$, $10.4 \mathrm{~Hz}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{~Hz}), 0.93-0.76$ $(\mathrm{m}, 4 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H})$. MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1271.08; found 1271.04.

Alkylidene 30

$28 \mathrm{R}=\mathrm{CH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SiMe}_{3}$

30

KHMDS ($70 \mu \mathrm{~L}, 0.5 \mathrm{M}$ in toluene) was added to a solution of 28 ($22 \mathrm{mg}, 0.017 \mathrm{mmol}$) in THF (100 $\mu \mathrm{L}$) at $-78^{\circ} \mathrm{C}$. The dark pink solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then warmed to rt. After stirring at rt for $30 \mathrm{~min}, 10 \mu \mathrm{~L}$ AcOH was added and the solution diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organics were washed with saturated aq NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by preparative thin layer chromatography ($3: 7 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$) afforded 30 as white film ($18 \mathrm{mg}, 80 \%$).

30: $\mathrm{R}_{\mathrm{f}}=0.6\left(3: 7 \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.27$ (app d, $1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$), 7.45-7.18 (m, 8H), $6.74(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 5.66(\mathrm{~d}, 1 \mathrm{H}, J=$ 10.8 Hz), $5.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 5.04-4.83(\mathrm{~m}, 4 \mathrm{H}), 4.76-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.75$ (m, 1H), 3.62-3.38 (m, 4H), 3.36-3.20 (m, 1H), 3.03-2.85 (m, 2H), 2.62-2.58 (m, 1H), 2.12-2.07 (m, 1H),
2.02-1.98 (m, 1H), $1.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz}), 0.90-0.60(\mathrm{~m}, 4 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}),-0.29(\mathrm{~s}, 9 \mathrm{H})$; MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1271.08; found 1270.94.

Ring-opened product 32

Reduction product 27 ($20 \mathrm{mg}, 0.016 \mathrm{mmol}$) was dissolved in a stock solution of $\mathrm{LiCl}(0.8 \mathrm{mg}, 0.019$ mmol) and DBU ($3 \mu \mathrm{~L}, 0.021 \mathrm{mmol}$) in DMF ($100 \mu \mathrm{~L}$ - argon sparged). After heating at $52^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with acetic acid $(5 \mu \mathrm{~L})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution was washed with saturated NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by preparative thin layer chromatography (1:4 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$) to afford 32 as bright yellow solid ($14 \mathrm{mg}, 70 \%$).
32: $\mathrm{R}_{\mathrm{f}}=0.8\left(2: 9 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN} / \mathrm{D}_{2} \mathrm{O}$): $\delta 7.20-7.45(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5,79(\mathrm{~s}, 2 \mathrm{H}), 5,64(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.46(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz})$, $4.88(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}), 3.85(\mathrm{dd}, 1 \mathrm{H}, J=4.6,11.4 \mathrm{~Hz}), 3.50-3.57(\mathrm{~m}, 4 \mathrm{H})$, $2.75(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{tt}, 1 \mathrm{H}, J=3.0,11.8 \mathrm{~Hz}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 0.77-0.90(\mathrm{~m}, 4 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}),-$ $0.02(\mathrm{~s}, 9 \mathrm{H})$. MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}: 1271.08$; found 1271.45.

Saturated products 33

21 (meso)

33a

33b

33c

A solution of meso 21 ($460 \mathrm{mg}, 0.364 \mathrm{mmol}$), $\mathrm{MgI}_{2}(50 \mathrm{mg}, 0.18 \mathrm{mmol})$, and $\mathrm{NH}_{4} \mathrm{PF}_{6}(120 \mathrm{mg}, 0.74$ mmol) in THF (3 mL) was stirred at rt for 15 minutes and then the solvent was removed in vacuo. The residue was suspended in a stock solution of $\mathrm{Rh}(\mathrm{I})$ catalyst 31 ($5.75 \mathrm{mg}, 5 \mathrm{~mol} \%$), 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl ($6.5 \mathrm{mg}, 5.5 \mathrm{~mol} \%$) and $\mathrm{HSiMe}_{2} \mathrm{Ph}(170 \mu \mathrm{~L}$, 1.10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.45 \mathrm{~mL})$. The reaction mixture was heated at $55^{\circ} \mathrm{C}$ for 36 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (gradient from $1: 9 \rightarrow 1: 4 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford a mixture of $\mathbf{3 3 a}+\mathbf{3 3 b}(395 \mathrm{mg}, 66 \%)$ followed by 33c (85 mg , $16 \%)$.

