

Figure . AFM pictures of PEM before glass-melt transition (left hand side) and PEM $_{\text {temp }}$ after glass-melt transition (right hand side); both samples measured in room temperature.

Calculation of the coverage of the surface by particles
n - amount of particles adsorbed at the interface; $n=\frac{M}{m}=\frac{2.25 * 10^{-7} \mathrm{~g}}{1.38 * 10^{-18} \mathrm{~g}}=1.63 * 10^{11} / \mathrm{cm}^{2}$

Where:
M - mass of the adsorbed layer; $M=2.25 * 10^{-7} g$
m - mass of the single particle; $m=v * \rho=\frac{4}{3} \pi r^{3} * \rho=1.38 * 10^{-18} g$
where:
$v=\frac{4}{3} \pi r^{3}-$ volume of the single particle; $v=2.68 * 10^{-19} \mathrm{~cm}^{3}$ $r=4 \mathrm{~nm}$ - radius of a particle
ρ-density on magnetite; $\rho=5.15 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$
$n_{\max }$ - maximal amount of particles adsorbed on the surface; $n_{\max }=\frac{\theta_{\max }}{A}=1.47 * 10^{12} / \mathrm{cm}^{2}$

Where:
$\theta_{\max }=74 \%$ - maximal coverage of the surface by the ring-shape objects (based only on geometry; all interactions are neglected); $\theta_{\max }=0.74 \mathrm{~cm}^{2}$ per $1 \mathrm{~cm}^{2}$
A - surface occupied by a single particle; $A=\pi r^{2}=5.024 \times 10^{-13} \mathrm{~cm}^{2}$
θ - coverage of the surface by particles; $\theta=\frac{n}{n_{\max }} * 100 \%=11.1 \%$

