SUPPORTING INFORMATION

Total Synthesis of (+)-Sorangicin A

Amos B. Smith, III,* Shuzhi Dong, Jehrod B. Brenneman, and Richard J. Fox
Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.

Experimental procedures and high field ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds. pp S1-S62

Experimental Section

Materials and Methods: All solvents were reagent grade. Anhydrous dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and tetrahydrofuran (THF) were obtained from the Pure Solve ${ }^{\mathrm{TM}}$ PS-400 under an argon atmosphere. All reagents were purchased from Aldrich or Acros and used as received. Reactions were magnetically stirred under an argon atmosphere and monitored by thin layer chromatography (TLC) with 0.25 mm E. Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Silicycle and Sorbent Technologies. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Infrared spectra were recorded on a Jasco Model FT/IR-480 Plus spectrometer. Proton and carbon-13 NMR spectra were recorded on a Bruker AMX-500 spectrometer or a Bruker Avance III 500 spectrometer equipped with a 5 mm DCH CryoProbe at University of Pennsylvania. Chemical shifts are reported relative to either chloroform ($\delta 7.26$) or benzene ($\delta 7.16$) for ${ }^{1} \mathrm{H}$ NMR and either chloroform ($\delta 77.2$) or benzene (δ 128.4) for ${ }^{13} \mathrm{C}$ NMR. Optical rotations were measured on a Perkin-Elmer model 241 polarimeter. High resolution mass spectra were measured at the University of Pennsylvania Mass Spectrometry Service Center on either a VG Micromass 70/70H or VG ZAB-E spectrometer.

Diol (-)-S1. To a solution of (-)-10-epi-6 (72 mg, 0.12 mmol) in THF (3.4 mL) was added tetrabutylammonium fluoride (TBAF, 1 M in THF, $0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}$). After being stirred overnight, the reaction mixture was diluted with water (5 mL) and EtOAc (5 mL). The aqueous phase was then washed with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (20% to 70%, EtOAc/hexanes) afforded diol (-)-S1 (40 mg, 90\%) as a pale yellow oil: $[\alpha]_{\mathrm{D}}^{29}-39.4$ (c 1.06, CHCl_{3}); IR (neat, cm^{-1}) 3426 (br), 1728, 1454, 1391, 1367, 1156, 1061; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91$ (ddd, J $=10.3,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$, (ddd, $J=10.3,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.31(\mathrm{~m}$, $1 \mathrm{H}), 4.12-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 3 \mathrm{H}), 1.98$ (dddd, $J=14.6,10.2,7.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.16(\mathrm{~m}, 4 \mathrm{H})$,
$0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,137.6,130.8,130.2,128.5,80.3,79.9$, $72.6,63.6,61.8,37.1,35.6,34.9,32.2,28.3(3 \mathrm{C}), 27.2,25.0,21.0,12.4 ; \mathrm{HRMS}^{2}(\mathrm{ES}) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}^{+}$391.2460, obsd 391.2460.

Allylic alcohol (-)-7. To a solution of diol (-)-S1 ($40 \mathrm{mg}, 0.109 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added DMAP ($1.8 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(25 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ followed by the addition of TBSCl ($26.5 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$. After 22 h the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (6 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was purified by flash chromatography (2% to $30 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford allylic alcohol (-)-7 ($47 \mathrm{mg}, 90 \%$) as a pale yellow oil, along with (-)-10-epi-6 (4 mg, 6\%). $[\alpha]_{\mathrm{D}}^{23}-38.8\left(c 0.74, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}) 3440 (br), 1730, 1461, 1367, 1253, 1099,$837 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87(\mathrm{ddd}, J=10.3,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.77(\mathrm{ddd}, J=10.3,2.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dt}, J=7.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{br} \mathrm{d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 4 \mathrm{H})$, $0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,136.5,131.6$, $131.0,128.0,80.2,79.6,69.4,64.0,60.2,37.2,36.3,35.6,32.1,28.3$ (3C), 27.2, 26.1 (3C), 25.1, 21.0, 18.5, 12.3, -5.2 (2C); HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{SiNa}^{+}$505.3325, obsd 505.3307.

Enone (-)-S2. A stirred solution of allylic alcohol (-)-7 (52 mg, 0.108 mmol) and N methylmorpholine N-oxide monohydrate ($19 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was treated with $4 \AA$ molecular sieves (54 mg). After 5 min , TPAP ($3.8 \mathrm{mg}, 0.011 \mathrm{mmol}$) was added, and the reaction mixture was stirred for a further 1 h before being passed through a pad of silica gel which was rinsed
with ethyl acetate $(20 \mathrm{~mL})$. The solvent was evaporated under reduced pressure to yield enone (-)-S2 ($47 \mathrm{mg}, 90 \%$) as a yellow oil. $[\alpha]_{\mathrm{D}}^{29}-43.9\left(c 0.54, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 1730,1693,1462,1254,1155$, 1093, 838; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=10.3,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{ddd}, J=6.5,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.41-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{dd}, J=12.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.11(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1,173.2,151.9,136.4,128.1,126.3,82.6,80.1,66.3,58.9,37.04,37.00$, 35.6, 32.6, 28.2 (3C), 27.2, 26.0 (3C), 25.3, 20.5, 18.4, 14.4, -5.3 (2C); HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{SiNa}^{+} 503.3169$, obsd 503.3175.

Allylic Alcohol (+)-8. To a solution of enone (-)-S2 (36 mg, 0.075 mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(279 \mathrm{mg}, 0.75 \mathrm{mmol})$ at rt . After $5 \mathrm{~min}, \mathrm{NaBH}_{4}(5.7 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$. After 15 min , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(15 \mathrm{~mL})_{3}$, and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to leave a crude residue, which was purified by flash chromatography (5% to 30% EtOAc/hexanes) to afford allylic alcohol (+)-8 (34.2 mg, 95\%) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{30}+85.2(c$ $0.54, \mathrm{CHCl}_{3}$); IR (neat, cm^{-1}) $3448,1731,1461,1254,1155,1095,837 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.05 (ddd, $J=10.1,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.50$ $(\mathrm{m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H})$, $2.19(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.68-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,133.7,132.8,129.9,126.3,80.0,73.7,70.3,62.5,59.8,37.4,35.8$, 34.4, 31.9, 28.3 (3C), 27.2, 26.1 (3C), 25.4, 21.4, 18.5, 14.2, -5.2 (2C); HRMS (ES) $m / z(M+N a)^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{SiNa}^{+}$505.3325, obsd 505.3327.

