SUPPORTING INFORMATION

Total Synthesis of (+)-Sorangicin A

Amos B. Smith, III,* Shuzhi Dong, Jehrod B. Brenneman, and Richard J. Fox

Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.

Experimental procedures and high field ¹H NMR and ¹³C NMR spectra for all compounds.

pp S1-S62

Experimental Section

Materials and Methods: All solvents were reagent grade. Anhydrous dichloromethane (CH₂Cl₂), diethyl ether (Et₂O) and tetrahydrofuran (THF) were obtained from the Pure SolveTM PS-400 under an argon atmosphere. All reagents were purchased from Aldrich or Acros and used as received. Reactions were magnetically stirred under an argon atmosphere and monitored by thin layer chromatography (TLC) with 0.25 mm E. Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040 – 0.062 mm) supplied by Silicycle and Sorbent Technologies. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Infrared spectra were recorded on a Jasco Model FT/IR-480 Plus spectrometer. Proton and carbon-13 NMR spectra were recorded on a Bruker AMX-500 spectrometer or a Bruker Avance III 500 spectrometer equipped with a 5 mm DCH CryoProbe at University of Pennsylvania. Chemical shifts are reported relative to either chloroform (δ 7.26) or benzene (δ 7.16) for ¹H NMR and either chloroform (δ 77.2) or benzene (δ 128.4) for ¹³C NMR. Optical rotations were measured on a Perkin-Elmer model 241 polarimeter. High resolution mass spectra were measured at the University of Pennsylvania Mass Spectrometry Service Center on either a VG Micromass 70/70H or VG ZAB-E spectrometer.

Diol (–)-**S1.** To a solution of (–)-10-*epi*-**6** (72 mg, 0.12 mmol) in THF (3.4 mL) was added tetrabutylammonium fluoride (TBAF, 1 M in THF, 0.36 mL, 0.36 mmol). After being stirred overnight, the reaction mixture was diluted with water (5 mL) and EtOAc (5 mL). The aqueous phase was then washed with EtOAc (3x5 mL), and the combined organic layers were washed with brine (5 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (20% to 70%, EtOAc/hexanes) afforded diol (–)-**S1** (40 mg, 90%) as a pale yellow oil: $[\alpha]_{D}^{29}$ –39.4 (*c* 1.06, CHCl₃); IR (neat, cm⁻¹) 3426 (br), 1728, 1454, 1391, 1367, 1156, 1061; ¹H NMR (500 MHz, CDCl₃) δ 5.91 (ddd, *J* = 10.3, 2.3, 2.3 Hz, 1H), 5.72, (ddd, *J* = 10.3, 2.3, 2.3 Hz, 1H), 5.23 (d, *J* = 9.6 Hz, 1H), 4.34-4.31 (m, 1H), 4.12-4.11 (m, 1H), 3.84-3.76 (m, 3H), 2.56 (br s, 1H), 2.45-2.39 (m, 1H), 2.21-2.13 (m, 3H), 1.98 (dddd, *J* = 14.6, 10.2, 7.9, 4.3 Hz, 1H), 1.67 (s, 3H), 1.56-1.48 (m, 2H), 1.43 (s, 9H), 1.36-1.16 (m, 4H),

0.94 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 137.6, 130.8, 130.2, 128.5, 80.3, 79.9, 72.6, 63.6, 61.8, 37.1, 35.6, 34.9, 32.2, 28.3 (3C), 27.2, 25.0, 21.0, 12.4; HRMS (ES) m/z (M+Na)⁺ calcd for C₂₁H₃₆O₅Na⁺ 391.2460, obsd 391.2460.