33a + 33b: white solid; $\mathrm{R}_{\mathrm{f}}=0.45\left(1: 4 \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CHCl}_{3}\right.$); IR (film): 3422, 2950, 1753, 1704, 1651, 1403, 1248, 1067, 836, 740, $610 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.39-7.31(\mathrm{~m}, 8 \mathrm{H}), 6.77$ (s, 2H), 5.67 (d, $2 \mathrm{H}, J=10.6 \mathrm{~Hz}), 5.48(\mathrm{~d}, 2 \mathrm{H}, J=10.6 \mathrm{~Hz}), 4.92(\mathrm{~s}, 4 \mathrm{H}), 4.78(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 4.58(\mathrm{~d}, 2 \mathrm{H}, J=14.4$ Hz), 4.42-4.38 (m, 2H), 3.78 (dd, 2H, $J=4.9,11.6 \mathrm{~Hz}$), 3.56 (t, $4 \mathrm{H}, J=7.9 \mathrm{~Hz}$), 2.49 (dd, 2H, $J=11.2$, $12.8 \mathrm{~Hz}), 2.25-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.81(\mathrm{~m}, 4 \mathrm{H}), 0.00(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,164.2,145.6,140.4,133.4,129.6,128.9,128.8,117.7,111.4,99.8$, $75.4,66.5,56.5,49.6,43.6,43.4,35.1,30.5,18.2,-1.1$. MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1273.09; found 1273.1. Crystals of 33b suitable for X-ray diffraction were grown from $\mathrm{CH}_{3} \mathrm{CN}$ (slow evaporation). Details of the crystallographic analysis are provided in a separate CIF file.

33c: $\mathrm{R}_{\mathrm{f}}=0.2\left(1: 4 \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{CHCl}_{3}\right)$; IR (film): 2952, 1754, 1693, 1403, 1299, 1248, 1155, 1092, $941 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.55(\mathrm{~m}, 4 \mathrm{H}), 5.00-4.57$
(m, 8H), 4.44-4.39 (m, 1H), 4.08-4.02 (m, 2H), 3.79 (dd, 1H, $J=4.9,11.6 \mathrm{~Hz}$) 3.52 (dd, 4H, $J=8.4,16.9$ Hz), 3.15 (dd, 1H, $J=4.9,13.1 \mathrm{~Hz}$), $2.32(\mathrm{dd}, 1 \mathrm{H}, J=11.7,12.6 \mathrm{~Hz}$), 2.24-2.18 (m, 1H), 2.04-1.96 (m, $3 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.77(\mathrm{~m}, 4 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 170.3,169.6,163.7,146.9,145.3,140.5,140.1,133.6,129.5,128.8,128.7,128.6,128.5$, $125.7,117.4,111.2,110.9,99.7,99.6,75.6,75.3,60.6,56.5,56.3,49.6,49.4,43.9,43.7,43.5,43.1,33.0$, 32.7, 30.8, 27.0, 21.3, 18.1, 18.0, 14.4, -1.1, -1.2. MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1273.09; found 1272.80.