Bis-TBS Ether (+)-S3. A stirred solution of (+)-8 (45 mg, 0.093 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.2 mL) was cooled to $-78^{\circ} \mathrm{C}$ and treated with 2,6-lutidine ($43 \mu \mathrm{~L}, 0.373 \mathrm{mmol}$) and TBS triflate (43 $\mu \mathrm{L}, 0.187 \mathrm{mmol})$. After 1 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried, and concentrated in vacuo to yield the crude product, which was purified by flash chromatography $(2-10 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to yield (+)-S3 (53 mg, 95\%) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{29}+59.0\left(c 0.60, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}) 1733, 1463, 1365, 1253, 1100, 836; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.85$ (ddd, $J=10.2$, $4.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.65(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.4,132.9,132.4,130.3,127.2,80.0,76.1,69.3,65.4,60.1,37.4,35.8,35.4,32.0,28.3$ (3C), 27.2, 26.11 (3C), 26.08 (3C), 25.5, 21.0, 18.5, 18.4, 14.3, -3.9, -4.3, -5.19, -5.24; HRMS (ES) $m / z(M+N a)^{+}$ calcd for $\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}^{+}$619.4190, obsd 619.4211.

Alcohol (+)-9. To a solution of bis-TBS ether (+)-S3 ($53 \mathrm{mg}, 0.089 \mathrm{mmol}$) and THF (3.6 mL) in a nalgene container was added a stock solution of HF•pyridine (0.54 mL). The stock solution was prepared by adding pyridine (3.1 mL) portion wise to a solution of HF•pyridine (1.3 g) and THF (10 mL) in a nalgene container. After 18 h , additional HF•pyridine stock solution (0.2 mL) was added. After being stirred for an additional 8 h , the reaction was carefully diluted with saturated NaHCO_{3} solution (10 mL) and diethyl ether (25 mL). The aqueous layer was then washed with diethyl ether ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$, saturated NaHCO_{3} solution (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography
(5\% to 30% EtOAc/hexanes) afforded alcohol (+)-9 (41 mg, 95\%) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{29}+84.6$ (c $0.36, \mathrm{CHCl}_{3}$); IR (neat, cm^{-1}) $3450,1730,1460,1366,1252,1114,838 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.90 (ddd, $J=10.2,4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (dd, $J=10.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J$ $=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,133.3,131.2,129.6,127.7,80.0,75.9,73.5$, $64.6,62.1,37.4,35.8,33.6,32.0,28.3$ (3C), 27.1, 26.0 (3C), 25.4, 21.0, 18.3, 14.4, -3.9, -4.4; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{SiNa}^{+} 505.3325$, obsd 505.3310.

PTS Ether (+)-S4. To a solution of alcohol (+)-9 (20 mg, 0.041 mmol$)$, triphenylphosphine (22 $\mathrm{mg}, 0.083 \mathrm{mmol}$) and 1-phenyl-1H-tetrazole-5-thiol ($30 \mathrm{mg}, 0.166 \mathrm{mmol}$) in THF (0.83 mL) was added diisopropylazodicarboxylate (DIAD, $33 \mu \mathrm{~L}, 0.166 \mathrm{mmol}$). After being stirred overnight, the reaction mixture was concentrated in vacuo and purified by flash chromatography (2% to $15 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to furnish (+)-S4 (26.6 mg, 100\%) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}+62.2\left(c 0.86, \mathrm{CHCl}_{3}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$ $1728,1597,1499,1388,1366,1250,1154,1110,838 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.51(\mathrm{~m}, 5 \mathrm{H})$, 5.89 (ddd, $J=10.2,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H} 0,5.73(\mathrm{dd}, J=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.36$ (m, 1H), 4.12 (t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H} 0,3.53$ (ddd, v 13.4, 7.8, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (ddd, $J=13.4$, $7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,154.5,133.9,133.4,130.6,130.2,129.9$ (2C), 129.7, 128.4, 124.0 (2C), 80.0, 76.3, 70.7, 65.3, 37.3, 35.7, 32.0, 31.8, 30.0, 28.3 (3C), 27.1, 26.0 (3C), 25.4, 20.9, 18.3, 14.4, -4.0, -4.4; HRMS (ES) $m / z(M+H)^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SiS}^{+}$643.3713, obsd 643.3740.

Sulfone (+)-10. To a $0{ }^{\circ} \mathrm{C}$ solution of PTS-ether (+)-S4 ($26 \mathrm{mg}, 0.040 \mathrm{mmol}$) in absolute EtOH $(4 \mathrm{~mL})$ was added a pre-mixed solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}(12.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{aq}$., $0.06 \mathrm{~mL}, 0.60 \mathrm{mmol}$) via a glass pipette. The resulting yellow solution was then removed from the ice bath and allowed to warm to room temperature. After 18 h , the reaction mixture was diluted with diethyl ether (10 mL), saturated NaHCO_{3} solution $(5 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous layer was then extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash chromatography (2% to $15 \% \mathrm{EtOAc} /$ hexanes) furnished sulfone $(+)-10(20 \mathrm{mg}, 74 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}+78.5\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 1728,1460$, 1342, 1154, 1111, 838; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 3 \mathrm{H}), 5.94$ (ddd, $J=10.2,4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.30(\mathrm{~m}, 1 \mathrm{H})$, $4.17(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=15.1,11.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=$ $15.1,11.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,153.5,134.3,133.2,131.6,130.0(2 \mathrm{C}), 129.8$, $129.2,129.0,125.2$ (2C), 80.0, 76.7, 69.7, 65.2, 53.4, 37.3, 35.7, 32.1, 28.3 (3C), 27.2, 26.0 (3C), 25.7, 25.4, 20.9, 18.3, 14.4, -4.1, -4.4; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SiSNa}^{+} 697.3431$, obsd 697.3405.