Allylic alcohol (–)-7. To a solution of diol (–)-S1 (40 mg, 0.109 mmol) in CH₂Cl₂ (1.2 mL) was added DMAP (1.8 mg, 0.015 mmol) and Et₃N (25 µL, 0.18 mmol) followed by the addition of TBSCI (26.5 mg, 0.18 mmol) in CH₂Cl₂ (1.2 mL). After 22 h the reaction mixture was quenched with saturated NH₄Cl solution (6 mL), and extracted with Et₂O (3×10 mL). The combined organic layers were dried over Na₂SO₄, and concentrated *in vacuo*. The crude residue was purified by flash chromatography (2% to 30% EtOAc/hexanes) to afford allylic alcohol (–)-7 (47 mg, 90%) as a pale yellow oil, along with (–)-10-*epi*-6 (4 mg, 6%). $[\alpha]_D^{23}$ –38.8 (*c* 0.74, CHCl₃); IR (neat, cm⁻¹) 3440 (br), 1730, 1461, 1367, 1253, 1099, 837; ¹H NMR (500 MHz, CDCl₃) δ 5.87 (ddd, *J* = 10.3, 2.1, 2.1 Hz, 1H), 5.77 (ddd, *J* = 10.3, 2.1, 2.1 Hz, 1H), 5.19 (d, *J* = 9.5 Hz, 1H), 4.30-4.27 (m, 1H), 4.09 (br s, 1H), 3.78-3.70 (m, 2H), 3.69 (d, *J* = 7.1 Hz, 1H), 2.46-2.40 (m, 1H), 2.18 (dt, *J* = 7.4, 2.5 Hz, 2H), 2.01 (br d, *J* = 4.3 Hz, 1H), 1.89-1.82 (m, 1H), 1.75-1.68 (m, 1H), 1.67 (d, *J* = 1.0 Hz, 3H), 1.57-1.50 (m, 2H), 1.43 (s, 9H), 1.36-1.18 (m, 4H), 0.95 (d, *J* = 6.7 Hz, 3H), 0.88 (s, 9H), 0.05 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 136.5, 131.6, 131.0, 128.0, 80.2, 79.6, 69.4, 64.0, 60.2, 37.2, 36.3, 35.6, 32.1, 28.3 (3C), 27.2, 26.1 (3C), 25.1, 21.0, 18.5, 12.3, -5.2 (2C); HRMS (ES) *m/z* (M+Na)⁺ calcd for C₂₇H₅₀O₅SiNa⁺ 505.3325, obsd 505.3307.

Enone (–)-S2. A stirred solution of allylic alcohol (–)-7 (52 mg, 0.108 mmol) and *N*-methylmorpholine *N*-oxide monohydrate (19 mg, 0.16 mmol) in CH_2Cl_2 (2 mL) was treated with 4 Å molecular sieves (54 mg). After 5 min, TPAP (3.8 mg, 0.011 mmol) was added, and the reaction mixture was stirred for a further 1 h before being passed through a pad of silica gel which was rinsed

with ethyl acetate (20 mL). The solvent was evaporated under reduced pressure to yield enone (–)-**S2** (47 mg, 90%) as a yellow oil. $[\alpha]_D^{29}$ –43.9 (*c* 0.54, C₆H₆); IR (neat, cm⁻¹) 1730, 1693, 1462, 1254, 1155, 1093, 838; ¹H NMR (500 MHz, CDCl₃) δ 6.93 (dd, *J* = 10.3, 2.0 Hz, 1H), 6.04 (dd, *J* = 10.3, 2.4 Hz, 1H), 4.93 (d, *J* = 9.4 Hz, 1H), 4.44 (s, 1H), 4.39 (ddd, *J* = 6.5, 2.0, 2.0 Hz, 1H), 3.81-3.72 (m, 2H), 2.41-2.34 (m, 1H), 2.14 (t, *J* = 7.5 Hz, 2H), 1.86 (dd, *J* = 12.1, 6.2 Hz, 2H), 1.70 (d, *J* = 0.7 Hz, 3H), 1.54-1.48 (m, 2H), 1.42 (s, 9H), 1.29-1.11 (m, 4H), 0.88 (d, *J* = 6.6 Hz, 3H), 0.87 (s, 9H), 0.04 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 196.1, 173.2, 151.9, 136.4, 128.1, 126.3, 82.6, 80.1, 66.3, 58.9, 37.04, 37.00, 35.6, 32.6, 28.2 (3C), 27.2, 26.0 (3C), 25.3, 20.5, 18.4, 14.4, -5.3 (2C); HRMS (ES) *m/z* (M+Na)⁺ calcd for C₂₇H₄₈O₅SiNa⁺ 503.3169, obsd 503.3175.