Mono alkylidene L and symmetric bis-alkylidene 34

A solution of $\mathrm{Cy}_{2} \mathrm{BOTf}\left(47 \mathrm{mg}, 0.144 \mathrm{mmol}\right.$) in THF (0.48 mL) was cooled to $-78^{\circ} \mathrm{C}$ and added rapidly to a solution of $\mathbf{3 3 a} / \mathbf{b} / \mathbf{c}(60 \mathrm{mg}, 0.047 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. KHMDS $(0.5 \mathrm{M}$ in toluene, $470 \mu \mathrm{~L}$) was then added and the cooling bath immediately removed. The red solution was warmed to rt and quenched with $20 \mu \mathrm{~L} \mathrm{AcOH}$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was removed in vacuo. The residue was purified by silica gel column chromatography (1:49 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{3 4}$ as light yellow solid ($32 \mathrm{mg}, 53 \%$) along with mono alkylidene \mathbf{L} ($16 \mathrm{mg}, 27 \%$). Analytically pure 34 was obtained as a white powder following triturating with $\mathrm{CH}_{3} \mathrm{CN}$.
34: $\mathrm{R}_{\mathrm{f}}=0.5$ (1:19 MeOH/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film): 1668, 1606, 1425, 1317, 1245, 1091, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d d_{6}) $\delta 8.30$ (bs, 2H), 8.01 (bs, 2H), 7.38-7.31 (m, 8H), 6.76 (s, 2H), 5.71 (d, 4H, J = $10.5 \mathrm{~Hz}), 5.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}), 5.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 4.87(\mathrm{~s}, 4 \mathrm{H}), 4.45(\mathrm{~s}, 4 \mathrm{H}), 3.41(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.8$ Hz), 3.15-2.95 (m, 4H), $0.71(\mathrm{t}, 4 \mathrm{H}, J=7.8 \mathrm{~Hz}),-0.13(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125MHz, DMSO- $\left.d_{6}\right): \delta 167.0$, $159.4,157.5,142.1,138.8,135.1,128.7,128.6,128.3,128.2,117.1,114.8,110.1,98.8,94.3,74.3,65.1$,
43.3, 42.5, 41.8, 40.0, 17.0, -1.5; MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}: 1273.09$; found 1272.80.

L: off-white solid; $\mathrm{R}_{\mathrm{f}}=0.75$ (1:19 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film): 3400, 2952, 1644, 1418, 1247, 1068, 835 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.42-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.80-5.42(\mathrm{~m}, 5 \mathrm{H})$, 4.95-4.86 (m, 4H), 4.80-4.77 (m, 1H), 4.58-4.46 (m, 2H), 4.38-4.35 (m, 1H), 3.78 (dd, 1H, $J=11.6,4.9$ Hz), 3.62-3.43 (m, 5H), 3.37-3.26 (m, 1H), 2.76 (ddd, 1H, J = 4.1, 8.9, 13.4 Hz), 2.50-2.42 (m, 1H), 2.31$2.25(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.75(\mathrm{~m}, 4 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125MHz, CDCl_{3}): $\delta 169.8,166.8,164.4,160.3,157.9,145.8,141.5,140.6,137.4,134.5,133.2$, 129.6, 129.5, 129.1, 128.8, 128.7, 128.6, 128.6, 128.5, 125.5, 117.6, 116.5, 115.6, 111.2, 110.9, 99.7, 75.5, $75.1,70.8,70.5,66.4,66.3,56.8,49.4,45.3,44.2,43.7,43.4,41.5,40.2,35.8,34.6,31.3,30.4,25.7,24.4$, 18.2, 18.0, -1.1, -1.2. MS (positive electrospray) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{Br}_{4} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1273.09; found 1272.80.

Spirocyclic products derived from 34

35

Procedure A. no additive

Bisalkylidene 34 ($40 \mathrm{mg}, 0.031 \mathrm{mmol}$) was dissolved in 1 mL THF and the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of freshly prepared t-BuOCl (see Organic Syntheses, Coll. Vol. 5, p. 184 (1973) - $4.2 \mu \mathrm{~L}, 0.038 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mu \mathrm{~L})$ was added and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and rt for another 2 h . The solvent was removed in vacuo and the residue was purified by preparative thin layer chromatography $\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right)$. This affords one impure diastereomer of $\mathbf{3 6}$ (36b) followed by a pure second diastereomer (36a) and impure alkylidene 35.