Triene (-)-11. At $-72{ }^{\circ} \mathrm{C}$, t - $\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $250 \mu \mathrm{~L}, 420 \mu \mathrm{~mol})$ was added via syringe to a solution of sulfone (-)-3 ($292 \mathrm{mg}, 420 \mu \mathrm{~mol}$) in 3:1 DMF/HMPA (5.3 mL). After 2 min , a solution of aldehyde (-)-2 $(96 \mathrm{mg}, 312 \mu \mathrm{~mol})$ in 3:1 DMF/HMPA (3.9 mL) was rapidly added via cannula, and the
resulting mixture was allowed to warm to rt over 2.5 h in the dark. A solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added to the reaction mixture, followed by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude oil was purified by preparatory TLC ($\mathrm{SiO}_{2}, 1 \mathrm{~mm}$) eluting with hexanes $/ \mathrm{Et}_{2} \mathrm{O}(1: 2)$ to afford triene (-)-11 (94 mg, 39\%) as a pale yellow oil, along with recovered $(-)-\mathbf{2}(12 \mathrm{mg}, 13 \%)$ and $(-)-\mathbf{3}(113 \mathrm{mg}, 39 \%) .[\alpha]_{\mathrm{D}}^{20}-32.3\left(c 0.55, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 1602,1461$, 1379, 1250, 1216, 1144, 1099, 1067, 1038; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.82$ (dd, $J=14.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.43 (dd, $J=14.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (ddd, $J=15.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.68(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=15.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\left(\mathrm{~d}, J_{A B}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.50\left(\mathrm{~d}, J_{A B}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{ddd}, J=2.6,2.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (ddd, $J=4.8,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (ddd, $J=2.9,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (app t, $J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{ddd}, J=13.4,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{ddd}, J=11.5,5.9,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{dq}, J=9.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3 H), 0.09 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 142.0,132.7,132.55,129.2,127.5,108.3,95.2,83.5$, 80.6, 79.4, 79.1, 78.9, 78.6, 75.8, 75.5, 73.9, 72.0, 62.7, 55.2, 41.8, 38.7, 36.3, 35.6, 323.0, 29.6, 29.1, 28.2, 26.2, 25.7, 18.5, 15.2, 10.8, -5.0; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{61} \mathrm{IO}_{8} \mathrm{SiNa}^{+} 799.3078$, obsd 799.3081.

$(-)-11$

(-)-S5

Alcohol (-)-S5. To a $-20^{\circ} \mathrm{C}$ solution of TBS ether (-)-11 (11.1 mg, $14.2 \mu \mathrm{~mol}$) in THF ($500 \mu \mathrm{~L}$) was added tetrabutylammonium fluoride (TBAF, 1 M in THF, $21 \mu \mathrm{~L}, 21 \mu \mathrm{~mol}$). The solution was then allowed to warm to room temperature. After 2 h , additional TBAF $(21 \mu \mathrm{~L})$ was added. After another 1.5 h , additional TBAF $(21 \mu \mathrm{~L})$ was again added. After 1 h , the reaction mixture was diluted with saturated NaHCO_{3} solution $(3 \mathrm{~mL})$, water $(10 \mathrm{~mL})$ and EtOAc $(15 \mathrm{~mL})$. The aqueous phase was then extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4} and
concentrated in vacuo. Purification by flash chromatography (50% to $70 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded alcohol (-)-S5 ($8.5 \mathrm{mg}, 90 \%$) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{20}-26.2\left(c \quad 0.42, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 3480$, 1670, 1602, 1455, 1379, 1247, 1216, 1144, 1097, 1066, 1037; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.82(\mathrm{dd}, J=$ $14.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=14.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{ddd}, J=15.3,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{ddd}, J=$ $15.3,6.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{ddd}, J=15.3,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, J $=5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=7.1,7.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{ddd}, J=4.5,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, J=2.7,2.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (app t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.19(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{ddd}, J=14.1,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=7.0,7.0,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{dd}, J=11.4,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38(\mathrm{ddd}, J=11.4,6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{dq}, J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 141.94,132.53,132.40,129.63,127.66$, $108.35,95.29,83.54,80.55,79.41,79.08,78.65,76.03,75.51,74.13,71.99,62.07,55.25,41.74,38.72$, 36.37, 35.76, 32.82, 29.62, 29.13, 28.13, 25.62, 15.17, 10.85; HRMS (ES) $m / z(M+N a)^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{IO}_{8} \mathrm{Na}^{+}$685.2213, obsd 685.2204.

PTS Ether (-)-S6. To a solution of alcohol (-)-S5 (6.9 mg, $10.4 \mu \mathrm{~mol}$), triphenylphosphine (4.4 $\mathrm{mg}, 16.6 \mu \mathrm{~mol}$) and 1-phenyl-1H-tetrazole-5-thiol ($5.0 \mathrm{mg}, 28.1 \mu \mathrm{~mol}$) in THF (1.3 mL) was added one drop of diisopropylazodicarboxylate (DIAD, $\sim 5 \mu \mathrm{~L}, \sim 25 \mu \mathrm{~mol}$). The resulting pale yellow solution gradually become colorless, and after 45 min , was concentrated in vacuo and purified via PreparativeTLC (1:1, hexanes/EtOAc on $1 / 2$ of a 500 mM plate) to furnish of PTS ether (-)-S6 ($7.9 \mathrm{mg}, 93 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}-12.1\left(c 0.45, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, cm^{-1}) 1597, 1499, 1456, 1380, 1244, 1216, 1145, 1096, 1066, 1037; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{dd}, J=14.5,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43$ (dd, $J=14.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 2 \mathrm{H}), 5.71$ (ddd, $J=15.3,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J$ $=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.02(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{ddd}, J=2.6,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{ddd}, J=14.1,7.0,7.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{dq}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 154.27,142.03,134.37$, 132.58, 130.91, 129.56, 129.27, 128.71, 124.00, 108.40, $95.19,83.61,80.54,79.40,79.06,78.84,78.49,75.75,75.57,73.96,71.94,55.22,41.82,38.73,36.44$, $35.80,32.94,31.49,30.16,29.68,29.10,28.11,25.56,15.23,10.84$; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{IN}_{4} \mathrm{O}_{7} \mathrm{SNa}^{+}$845.2421, obsd 845.2408.