Allylic Alcohol (+)-8. To a solution of enone (–)-S2 (36 mg, 0.075 mmol) in MeOH (3 mL) was added CeCl₃•7H₂O (279 mg, 0.75 mmol) at rt. After 5 min, NaBH₄ (5.7 mg, 0.15 mmol) was added at 0 °C. After 15 min, the reaction mixture was quenched with saturated NH₄Cl solution (15 mL)₃, and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to leave a crude residue, which was purified by flash chromatography (5% to 30% EtOAc/hexanes) to afford allylic alcohol (+)-8 (34.2 mg, 95%) as a pale yellow oil. $[\alpha]_D^{30}$ +85.2 (*c* 0.54, CHCl₃); IR (neat, cm⁻¹) 3448, 1731, 1461, 1254, 1155, 1095, 837; ¹H NMR (500 MHz, CDCl₃) δ 6.05 (ddd, *J* = 10.1, 5.6, 2.0 Hz, 1H), 5.91 (dd, *J* = 10.1, 3.2 Hz, 1H), 5.43 (d, *J* = 9.6 Hz, 1H), 4.53-4.50 (m, 1H), 4.01 (s, 1H), 3.87 (t, *J* = 5.4 Hz, 1H), 3.78-3.73 (m, 1H), 3.71-3.67 (m, 1H), 2.48-2.41 (m, 1H), 2.19 (dt, *J* = 7.5, 1.5 Hz, 2H), 1.87-1.80 (m, 1H), 1.72 (d, *J* = 7.4 Hz, 1H), 1.65 (d, *J* = 0.5 Hz, 3H), 1.68-1.53 (m, 3H), 1.44 (s, 9H), 1.36-1.25 (m, 4H), 0.95 (d, *J* = 6.6 Hz, 3H), 0.89 (s, 9H), 0.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 133.7, 132.8, 129.9, 126.3, 80.0, 73.7, 70.3, 62.5, 59.8, 37.4, 35.8, 34.4, 31.9, 28.3 (3C), 27.2, 26.1 (3C), 25.4, 21.4, 18.5, 14.2, -5.2 (2C); HRMS (ES) *m/z* (M+Na)⁺ calcd for C₂₇H₅₀O₅SiNa⁺ 505.3325, obsd 505.3327.

Bis-TBS Ether (+)-**S3.** A stirred solution of (+)-**8** (45 mg, 0.093 mmol) in anhydrous CH₂Cl₂ (2.2 mL) was cooled to -78 °C and treated with 2,6-lutidine (43 µL, 0.373 mmol) and TBS triflate (43 µL, 0.187 mmol). After 1 h, the reaction mixture was quenched with saturated NH₄Cl solution (10 mL) and extracted with Et₂O (3x10 mL). The combined organic extracts were washed with brine (10 mL), dried, and concentrated *in vacuo* to yield the crude product, which was purified by flash chromatography (2-10% EtOAc/hexanes) to yield (+)-**S3** (53 mg, 95%) as a pale yellow oil. [α] ²⁹_D +59.0 (*c* 0.60, CHCl₃); IR (neat, cm⁻¹) 1733, 1463, 1365, 1253, 1100, 836; ¹H NMR (500 MHz, CDCl₃) δ 5.85 (ddd, *J* = 10.2, 4.6, 2.0 Hz, 1H), 5.78 (dd, *J* = 10.2, 1.7 Hz, 1H), 5.34 (d, *J* = 9.4 Hz, 1H), 4.38-4.36 (m, 1H), 4.09 (t, *J* = 3.7 Hz, 1H), 3.96 (s, 1H), 3.76-3.66 (m, 2H), 2.41-2.35 (m, 1H), 2.18 (t, *J* = 7.6 Hz, 2H), 1.83-1.76 (m, 1H), 1.65 (d, *J* = 0.8 Hz, 3H), 1.66-1.52 (m, 3H), 1.44 (s, 9H), 1.31-1.22 (m, 4H), 0.93 (d, *J* = 6.6 Hz, 3H), 0.88 (s, 9H), 0.86 (s, 9H), 0.05 (s, 6H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 132.9, 132.4, 130.3, 127.2, 80.0, 76.1, 69.3, 65.4, 60.1, 37.4, 35.8, 35.4, 32.0, 28.3 (3C), 27.2, 26.11 (3C), 26.08 (3C), 25.5, 21.0, 18.5, 18.4, 14.3, -3.9, -4.3, -5.19, -5.24; HRMS (ES) *m/z* (M+Na)⁺ calcd for C₃₃H₆₄O₅Si₂Na⁺ 619.4190, obsd 619.4211.

