Supporting Information

11 April, 2009

Ms. No.: la-2009-011108

Quantitative Analysis of the Stability of Pd Dendrimer-Encapsulated Nanoparticles

Emily V. Carino, Marc R. Knecht, and Richard M. Crooks

5 Pages

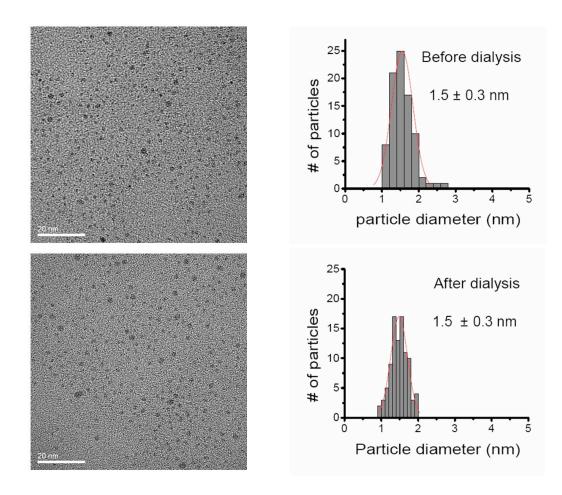


Figure S1. TEM images and size-distribution histograms for Pd DENs before and after dialysis. TEM grids were prepared as described in the experimental section. Particle diameters were measured manually using Digital Micrograph software and a histogram was constructed from the tabulated values of 100 particles using Microcal Origin.

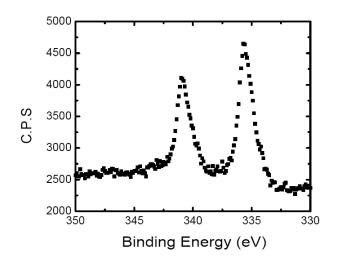


Figure S2. An X-ray photoelectron spectrum (XPS) spectrum of freshly prepared G6-OH(Pd₁₄₇) DENs. The peaks at 335.7 and 341.0 eV correspond to the $3d_{5/2}$ peaks of Pd(0). XPS of freshly prepared 2.00 μ M G6-OH(Pd₁₄₇) was performed using a Kratos Axis Ultra DLD spectrometer having a monochromatic Al K α X-ray source. The spectrum was obtained in charge-compensation mode at a pass energy of 20 eV, a resolution of 0.1 eV, and a dwell time of 1.00 s. The samples were prepared by drop-casting a freshly prepared 2.00 μ M Pd DEN solution onto Au-coated Si wafers. The wafers were dried under vacuum. To correct for charging, peak locations were referenced to the most intense carbon peak, assumed to be the C-N bond of the dendrimer, which is present at 286.0 eV.^{1,2}

Figure S3. The results of the addition of $AgNO_3$ to solutions containing dialyzed DENs (left), undialyzed DENs (center), and the KCl control (right) are shown. The calculated concentration of Cl⁻ in undialyzed 2.0 μ M G6-OH(Pd₁₄₇) DENs, introduced as K_2PdCl_4 in the starting material, is 1.18 mM. The KCl control contained 1.18 mM of KCl in water. A ten-fold excess of Ag⁺, with respect to this concentration of Cl⁻, was added in the form of AgNO₃ to each solution. The minimum detectable amount of Cl⁻ was determined from the solubility product of AgCl as 13.4 μ M using the following equilibrium equation, where K_{sp} is the solubility product for solid AgCl (1.8 x 10⁻¹⁰).

$$AgCI(s) \xrightarrow{k_{sp}} Ag^+ + CI^-$$

References

- 1. Barr, T. L. CRC Press 1994.
- Lo, S. H. Y.; Wang, Y.-Y.; Wan, C.-C. J. Colloid Interface Sci. 2007, 310, 190-195.