(-)-S6

(-)-12

Sulfone (-)-12. To a $0{ }^{\circ} \mathrm{C}$ solution of PTS ether (-)-S6 ($10.1 \mathrm{mg}, 12.2 \mu \mathrm{~mol}$) in absolute EtOH (1 mL), not under argon, was added a pre-mixed solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}(5.6 \mathrm{mg}, 4.9 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% aq., $40 \mu \mathrm{~L}$) via a glass pipette, followed by $2 \mathrm{x} 100 \mu \mathrm{~L}$ absolute EtOH rinses. The resulting yellow solution was then removed from the ice bath and allowed to warm to room temperature. After 8 h, the reaction mixture was diluted with diethyl ether (10 mL), saturated NaHCO_{3} solution (5 mL) and water (10 mL). The aqueous layer was then extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purificaton via preparative-TLC (2:1, hexanes/EtOAc, $500 \mu \mathrm{M}$ plate) furnished sulfone (-) - $\mathbf{1 2}$ (7.7 mg, 74\%) as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}-20.3$ (c $0.32, \mathrm{C}_{6} \mathrm{H}_{6}$); IR (neat, cm^{-1}) 1598, 1498, 1479, 1461, 1343, 1247, 1216, 1153, 1097, 1066, 1037, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.36(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{dd}, J=14.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=14.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=15.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{dd}, J=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}$, $J=5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{ddd}, J=5.0,1.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (ddd, $J=2.6,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.53-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.29$ (ddd, $J=14.1$, 7.1, 7.1, 1H), 2.04-1.92 (m, 6H), $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, 1.09 (dq, $J=9.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 154.17,141.99$, $133.60,132.65,130.89,129.86,129.58,129.45,129.35,108.48,95.21,83.65,80.48,79.38,79.20,78.67$, $78.48,75.72,75.58,73.96,71.89,55.74,55.24,41.87,38.72,36.44,35.84,30.86,29.68,28.10,25.54$, 22.21, 15.22, 10.83; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{IN}_{4} \mathrm{O}_{9} \mathrm{SNa}^{+}$877.2319, obsd 877.2283.

(-)-12

TBS Ether (-)-14. At $-72{ }^{\circ} \mathrm{C}$, KHMDS (0.5 M in $\mathrm{PhMe}, 23 \mu \mathrm{~L}, 11.5 \mu \mathrm{~mol}$) was added via syringe to a solution of $(-) \mathbf{- 1 2}(8 \mathrm{mg}, 9.35 \mu \mathrm{~mol})$ in DME $(0.12 \mathrm{~mL})$. After 10 min , the bright yellow mixture was treated via cannula with a solution of $(-)-\mathbf{1 3}(6 \mathrm{mg}, 12.2 \mu \mathrm{~mol})$ in DME $(0.12 \mathrm{~mL})$ and the mixture was allowed to warm to rt over 2 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with $3: 1$ hexanes/EtOAc to afford TBS ether (-)-14 (2.9 mg, 28\%) as a pale yellow oil, along with recovered sulfone (-)-12 ($4 \mathrm{mg}, 50 \%$) and aldehyde (-)-13 ($2.4 \mathrm{mg}, 40 \%$). $[\alpha]_{\mathrm{D}}^{24}-34.9\left(c 0.59, \mathrm{C}_{6} \mathrm{H}_{6}\right) ;$ IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 1730, 1459, 1368, 1251, 1150, 1066, 1038, 971, 837, 775; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84-6.79(\mathrm{dd}, J=14.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.52(\mathrm{dd}, J=14.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80-5.69(\mathrm{~m}, 3 \mathrm{H}), 5.60-5.46(\mathrm{~m}, 3 \mathrm{H}), 5.44-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}$, $3 \mathrm{H}), 4.35-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.90$ $(\mathrm{m}, 1 \mathrm{H}), 3.87-3.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$, 2.44-2.35 (m, 2H), 2.29-2.21 (m, 2H), 2.19-2.02 (m, 7H), 1.98-1.86 (m, 1H), 1.86-1.83 (m, 1H), 1.78$1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.15(\mathrm{~m}, 11 \mathrm{H})$, 0.94-0.77 (m, 15H), 0.05-0.01 (d, $J=21.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,141.0,136.6$, 133.7, 132.4, 131.7, 131.1, 130.3, 130.1, 129.73, 129.66, 126.5, 125.9, 108.2, 94.9, 83.5, 79.9, 79.8, 79.4, $79.3,78.9,78.7,77.8,75.6,75.3,73.6,73.2,71.6,65.8,55.4,41.3,37.1,37.0,36.9,35.8,35.6,35.1$, $32.4,32.3,31.9,29.7,28.6,28.1,27.7,26.8,25.9,25.4,25.3,22.7,20.3,18.1,15.1,14.1,12.8,10.6,-$ 4.2, -4.5; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{57} \mathrm{H}_{93} \mathrm{IO}_{11} \mathrm{SiNa}^{+}$1131.5429, obsd 1131.5425.

Alcohol (-)-S5: TBS ether (-)-11 (44 mg, $57 \mu \mathrm{~mol})$ was dissolved in THF (1.1 mL) in a polyethylene vial. Neat $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(65 \mu \mathrm{~L}, 0.39 \mathrm{mmol})$ was added via autopipetter and the resulting solution was stirred in the dark for 17 h . The reaction mixture was concentrated in vacuo and directly purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with 2:3 hexanes/EtOAc to afford (-)-S5 (36 mg, 96\%) as a pale yellow oil. All characterization data are same as above.