Alcohol (+)-9. To a solution of bis-TBS ether (+)-S3 (53 mg, 0.089 mmol) and THF (3.6 mL) in a nalgene container was added a stock solution of HF•pyridine (0.54 mL). The stock solution was prepared by adding pyridine (3.1 mL) portion wise to a solution of HF•pyridine (1.3 g) and THF (10 mL) in a nalgene container. After 18 h, additional HF•pyridine stock solution (0.2 mL) was added. After being stirred for an additional 8 h, the reaction was carefully diluted with saturated NaHCO₃ solution (10 mL) and diethyl ether (25 mL). The aqueous layer was then washed with diethyl ether (3x5 mL), and the combined organic layers were washed with saturated NH₄Cl solution (10 mL), saturated NaHCO₃ solution (10 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (5% to 30% EtOAc/hexanes) afforded alcohol (+)-**9** (41 mg, 95%) as a pale yellow oil. $[\alpha]_{D}^{29}$ +84.6 (*c* 0.36, CHCl₃); IR (neat, cm⁻¹) 3450, 1730, 1460, 1366, 1252, 1114, 838; ¹H NMR (500 MHz, CDCl₃) δ 5.90 (ddd, *J* = 10.2, 4.8, 2.2 Hz, 1H), 5.73 (dd, *J* = 10.2, 2.4 Hz, 1H), 5.36 (d, *J* = 9.5 Hz, 1H), 4.46 (dd, *J* = 10.6, 2.5 Hz, 1H), 4.14-4.12 (m, 1H), 4.05 (s, 1H), 3.86-3.81 (m, 1H), 3.78-3.73 (m, 1H), 2.85 (dd, *J* = 8.3, 1.9 Hz, 1H), 2.41-2.36 (m, 1H), 2.18 (t, *J* = 7.6 Hz, 2H), 1.99-1.91 (m, 1H), 1.65 (d, *J* = 0.9 Hz, 3H), 1.61-1.51 (m, 3H), 1.43 (s, 9H), 1.32-1.21 (m, 4H), 0.93 (d, *J* = 6.7 Hz, 3H), 0.85 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 133.3, 131.2, 129.6, 127.7, 80.0, 75.9, 73.5, 64.6, 62.1, 37.4, 35.8, 33.6, 32.0, 28.3 (3C), 27.1, 26.0 (3C), 25.4, 21.0, 18.3, 14.4, -3.9, -4.4; HRMS (ES) *m/z* (M+Na)⁺ calcd for C₂₇H₅₀O₅SiNa⁺ 505.3325, obsd 505.3310.