36a: ($4 \mathrm{mg}, 10 \%$ yield): white film; $\mathrm{R}_{\mathrm{f}}=0.7$ ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 95$); IR (film, cm^{-1}): 2923, 1750, 1650, 1513, 1455, 1404, 1247, 1092, 948, 836; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): 7.85 (dd, $1 \mathrm{H}, \mathrm{J}=4.5,7.3 \mathrm{~Hz}$), 7.57 (t, 1H, J = 5.6 Hz), 7.42-7.21 (m, 8H), 7.07 (s, 1H), $6.89(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.76(\mathrm{~m}, 4 \mathrm{H}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=2.9$ Hz), 4.70-4.55 (m, 3H), $4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 4.35-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.20-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 3 \mathrm{H})$, 3.62 (ddd, 1H, $J=1.9,5.7,14.2 \mathrm{~Hz}$), 3.52-3.45 (m, 4H), 3.41 (ddd, $1 \mathrm{H}, J=4.5,9.8,14.0 \mathrm{~Hz}$), 3.21-3.14 (m, 1H), $2.59(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=5.4,9.4 \mathrm{~Hz}), 2.16\left(1 \mathrm{H}\right.$, overlapped with $\mathrm{H}_{2} \mathrm{O}$ peak), 0.96-0.87 (m, 4H), -0.09 (s, 9 H), -0.11 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): 170.0, 162.7, 161.2, 160.5, 148.4, 140.0, 133.5, 129.7, 129.6, 128.9, 128.8, 128.7, 128.4, 127.8, 127.5, 117.0, 116.4, 112.2, 111.6, 100.3, 100.0, 88.0, 77.5, 75.7, $75.3,66.7,66.2,65.8,58.0,56.6,49.0,43.7,43.4,41.0,38.6,37.0,35.9,18.1,-1.2,-1.2$. HRMS (ESITOF) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{Br}_{4} \mathrm{ClN}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}: 1307.0539$; found 1307.3955.

36b: impure material was subjected to a second preparative thin layer chromatography, eluting with 10% $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$, to afford 36b ($\sim 1 \mathrm{mg}$) as a white film. 36b: $\mathrm{R}_{\mathrm{f}}=0.8$ ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 95$); IR (film): 2852, 1737, 1681, 1543, 1456, 1397, 1248, 1093, $949 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.57$ (t, 1H, J $=5.0 \mathrm{~Hz}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.38-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.84-5.63(\mathrm{~m}, 4 \mathrm{H}), 5.25$ (d, 1H, $J=4.0 \mathrm{~Hz}$), 5.05-4.57 (m, 7H), $4.50(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.17-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.63$ (ddd, $1 \mathrm{H}, \mathrm{J}=3.5,5.8,14.9 \mathrm{~Hz}$), $3.70-3.42(\mathrm{~m}, 6 \mathrm{H}), 3.38-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{tt}, 1 \mathrm{H}, \mathrm{J}=5.7,11.3 \mathrm{~Hz}$), 2.30-2.25 (m, 1H), 0.97-0.78 (m, 2H), 0.76-0.62 (m, 2H), -0.05 (s, 9H), -0.12 (s, 9H). MS (MALDI) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{Br}_{4} \mathrm{ClN}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1307.05; found 1307.25.

35: impure material was subjected to a second preparative thin layer chromatography, eluting with 10% $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 35 as a white film ($8 \mathrm{mg}, 20 \%$ yield). 35: $\mathrm{R}_{\mathrm{f}}=0.4$ ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 9$); IR (film): 2945, 1681, 1601, 1547, 1418, 1312, 1248, 1092, $857 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.52$ (appr s, 1H), 7.42-7.27 (m, 8H), 7.05-7.02 (m, 1H), $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5,87(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=10.5,12$ $\mathrm{Hz}), 5.72(\mathrm{t}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.90-4.45(\mathrm{~m}, 7 \mathrm{H}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}), 4.26(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz})$, 3.76 (td, 2H, $J=3.9,12.4 \mathrm{~Hz}$), 3.74-3.40 (m, 7H), $3.24(\mathrm{dt}, 2 \mathrm{H}, J=3.9,12.5 \mathrm{~Hz}$, $2.98-2.81(\mathrm{~m}, 1 \mathrm{H}), 0.95-$ $0.79(\mathrm{~m}, 4 \mathrm{H}),-0.07(\mathrm{~s}, 18 \mathrm{H})$. MS (MALDI) calcd for $\left(\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{Br}_{4} \mathrm{ClN}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}+\mathrm{H}\right)^{+}$: 1307.05; found 1307.50.

Procedure B. $\mathbf{M g C l}_{\mathbf{2}}$ additive

Bisalkylidene 34 ($10 \mathrm{mg}, 0.0075 \mathrm{mmol}$) and $\mathrm{MgCl}_{2}(1.5 \mathrm{mg}, 0.016 \mathrm{mmol})$ were dissolved in THF (0.25 $\mathrm{mL})$ and the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of freshly prepared t - $\mathrm{BuOCl}(1 \mu \mathrm{~L}, 0.0075 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mu \mathrm{~L})$ was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and at rt for another 2 h .