Aldehyde (-)-15: At room temperature, solid Dess-Martin periodinane ($35 \mathrm{mg}, 82 \mu \mathrm{~mol}$) was added in one portion to a slurry of $(-)-\mathbf{S 5}(18 \mathrm{mg}, 27 \mu \mathrm{~mol})$ and $\mathrm{NaHCO}_{3}(27 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.4 \mathrm{~mL})$. The mixture was stirred in the dark for 2 h and then diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$, whereupon a 1:1:1 solution of saturated $\mathrm{NaHCO}_{3} /$ brine $/ \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ was added and stirring was continued until the aqueous layer became homogenous (20 min). The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a pad of $\mathrm{SiO}_{2}(5 \mathrm{~g})$ with an $\mathrm{Et}_{2} \mathrm{O}$ rinse $(10 \mathrm{~mL})$ and concentrated in vacuo. The crude residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with 1:1 hexanes/EtOAc to afford (-)-15 (17.7 mg, 99\%) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{24}-31.9\left(c 1.0, \mathrm{C}_{6} \mathrm{H}_{6}\right.$); IR (neat, cm^{-1}) 1724, 1457, 1378, 1216, 1144, 1101, 1066, 1036, 970, 941, 877, 799, 676; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 9.39-9.38(\mathrm{~m}, 1 \mathrm{H}), ~ 6.83-6.79$ (dd, $J=14.5$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.42(\mathrm{dd}, J=15.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.49-5.44(\mathrm{dd}, J=15.5,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73-4.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.92-3.90(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-$
$3.87(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 4 \mathrm{H})$, $1.77-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.11-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.87-0.75(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 200.6,142.4,133.0,131.1,129.6,108.8,95.6,84.0,80.9,79.8,79.3$, $79.2,78.8,76.2,75.9,74.4,72.3,55.6,43.6,42.2,39.1,36.8,36.2,30.5,30.1,28.5,26.0,25.6,21.6$, 15.6, 11.2; HRMS (ES) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{IO}_{8} \mathrm{Na}^{+}$683.2057, obsd 683.2081.

(-)-15

(+)-S7

TBS Ether (+)-S7. At $-72{ }^{\circ} \mathrm{C}$, KHMDS (0.5 M in $\mathrm{PhMe}, 30 \mu \mathrm{~L}, 15 \mu \mathrm{~mol}$) was added via syringe to a solution of $(+)-\mathbf{1 0}(10.2 \mathrm{mg}, 15 \mu \mathrm{~mol})$ in DME $(0.16 \mathrm{~mL})$. After 10 min , the bright yellow mixture was treated via cannula with a solution of $(-)-15(5 \mathrm{mg}, 7.6 \mu \mathrm{~mol})$ in DME $(0.16 \mathrm{~mL})$ and the mixture was allowed to warm to rt over 2 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The crude mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ to $30 \% \mathrm{EtOAc} /$ hexanes, silica gel was pretreated with $\left.0.5 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford TBS ether (+)-S7 (7.4 mg, 88\%) as a pale yellow oil, along with recovered sulfone (+)-10 (5.2 $\mathbf{~ m g}, 51 \%)$. $[\alpha]_{\mathrm{D}}^{29}+26.0\left(c 0.54, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 1730,1457,1367,1251,1099,1066,1038,837,775 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.84$ (dd, $J=14.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.46 (dd, $J=14.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (ddd, $J=$ $15.2,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (ddd, $J=10.2,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (dd, J $=10.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddd}, J=15.2,7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.53(\mathrm{~m}, 3 \mathrm{H}), 5.46(\mathrm{dd}, J=15.2,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{dd}, J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ABq}, J=6.9 \mathrm{~Hz}, \Delta v=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.12$ $(\mathrm{s}, 1 \mathrm{H}), 4.08-4.06(\mathrm{~m}, 3 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 1 \mathrm{H})$, 3.69-3.67 (m, 1H), $3.21(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 7 \mathrm{H}), 2.06-2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.31-$ $1.27(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 172.6,142.1,133.2,132.65$, $132.54,132.47,132.1,131.3,129.5,127.64,127.62,127.0,108.4,95.2,83.6,80.7,79.5,79.4,79.14$,
$79.05,78.6,76.8,75.8,75.5,74.0,72.8,72.0,66.1,55.3,41.8,38.8,37.8,37.0,36.5,35.9,35.8,33.0$, $32.9,32.3,29.7,28.2$ (4C), 27.5, 26.2 (3C), 25.8, 25.7, 21.3, 18.5, 15.3, 14.6, 10.9, -3.6, -4.1; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{57} \mathrm{H}_{93} \mathrm{IO}_{11} \mathrm{SiNa}^{+} 1131.5429$, obsd 1131.5415.

(+)-S7

(+)-16

Vinyl Iodide (-)-16. Solid TBAF• $3 \mathrm{H}_{2} \mathrm{O}$ ($33 \mathrm{mg}, 0.126 \mathrm{mmol}$) was added to a solution of (+)-S7 ($7 \mathrm{mg}, 6.3 \mu \mathrm{~mol}$) in THF $(0.15 \mathrm{~mL})$ at rt . The reaction mixture was stirred in the dark for 20 h , and then diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 2 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a short plug of SiO_{2}, washed with additional $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, and concentrated in vacuo. The resulting crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 0.5 \%\right.$ to $1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, silica gel was pretreated with $\left.0.5 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford vinyl iodide (+)-16 (6.1 mg, 97\%) as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{29}+26.9\left(c 0.32, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, cm^{-1}) 3436, 1729, 1456, 1367, 1217, 1149, 1066, 1038, 970; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.85$ (dd, $J=14.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=14.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{ddd}, J=10.2,5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (ddd, $J=15.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (ddd, $J=15.2,8.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddd}, J=9.7,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.47(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=$ $15.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ABq}, J=6.8 \mathrm{~Hz}, \Delta v=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.27(\mathrm{~m}$, $1 \mathrm{H})$, 4.08-3.97 (m, 5H), $3.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.77(\mathrm{~m}$, $1 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 7 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.24$ $(\mathrm{m}, 4 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 172.7$, 142.1, 132.8, 132.6, 132.5, 132.4, 132.3, 131.3, 129.5, 127.7, 127.6, $126.9,108.4,95.2,83.6,80.7,79.44,79.36,79.12,79.08,78.7,76.8,75.8,75.5,75.0,74.1,74.0,72.0$, $63.3,55.3,41.8,38.8,37.8,36.5,36.3,35.84,35.77,33.0,32.9,32.2,29.7,28.2$ (4C), 27.5, 25.72, 25.68, 21.6, 15.3, 14.3, 10.9; HRMS (ES) $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{51} \mathrm{H}_{79} \mathrm{IO}_{11} \mathrm{Na}^{+}$1017.4565, obsd 1017.4566.

