Supporting Information

PEM; roughness=3.6nm

PEM_{temp}; roughness=2.7nm

Figure . AFM pictures of PEM before glass-melt transition (left hand side) and PEM_{temp} after glass-melt transition (right hand side); both samples measured in room temperature.

Calculation of the coverage of the surface by particles

n - amount of particles adsorbed at the interface;
$$n = \frac{M}{m} = \frac{2.25 \times 10^{-7} \text{ g}}{1.38 \times 10^{-18} \text{ g}} = 1.63 \times 10^{11} / \text{cm}^2$$

Where:

M - mass of the adsorbed layer; $M = 2.25 * 10^{-7} g$

m - mass of the single particle;
$$m = v * \rho = \frac{4}{3}\pi r^3 * \rho = 1.38*10^{-18} g$$

where:

$$v = \frac{4}{3}\pi r^3$$
 - volume of the single particle; $v = 2.68*10^{-19} cm^3$

r = 4nm - radius of a particle

 ρ - density on magnetite; $\rho = 5.15 \frac{g}{cm^3}$

 $n_{\rm max}$ - maximal amount of particles adsorbed on the surface; $n_{\rm max} = \frac{\theta_{\rm max}}{A} = 1.47 * 10^{12} / cm^2$

Where:

 $\theta_{\rm max}$ = 74% - maximal coverage of the surface by the ring-shape objects (based only on geometry; all interactions are neglected); $\theta_{\rm max} = 0.74cm^2$ per $1cm^2$

A - surface occupied by a single particle; $A = \pi r^2 = 5.024 \times 10^{-13} \text{ cm}^2$

 θ - coverage of the surface by particles; $\theta = \frac{n}{n_{\text{max}}} * 100\% = 11.1\%$