The solvent was removed in vacuo and the residue purified by preparative thin layer chromatography $\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 19\right)$ to afford $\mathbf{3 6 a}(2.8 \mathrm{mg}, 26 \%), \mathbf{3 5}(<1 \mathrm{mg})$ and recovered $34(3 \mathrm{mg}, 30 \%)$.

Procedure C . $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ additive

Bisalkylidene 34 ($60 \mathrm{mg}, 0.047 \mathrm{mmol}$) and $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{mg}, 0.058 \mathrm{mmol})$ were dissolved in 0.8 mL THF and the mixture cooled to $-78^{\circ} \mathrm{C}$. A solution of freshly prepared t - $\mathrm{BuOCl}(6 \mu \mathrm{~L}, 0.054 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$ was added and the reaction stirred at $-78^{\circ} \mathrm{C}$ for 2 h and at rt for another 2 h . The solvent was evaporated and the residue was purified by preparative thin layer chromatography $\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=\right.$ 1:19) to afford two inseparable diastereomers of 38 as a light yellow solid ($45 \mathrm{mg}, 75 \%$). These materials have ${ }^{1} \mathrm{H}$ NMR spectra that are identical to $\mathbf{3 6 a} / \mathbf{b}$. They are distinguished only by mass: MS (MALDI) calcd for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{Br}_{4} 5 \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 1351.00; found 1350.80.

Table 1. Summary of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data in $\mathrm{CD}_{3} \mathrm{CN}$ for compound 36a.

position	${ }^{a} \delta_{\mathrm{C}}$	${ }^{b} \delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J} \mathrm{Hz})$	COSY (H no.)	${ }^{2,3} J_{\mathrm{CH}} \mathrm{HMBC}(\mathrm{C}$ no.)
6	171.2			
8	149			$6,8,12,16$
10	58.8	$3.77($ appr s)		$6,16,18$
11	66.5	$4.74(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz})$	12	$11,13(3.17), 18$
12	41.3	2.15^{a}		
		$3.62(\mathrm{ddd}, \mathrm{J}=1.9,5.7$,		
13	37.8	$14.2 \mathrm{~Hz})$	$13, \mathrm{~N}-\mathrm{H}$	17
		$3.17(\mathrm{~m})$	$12,13, \mathrm{~N}-\mathrm{H}$	17,12
16	89			
17	57	$4.53(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz})$	18	16,12
			$17,19(3.84$,	
18	36.4	$2.59(\mathrm{~m})$	$3.42), 12$	

Table 2. NOESY data for 36a.

position	${ }^{b} \delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J} \mathrm{Hz})$	NOESY
10	$3.77(\mathrm{appr} \mathrm{s})$	12,18,
11	$4.74(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz})$	$12,13 \mathrm{a}$
12	2.15	$18,10,13 \mathrm{a}, 11$
	$3.62(\mathrm{ddd}, \mathrm{J}=1.9,5.7$,	
13 b	$14.2 \mathrm{~Hz})$	$12,13 \mathrm{a}$
13 a	$3.17(\mathrm{~m})$	$12,13 \mathrm{a}, 11$
17	$4.53(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz})$	18
18	$2.59(\mathrm{~m})$	10,12
19 b	$3.84(\mathrm{~m})$	19 a
	$3.42(\mathrm{ddd}, \mathrm{J}=4.5,9.8$,	$19, \mathrm{a}$

The relative stereochemistry in 36a was assigned based on coupling constants and NOESY spectra. The 3.9 Hz coupling constant between H17 and H18 supports a cis stereochemistry. The correlations between $\mathrm{H} 10, \mathrm{H} 12$ and $\mathrm{H} 10, \mathrm{H} 18$ suggests these three protons are on the same face of the diazabicyclo[3.3.0]octane ring system. The small coupling constant between H11, H10 (J < 1 Hz) indicates a trans relationship. This only leaves the quaternary center C16 uncertain.