(+)-16

(88\%)

(+)-17

Trienoate (+)-17. A 15 mL round bottom flask was charged with stannane $5(16 \mathrm{mg}, 40 \mu \mathrm{~mol})$, vinyl iodide (+)-16 (10 mg, $10 \mu \mathrm{~mol}), \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{NBu}_{4}(55 \mathrm{mg}, 120 \mu \mathrm{~mol})$, and dissolved in degassed DMF $(1.1 \mathrm{~mL})$. To this was added $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.2 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$, and the reaction mixture was purged with argon for 5 min , and stirred at rt in the dark overnight. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes (1:1, 4 mL), filtered through a Celite plug into brine (5 mL), and rinsed with $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $(1: 1,20 \mathrm{~mL})$. The mixture was extracted using $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $(1: 1,3 \times 10 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a crude residue, which was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 0.2 \%\right.$ to $1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, silica gel was pretreated with $\left.0.5 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford trienoate $(+)-\mathbf{1 7}(8.6 \mathrm{mg}, 88 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}^{29}+49.0\left(c 0.26, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (neat, cm^{-1}) 3417, 1720, 1650, 1612, 1454, 1368, 1246, 1218, 1149, 1097, 1067, 1038, 974, 876; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.75(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=11.5,11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{ddd}, J=10.2,5.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.93$ (ddd, $J=15.4,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=15.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=10.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.71(\mathrm{ddd}, J=15.2,7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.43$ $(\mathrm{m}, 3 \mathrm{H}), 4.78(\mathrm{dd}, J=5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{ABq}, J=6.8 \mathrm{~Hz}, \Delta v=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 1 \mathrm{H})$, 4.24-4.23 (m, 1H), 4.11-4.04 (m, 6H), 4.00-3.96 (m, 1H), 3.80-3.78 (m, 1H), 3.67-3.65 (m, 1H), 3.38 (s, $3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 7 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 172.7,166.5$, 138.7, 136.9, 134.6, 132.8, 132.7, 132.5, 132.3 (2C), 131.4, 129.1, 127.7, 127.6, 126.9, 126.8, 125.0, $118.0,108.4,95.2,82.0,80.7,79.5,79.4,79.1,78.7,76.4,75.9,75.0,74.1,74.0,72.0,63.4,55.2,50.8$, $42.0,39.3,37.8,36.5,36.3,35.83,35.77,33.0,32.8,32.2,29.7,28.2$ (4C), 27.5, 25.7 (2C), 21.6, 15.4, 14.3, 10.9; HRMS (ES) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{57} \mathrm{H}_{86} \mathrm{O}_{13} \mathrm{Na}^{+}$1001.5966, obsd 1001.5975.

(+)-17

18

Seco Acid 18. A solution of trienoate (+)-17 ($6.6 \mathrm{mg}, 6.7 \mu \mathrm{~mol})$ in THF (1.6 mL) and $\mathrm{H}_{2} \mathrm{O}(0.4$ mL) was treated with 1 M LiOH solution $(0.4 \mathrm{~mL})$. The yellow reaction mixture was stirred for 1.5 days at rt in the dark. Brine (1 mL) was added and the pH value of the reaction mixture was adjusted to ca. 3 with $1 \mathrm{M} \mathrm{NaHSO}_{4}$. The aqueous layer was extracted with $\mathrm{EtOAc}(4 \times 2 \mathrm{~mL})$, and the combined organic layers were washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a crude residue, which was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 0.5 \%\right.$ to $\left.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford seco acid 18 ($5.6 \mathrm{mg}, 86 \%$) as a yellow oil. Seco acid 18 proved very unstable, and was carried on to the next step immediately after the ${ }^{1} \mathrm{H}$ NMR spectrum was taken. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.64$ (dd, $J=11.5$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=11.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=15.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{ddd}, J=10.1,5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=15.4,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{dd}, J=15.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.58(\mathrm{~m}, 3 \mathrm{H}), 5.52-5.41(\mathrm{~m}, 3 \mathrm{H})$, $4.78(\mathrm{dd}, J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{ABq}, J=6.9 \mathrm{~Hz}, \Delta v=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.23$ $(\mathrm{m}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 6 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}$, $3 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 7 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.47$ (m, $6 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

18

(85\%)
 MOMO'

(+)-19

Macrolide (+)-19. A slurry of seco acid 18 ($5.4 \mathrm{mg}, 5.6 \mu \mathrm{~mol}$) and $\mathrm{NaHCO}_{3}(120 \mathrm{mg}, 1.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was treated with solid 2-bromo-1-ethylpyridinium tetrafluoroborate $22(31 \mathrm{mg}, 0.11$ mmol) in one portion. The reaction mixture was vigorously stirred in the dark overnight, then transferred directly onto a silica gel column and purified by flash chromatography (0.2% to 1.6% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford macrolide $(+)-\mathbf{1 9}(4.5 \mathrm{mg}, 85 \%)$ as a pale yellow foam. $[\alpha]_{\mathrm{D}}^{28}+41.6(c 0.36$, MeOH); IR (neat, cm^{-1}) 1722, 1698, 1610, 1452, 1367, 1250, 1211, 1148, 1095, 1066, 1037, 971, 916, 871; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.16-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=10.6,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{ddd}, J=10.1,5.9,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{ddd}, J=15.1,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.52(\mathrm{~m}, 3 \mathrm{H}), 5.38-5.34(\mathrm{~m}$, $3 \mathrm{H}), 5.26(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{ABq}, J=7.1 \mathrm{~Hz}, \Delta v=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.39$ $(\mathrm{m}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.6,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.01(\mathrm{~m}, 9 \mathrm{H}), 1.92(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.9,167.8,138.9,137.7,137.1$, 135.7, 134.2, 133.9, 133.6 (2C), 131.24, 131.17, 128.0, 127.9, 127.6, 126.8, 123.7, 119.8, 109.8, 96.0, $81.9,81.22$ (2C), $81.18,81.09,80.1,77.7,76.6,74.9,74.4,73.8,73.3,66.6,55.8,41.8,39.6,38.9,36.7$ (2C), 35.6, 35.1, 34.1, 33.1, 32.9, 30.8, 30.4, 28.5 (3C), 28.3, 28.2, 26.3, 25.7, 22.3, 15.3, 14.5, 10.8; HRMS (ES) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{56} \mathrm{H}_{82} \mathrm{O}_{12} \mathrm{Na}^{+} 969.5704$, obsd 969.5670.

