Supporting information.

Table S-1. Dependence of D-A distances (\AA) on the DP's of heterotactic polystyrene macrocycles containing a 9,10anthracenylide unit separated from the two DMF units by arms of equal lengths.

DP	Distance	DP	Distance
0	8.13	16	22.31
2	8.83	18	23.35
4	10.94	20	26.04
6	12.69	22	28.03
8	14.31	24	31.45
10	16.49	26	32.21
12	17.91	28	35.38
14	$\mathbf{2 1 . 1 0}$	30	37.23

Table S-2. D-A distance (\AA) from two different donors to the acceptor in asymmetric 12-, $14-, 16$ - and 18 -mers as a function of the shorter arm lengths.

DP	$12-\mathrm{mer}$	DP	$14-\mathrm{mer}$	DP	$16-\mathrm{mer}$	DP	$18-\mathrm{mer}$
1	$6.42,11.25$	1	$6.51,11.48$	1	$8.60,13.30$	1	$6.39,12.05$
2	$8.61,12.85$	2	$8.05,12.30$	2	$7.93,12.83$	2	$9.83,13.69$
3	$10.40,14.11$	3	$11.01,14 . .68$	3	$9.93,15.41$	3	$11.00,14.88$
4	$13.91,16.00$	4	$12.74,16.38$	4	$12.20,16.90$	4	$12.04,17.96$
5	$15.12,17.48$	5	$14.41,17.80$	5	$15.27,19.48$	5	$14.20,19.87$
6	$16.59,18.47$	6	$17.50,19.26$	6	$17.25,21.50$	6	$16.40,20.76$
		7	$19.98,20.00$	7	$18.42,21.92$	7	$18.57,21.59$
				8	$19.25,20.05$	8	$20.26,22.69$
						9	$21.27,22.49$

Figure $\mathbf{S 1}$. Bubble plot of $E T R_{i /(j-i)}$ as function of number of S units in the $\mathrm{DP}_{\mathrm{n}}=18$ cycle population and number of S units in the shorter arms.

Figure S2. Bubble plot of $E T R_{i /(j i)}$ with a DP_{n} of 28 . Data are used from the linear fit equations in Figures 8a and 8b.

Figure S3. Bubble plot of $E T R_{i /(j i)}$ with a DP_{n} of 54 . Data are used from the linear fit equations in Figures 8a and 8b.

Figure S-4. Flow chart of Monte Carlo simulation