Table 2: NMR Data for Compound 44 ${ }^{\text {a }}$

Carbon No.	$\begin{gathered} { }^{13} \mathrm{C} \\ \delta(\mathrm{ppm}) \end{gathered}$	Mult.	$\left.\delta(\mathrm{ppm}){ }_{(\mathrm{mult}}{ }^{1} \mathbf{J}(\mathrm{~Hz})\right)^{\mathrm{c}, \mathrm{~d}, \mathrm{e}}$	HMBC Correlations ${ }^{f}$
2	158.7	Q		H4a, H-4b, H-11
4	45.7	CH_{2}	$\begin{aligned} & \text { H-4a: } 4.56 \text { (d, 14.8) } \\ & \text { H-4b: } 4.38(\mathrm{~d}, 15.0) \end{aligned}$	
5	140.3	Q		
6		CH		
7		CH		
8		CH		
9		CH		
10	136.6	Q		
11	45.0	CH_{2}	H-11: 4.92 (s)	H-9
13	178.9	Q		H-15, H-11
14		Q		
15	69.7	CH	H-15: 4.01 (d, 11.6)	H-19a, H-19b
16	47.8	CH	H-16: 2.32-2.25 (m)	$\begin{aligned} & \text { H-15, H-19a, H-19b, } \\ & \text { H-33a, H-33b } \end{aligned}$
17	46.0	CH	H-17: 3.13 (ddd, 8.8, 4.1, 4.1)	H-19a, H-19b, H-33b
18	138.5	Q		
19	40.2	CH_{2}	$\begin{aligned} & \text { H-19a: } 3.65 \text { (ddd, 14.3, 6.0, 4.3) } \\ & \text { H-19b: 3.49-3.38 (m) } \end{aligned}$	H-15
21	162.4	Q		H-23, H-25
22	128.3	Q		H-23, H-25
23	116.5	CH	H-23: 6.75 (d, 1.9)	H-25
24	96.3	Q		H-25
25	127.8	CH	H-25: 7.02 (d, 1.9)	
27	78.0	CH_{2}	$\begin{aligned} & \text { H-27a: } 5.61(\mathrm{~d}, 10.3) \\ & \text { H-27b: } 5.56(\mathrm{~d}, 10.3) \end{aligned}$	H-25, H-29
29	67.2	CH_{2}	H-29: 3.49-3.38 (m)	H-27a, H-27b, H-30
30	18.6	CH_{2}	H-30: 0.79 (t, 2.0)	H-29
32	-1.0	CH_{3}	H-32: -0.14 (s)	H-30
33	42.9	CH_{2}	$\begin{aligned} & \text { H-33a: } 3.77 \text { (ddd, 13.1, 4.1, 4.1) } \\ & \text { H-33b: 3.49-3.38 (m) } \end{aligned}$	
35	162.5	Q		
36	129.0	Q		H-37, H-39
37	116.8	CH	H-37: 6.83 (d, 1.7)	H-39
38	96.4	Q		H-38
39	127.3	CH	H-39: 7.00 (d, 1.9)	

41	77.6	CH_{2}	$\mathrm{H}-41 \mathrm{a}: 5.59(\mathrm{~d}, 10.3)$ $\mathrm{H}-41 \mathrm{~b}: 5.58(\mathrm{~d}, 10.3)$	$\mathrm{H}-39, \mathrm{H}-43$
43	67.0	CH_{2}	$\mathrm{H}-43: 3.49-3.38(\mathrm{~m})$	$\mathrm{H}-41, \mathrm{H}-44$
44	18.6	CH_{2}	$\mathrm{H}-44: 0.77-0.71(\mathrm{~m})$	$\mathrm{H}-43$
46	-1.0	CH_{3}	$\mathrm{H}-46:-0.10(\mathrm{~s})$	$\mathrm{H}-44$
47		Q		
49	158.7	Q		$\mathrm{H}-51 \mathrm{a}, \mathrm{H}-51 \mathrm{~b}, \mathrm{H}-58$
51	45.2	CH_{2}	$\mathrm{H}-51 \mathrm{a}: 4.49(\mathrm{~d}, 15.0)$	
52			$\mathrm{H}-51 \mathrm{~b}: 4.38(\mathrm{~d}, 15.0)$	
53	139.8	Q		$\mathrm{H}-56$
54		CH	CH	$\mathrm{H}-58$

${ }^{\text {a }}$ The numbering scheme used here is unique to this analysis.
${ }^{\mathrm{b}}$ Recorded at 150 MHz . ${ }^{\text {c }}$ Recorded at 600 MHz . ${ }^{\mathrm{d}}$ Assignments based on HMQC data.
${ }^{\mathrm{e}}$ Methylene protons are arbitrarily designated $\mathrm{H}-\mathrm{Xa}$ and $\mathrm{H}-\mathrm{Xb}$.
${ }^{\mathrm{f}}$ Only those correlations which could be unambiguously assigned are recorded.