(+)-Sorangicin A (1). To a stirred solution of macrolide (+)-19 (3.5 mg, $3.7 \mu \mathrm{~mol})$ and 2,6lutidine ($13 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mu \mathrm{~L})$ was added TBSOTf $(9 \mu \mathrm{~L}, 37 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. After 30 \min at $0^{\circ} \mathrm{C}$, the reaction mixture was warmed to rt and stirred for 3 h before being quenched with 0.2 N $\mathrm{HCl}(1 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 2 \mathrm{~mL})$, and the combined organic layers were washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give the crude TBS ester $\mathbf{S 8}$.

Without further purification, TBS ester $\mathbf{S 8}$ was dissolved in THF ($200 \mu \mathrm{~L}$) and treated with 4 N $\mathrm{HCl}(200 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 24 h before being cooled to $0{ }^{\circ} \mathrm{C}$ and carefully neutralized with saturated NaHCO_{3} solution $(2 \mathrm{~mL})$, and then acidified with HCOOH ($0.5 \mathrm{~mL}, \mathrm{pH} \sim 3$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 3 \mathrm{~mL})$, and the combined organic layers were concentrated in vacuo to give a crude residue, which was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 1 \%\right.$ to $\left.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to furnish (+)-sorangicin $\mathrm{A}(\mathbf{1})(2.1 \mathrm{mg}, 70 \%, 2$ steps $)$ as an off-white solid. $[\alpha]_{\mathrm{D}}^{20}+56(c 0.06, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}, 40-\mathrm{H}, 41-\mathrm{H}), 6.99$ (dd, $J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}, 38-\mathrm{H}), 6.44(\mathrm{dd}, J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 39-\mathrm{H}), 6.22(\mathrm{dd}, J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $37-\mathrm{H}), 6.13(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 6.01(\mathrm{ddd}, J=9.9,5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 5.75(\mathrm{ddd}, J=$ $15.4,6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{H}), 5.62(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, 42-\mathrm{H}), 5.60(\mathrm{dd}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H})$, $5.55-5.53(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{H}, 16-\mathrm{H}), 5.52-5.48(\mathrm{~m}, 1 \mathrm{H}, 29-\mathrm{H}), 5.38(\mathrm{ddd}, J=15.0,8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 30-\mathrm{H})$, 5.32-5.30 (m, 2H, 7-H, 10-H), 4.57 (br s, 1H, 36-H), 4.40-4.38 (m, 2H, $35-\mathrm{H}, 13-\mathrm{H}$), 4.28 (d, J=6.2 Hz, $1 \mathrm{H}, 33-\mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H}), 4.15(\mathrm{dd}, J=7.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 21-\mathrm{H}), 3.88-3.82(\mathrm{~m}, 3 \mathrm{H}, 27-\mathrm{H}, 25-\mathrm{H}, 31-\mathrm{H})$, 3.71 (ddd, $J=11.0,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 23-\mathrm{H}), 3.48(\mathrm{dd}, J=7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 22-\mathrm{H}), 2.42-2.36(\mathrm{~m}, 2 \mathrm{H}, 14-$ $\left.\mathrm{H}_{\mathrm{a}}, 6-\mathrm{H}\right), 2.28-2.22\left(\mathrm{~m}, 1 \mathrm{H}, 28-\mathrm{H}_{\mathrm{a}}\right), 2.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 2.19-2.09\left(\mathrm{~m}, 6 \mathrm{H}, 17-\mathrm{H}, 14-\mathrm{H}_{\mathrm{b}}, 28-\mathrm{H}_{\mathrm{b}}\right.$, $18-\mathrm{H}), 2.05\left(\mathrm{ddd}, J=11.5,6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 34-\mathrm{H}_{\mathrm{a}}\right), 1.93\left(\mathrm{dd}, J=11.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 34-\mathrm{H}_{\mathrm{b}}\right), 1.74$ (ddd, J $\left.=14.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 24-\mathrm{H}_{\mathrm{a}}\right), 1.66\left(\mathrm{ddd}, J=14.0,11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 24-\mathrm{H}_{\mathrm{b}}\right), 1.63(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}$, $45-\mathrm{H}), 1.61-1.53(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, 26-\mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}, 32-\mathrm{H}), 1.37-1.16(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}, 4-\mathrm{H}), 0.88(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}, 46-\mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 44-\mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 47-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 179.18$ ($\mathrm{C}-1$), 167.66 (C-43), 139.16 (C-41), 137.77 (C-39), 136.95 (C-12), 134.94 (C-37), 134.61 (C-19), 134.10 (C-7), 133.69 (C-16), 132.98 (C-29), 132.79 (C-30), 131.09 (C-8), 129.96 (C-20), 128.25 (C-15), 127.74 (C-38), 126.96 (C-40), 123.71 (C-11), 119.55 (C-42), 82.08 (C-36), 81.20 (C-31), 80.98 (C-33), 77.76 (C-22), 77.49 (C-35), 75.23 (C-13), 74.85 (C-23), 74.67 (C-27), 74.37 (C-21), 74.17 (C-9), 71.01 (C-25), 66.68 (C-10), 42.06 (C-32), 39.80 (C-34), 38.69 (C-5), 38.28 (C-26), 37.14 (C-28), 36.23 (C-2), 35.34 (C-14), 34.20 (C-18), 33.51 (C-17), 32.96 (C-6), 30.89 (C-24), 28.40 (C-4), 26.64 (C3), 21.85 (C-44), 15.39 (C-47), 14.39 (C-45), 10.85 (C-46); HRMS (ES) m/z (M+Na) ${ }^{+}$calcd for $\mathrm{C}_{47} \mathrm{H}_{66} \mathrm{O}_{11} \mathrm{Na}^{+}$829.4503, obsd 829.4507.
${ }^{1} \mathrm{H}$ NMR Chemical Shifts of $(+)$-Sorangicin A δ (ppm in $\mathrm{CD}_{3} \mathrm{OD}$)

Proton Number	Synthetic (+)-Sorangicin A	Natural (+)-Sorangicin A
40-H, 41-H	7.22-7.12 (m, 2H)	7.22-7.12 (m, 2H)
38-H	6.99 (dd, $J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H})$	6.99 (dd, $J=14.9,11.1 \mathrm{~Hz}, 1 \mathrm{H})$
39-H	6.44 (dd, $J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H})$	6.44 (dd, $J=10.6,10.6 \mathrm{~Hz}, 1 \mathrm{H})$
37-H	6.22 (dd, $J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$	6.22 (dd, $J=15.4,4.7 \mathrm{~Hz}, 1 \mathrm{H})$
12-H	6.13 (dd, $J=9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H})$	6.13 (dd, $J=10.0,3.1 \mathrm{~Hz}, 1 \mathrm{H})$
11-H	6.01 (ddd, $J=9.9,5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H})$	6.01 (ddd, $J=10.0,5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H})$
19-H	5.75 (ddd, $J=15.4,6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H})$	5.75 (ddd, $J=15.4,6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H})$
42-H	5.62 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$	5.62 (d, J=10.5 Hz, 1H)
20-H	5.60 (dd, $J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})$	5.60 (dd, $J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$
$15-\mathrm{H}, 16-\mathrm{H}$	$5.55-5.53$ (m, 2H)	5.55-5.53 (m, 2H)
29-H	5.52-5.48 (m, 1H)	5.52-5.48 (m, 1H)
30-H	5.38 (ddd, $J=15.0,8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$	5.38 (ddd, $J=15.0,8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$
$7-\mathrm{H}, 10-\mathrm{H}$	5.32-5.30 (m, 2H)	5.32-5.30 (m, 2H)
36-H	4.57 (br s, 1H)	4.57 (br s, 1H)
$35-\mathrm{H}, 13-\mathrm{H}$	4.40-4.38 (m, 2H)	4.40-4.38 (m, 2H)
33-H	4.28 (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$	4.28 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$
9-H	4.23 (s, 1H)	4.23 (s, 1H)
21-H	4.15 (dd, $J=7.4,4.5 \mathrm{~Hz}, 1 \mathrm{H})$	4.15 (dd, $J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H})$
27-H, 25-H, 31-H	3.88-3.82 (m, 3H)	3.88-3.82 (m, 3H)
23-H	3.71 (ddd, $J=11.0,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H})$	3.71 (ddd, $J=11.0,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H})$
22-H	3.48 (dd, $J=7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H})$	3.48 (dd, $J=7.2,4.6 \mathrm{~Hz}, 1 \mathrm{H})$
14-Ha, 6-H	2.42-2.36 (m, 2H)	2.42-2.36 (m, 2H)
$28-\mathrm{Ha}_{\text {a }}$	2.28-2.22 (m, 1H)	2.28-2.23 (m, 1H)
2-H	2.23 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$	2.24 (t, J=7.6 Hz, 2H)
17-H,14-H ${ }_{\mathrm{b}}, 28-\mathrm{H}_{\mathrm{b}}, 18-\mathrm{H}$	2.19-2.09 (m, 6H)	2.19-2.09 (m, 6H)
$34-\mathrm{H}_{\mathrm{a}}$	2.05 (ddd, $J=11.5,6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H})$	2.05 (ddd, $J=11.6,6.5,2.8 \mathrm{~Hz}, 1 \mathrm{H})$
$34-\mathrm{H}_{\mathrm{b}}$	1.93 (dd, $J=11.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$	1.93 (dd, $J=11.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$
$24-\mathrm{H}_{\mathrm{a}}$	1.74 (ddd, $J=14.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$	1.73 (ddd, $J=14.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$
$24-\mathrm{H}_{\mathrm{b}}$	1.66 (ddd, $J=14.0,11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H})$	1.66 (ddd, $J=14.0,11.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$
45-H	1.63 (d, $J=0.7 \mathrm{~Hz}, 3 \mathrm{H})$	1.63 (d, $J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$
3-H, 26-H	$1.61-1.53$ (m, 3H)	$1.60-1.53$ (m, 3H)
32-H	1.42 (m, 1H)	1.42 (m, 1H)
5-H, 4-H	1.37-1.16 (m, 4H)	1.38-1.16 (m, 4H)
46-H	0.88 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$	0.88 (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$
44-H	0.87 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$	0.87 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
47-H	0.82 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$	0.82 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR Chemical Shifts of (+)-Sorangicin A δ (ppm in $\mathrm{CD}_{3} \mathrm{OD}$)		
Carbon Number	Synthetic (+)-Sorangicin A	Natural (+)-Sorangicin A
C-1	179.18	178.61
C-43	167.66	167.66
C-41	139.16	139.19
C-39	137.77	137.78
C-12	136.95	136.96
C-37	134.94	134.93
C-19	134.61	134.63
C-7	134.10	134.10
C-16	133.69	133.70
C-29	132.98	132.97
C-30	132.79	132.80
C-8	131.09	131.17
C-20	129.96	129.95
C-15	128.25	128.25
C-38	127.74	127.74
C-40	126.96	126.96
C-11	123.71	123.70
C-42	119.55	119.55
C-36	82.08	82.09
C-31	81.20	81.21
C-33	80.98	80.99
C-22	77.76	77.76
C-35	77.49	77.49
C-13	75.23	75.22
C-23	74.85	74.85
C-27	74.67	74.67
C-21	74.37	74.36
C-9	74.17	74.19
C-25	71.01	71.01
C-10	66.68	66.73
C-32	42.06	42.05
C-34	39.80	39.81
C-5	38.69	38.64
C-26	38.28	38.30
C-28	37.14	37.14

Carbon Number	Synthetic (+)-Sorangicin A	Natural (+)-Sorangicin A
C-2	36.23	35.78
C-14	35.34	35.34
C-18	34.20	34.20
C-17	33.51	33.51
C-6	32.96	32.95
C-24	30.89	30.88
C-4	28.40	28.33
C-3	26.64	26.46
C-44	21.85	21.84
C-47	15.39	15.39
C-45	14.39	14.38
C-46	10.85	10.85