Table 3: COSY Data for Compound 44

Proton No.	$\delta(\mathrm{ppm})\left({ }^{1} \mathrm{Hult} \mathbf{J}(\mathrm{Hz})\right)^{\mathrm{a}, \mathrm{b}}$	COSY Correlation ${ }^{\text {c }}$
H-1		
H-4a	4.56 (d, 14.8)	H-4b
H-4b	4.38 (d, 15.0)	H-4a
H-6		
H-7		
H-8		
H-9		
H-11	4.92 (s)	
H-15	4.01 (d, 11.6)	H-16
H-16	2.32-2.25 (m)	H-15, H-17, H-19b

H-17	3.13 (ddd, 8.8, 4.1, 4.1)	H-16, H-33a, H-33b
H-19a	3.65 (ddd, 14.3, 6.0, 4.3)	H-19b
H-19b	3.49-3.38 (m)	H-19a
H-20	7.42-7.36 (m)	H-19a, H-19b
H-23	6.75 (d, 1.9)	H-25
H-25	7.02 (d, 1.9)	H-23
H-27a	5.61 (d, 10.3)	
H-27b	5.56 (d, 10.3)	
H-29	3.49-3.38 (m)	H-30
H-30	0.79 (t, 2.0)	H-29
H-32	-0.14 (s)	
H-33a	3.77 (ddd, 13.1, 4.1, 4.1)	H-33b
H-33b	3.49-3.38 (m)	H-33a
H-34	8.15 (s)	H-33a, H-33b
H-37	6.83 (d, 1.7)	H-39
H-39	7.00 (d, 1.9)	H-37
H-41a	5.59 (d, 10.3)	
H-41b	5.58 (d, 10.3)	
H-43	3.49-3.38 (m)	H-44
H-44	0.77-0.71 (m)	H-43
H-46		
H-48		
H-51a	4.49 (d, 15.0)	H-51b
H-51b	4.38 (d, 15.0)	H-51a
H-53		
H-54		
H-55		
H-56		
H-58a	4.73 (s, 2H)	

${ }^{\text {a }}$ Recorded at 500 MHz .
${ }^{\text {b }}$ Assignments are based on HMQC and HMBC data.
${ }^{\text {c }}$ Only those correlations that could be unambiguously assigned are recorded.

Table 4: ROESY Data for Compound 44

H-54
H-55
H-56
H-58
${ }^{\text {a }}$ Recorded at 400 MHz .
${ }^{\mathrm{b}}$ Assignments based on COSY, HMQC and HMBC data.
${ }^{\text {c }}$ Only those correlations which could be unambiguously assigned are recorded.

Solvent: CDCl3 400 MHz

Solvent: CDCl3
100 MHz

Solvent: CDCl 3 400 MHz

Solvent: CDCl 3
100 MHz

Solvent: DMSO-d ${ }_{6}$ Temp: $25^{\circ} \mathrm{C}$; 500 MHz

11
Solvent: DMSO-d6 400 MHz

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $25^{\circ} \mathrm{C}$; 400 MHz

\qquad

Temp: $25^{\circ} \mathrm{C} ; 500 \mathrm{MHz}$

$\begin{array}{ll}7.0 & 6.0\end{array}$
5.0
4.0
3.0
2.0
1.0

Solvent: DMSO-d6
400 MHz

Solvent: CDCl_{3}
Temp: $25^{\circ} \mathrm{C} ; 300 \mathrm{MHz}$

Solvent: CDCl3
400 MHz

Solvent: CDCl3
75 MHz

Solvent: CDCl_{3}
Temp: $25^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

| 1 | | | | | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9.0 | 8.0 | 7.0 | 6.0 | 5.0 | 4.0 | 3.0 | 2.0 | 1.0 | 0.0 |

Solvent: CDCl 3
75 MHz

Solvent: CDCl_{3}
Temp: $25^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

18
Solvent: CDCl3
75 MHz

180	160	140	120	100	80	60	40	20

19
Solvent: CDCl_{3}
Temp: $25^{\circ} \mathrm{C}$; 400 MHz

Solvent: CDCl3
75 MHz

20
Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $70{ }^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$ Temp: $70^{\circ} \mathrm{C} ; 100 \mathrm{MHz}$

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $70^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $70^{\circ} \mathrm{C} ; 100 \mathrm{MHz}$

$210200190180170160150140130120110100908070605040302010 \quad 0$

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $70{ }^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $70^{\circ} \mathrm{C} ; 100 \mathrm{MHz}$

$210200190180170160150140130120110100908070605040302010 \quad 0$

27
one isomer
unknown stereochemisty
Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $70{ }^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

Solvent: CDCl 3
75 MHz

57

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $50^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9.0 | 8.0 | 7.0 | 6.0 | 5.0 | 4.0 | 3.0 | 2.0 | 1.0 | 0.0 |

Note: Spectral data appears to indicate one isomer. However, TLC and PTLC suggest a mixture of two closely related species.

Solvent: CDCl3
125 MHz

33c Solvent: CDCl 3
400 MHz

Solvent: CDCl3
125 MHz

Solvent: DMSO-d ${ }_{6}$
Temp: $50^{\circ} \mathrm{C} ; 500 \mathrm{MHz}$

Solvent: DMSO-d ${ }_{6}$
Temp: $50^{\circ} \mathrm{C}$; 125 MHz

Solvent: DMSO
Temp. $34.0 \mathrm{C}, 307.1 \mathrm{~K}$ File: Juner "Inoesy
INOVA-500 "IRIS"

Relax. delay 6.000 sec
Mixing 0.200 sec
Revax. ding 0.200 sec
Mct time 0.204

W0 Width 5024.5
20 repetitions
${ }_{2} \mathbf{2}$ repetitions 200 increments
$2 \times \times 200$ increments
OBSERVE $\mathrm{H} 1,499.780029 \mathrm{MHz}$
OBSERVE H1, PROCESING.
Gauss apodization 0.081 sec
Gauss apodization 0.016 sec
FT size 2048×1024
Total time $11 \mathrm{hr}, 30 \mathrm{~min}, \mathrm{~s} \mathrm{sec}$

Pulse sequence: ghmqC
Solvent : omso

34
Solvent: CDCl3
500 MHz

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $50^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

L

Solvent: CD3CN 400 MHz

Pulse Sequence: relay

Relax. delay 1.000 sec
CoSY 9o-45
Acq. time 0.141 sec
Width 367.0 Hz
20 Width 3627.0 Hz
4 repetitions
500 increments
OBSERVE H1 399.7814203 MHz
DATA PROCESSING
Sine bell 10.071 se
FI DATA PROCESSNG
Sine bell 0.071 se
F1 DATA PROCESSING
Sine bell
Sine bell 0.071 sec
FT size 1024×1024
Total time $40 \mathrm{~min}, 42 \mathrm{se}$

$\mathrm{v}-131-\cos \mathrm{y}$
Pulse Sequence:
Solvent:
Solvent: CD3CN
Temp. 24.2 CN
INOVA-500 Mpele500"

${ }_{8}^{20}$ repet itions.
200 increments
OBERVE H1, 499.7271246 MHz

Sine bell o. 112 se
FI DATA PROCESSING
F1 OATA PROCESSING
Sine be 110.021 sec
sT size 2048×2048
FT size 2048×2048
Total time $1 \mathrm{hr}, 27 \mathrm{sec}$

Solvent: CD3CN 500 MHz

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $25^{\circ} \mathrm{C}$; 800 MHz
Pulse sequence: noesy

Solvent: CD3CN
500 MHz

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: $55^{\circ} \mathrm{C} ; 400 \mathrm{MHz}$

Solvent: CDCl3
100 MHz

Solvent: CD3CN
400 MHz

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: room temp; 50 MHz

88

43
Solvent: CD3CN
100 MHz

Solvent: $\mathrm{CD}_{3} \mathrm{CN}$
Temp: room temp; 125 MHz

Solvent: CDCl 3 400 MHz

Solvent: CDCl3 100 MHz