PTS Ether (+)-S4. To a solution of alcohol (+)-9 (20 mg, 0.041 mmol), triphenylphosphine (22 mg, 0.083 mmol) and 1-phenyl-1H-tetrazole-5-thiol (30 mg, 0.166 mmol) in THF (0.83 mL) was added diisopropylazodicarboxylate (DIAD, 33 μL, 0.166 mmol). After being stirred overnight, the reaction mixture was concentrated *in vacuo* and purified by flash chromatography (2% to 15% EtOAc/hexanes) to furnish (+)-**S4** (26.6 mg, 100%) as a pale yellow oil. $[\alpha]_{D}^{28}$ +62.2 (*c* 0.86, CHCl₃); IR (neat, cm⁻¹) 1728, 1597, 1499, 1388, 1366, 1250, 1154, 1110, 838; ¹H NMR (500 MHz, CDCl₃) δ 7.58-7.51 (m, 5H), 5.89 (ddd, *J* = 10.2, 4.6, 2.2 Hz, 1H0, 5.73 (dd, *J* = 10.2, 2.8 Hz, 1H), 5.35 (d, *J* = 9.4 Hz, 1H), 4.38-4.36 (m, 1H), 4.12 (t, *J* = 3.6 Hz, 1H), 4.01 (s, 1H0, 3.53 (ddd, v 13.4, 7.8, 4.9 Hz, 1H), 3.40 (ddd, *J* = 13.4, 7.7, 7.7 Hz, 1H), 2.40-2.34 (m, 1H), 2.15 (t, *J* = 7.6 Hz, 2H), 2.12-2.01 (m, 2H), 1.66 (s, 3H), 1.55-1.50 (m, 2H), 1.42 (s, 9H), 1.31-1.20 (m, 4H), 0.91 (d, *J* = 6.7 Hz, 3H), 0.85 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 154.5, 133.9, 133.4, 130.6, 130.2, 129.9 (2C), 129.7, 128.4, 124.0 (2C), 80.0, 76.3, 70.7, 65.3, 37.3, 35.7, 32.0, 31.8, 30.0, 28.3 (3C), 27.1, 26.0 (3C), 25.4, 20.9, 18.3, 14.4, -4.0, -4.4; HRMS (ES) *m/z* (M+H)⁺ calcd for C₃₄H₅₅N₄O₄SiS⁺ 643.3713, obsd 643.3740.

Sulfone (+)-10. To a 0 °C solution of PTS-ether (+)-S4 (26 mg, 0.040 mmol) in absolute EtOH (4 mL) was added a pre-mixed solution of $(NH_4)_6Mo_7O_{24}$ •4H₂O (12.5 mg, 0.01 mmol) in H₂O₂ (30% aq., 0.06 mL, 0.60 mmol) via a glass pipette. The resulting yellow solution was then removed from the ice bath and allowed to warm to room temperature. After 18 h, the reaction mixture was diluted with diethyl ether (10 mL), saturated NaHCO₃ solution (5 mL) and water (10 mL). The aqueous layer was then extracted with diethyl ether (3x5 mL), and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash chromatography (2% to 15% EtOAc/hexanes) furnished sulfone (+)-10 (20 mg, 74%) as a pale yellow oil. $[\alpha]_{D}^{28}$ +78.5 (*c* 1.2, CHCl₃); IR (neat, cm⁻¹) 1728, 1460, 1342, 1154, 1111, 838; ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.68 (m, 2H), 7.62-7.59 (m, 3H), 5.94 (ddd, *J* = 10.2, 4.3, 2.1 Hz, 1H), 5.70 (dd, *J* = 10.2, 1.8 Hz, 1H), 5.39 (d, *J* = 9.5 Hz, 1H), 4.32-4.30 (m, 1H), 4.17(t, J = 3.8 Hz, 1H), 4.04 (d, J = 2.9 Hz, 1H), 3.91 (ddd, J = 15.1, 11.1, 4.5 Hz, 1H), 3.79 (ddd, J = 15.1, 11.1, 10.15.1, 11.0, 5.1 Hz, 1H), 2.42-2.36 (m, 1H), 2.28-2.20 (m, 1H), 2.17-2.08 (m, 3H), 1.68 (d, J = 0.8 Hz, 3H), 1.56-1.50 (m, 2H), 1.43 (s, 9H), 1.32-1.22 (m, 4H), 0.93 (d, J = 6.6 Hz, 3H), 0.86 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 153.5, 134.3, 133.2, 131.6, 130.0 (2C), 129.8, 129.2, 129.0, 125.2 (2C), 80.0, 76.7, 69.7, 65.2, 53.4, 37.3, 35.7, 32.1, 28.3 (3C), 27.2, 26.0 (3C), 25.7, 25.4, 20.9, 18.3, 14.4, -4.1, -4.4; HRMS (ES) m/z (M+Na)⁺ calcd for C₃₄H₅₄N₄O₆SiSNa⁺ 697.3431, obsd 697.3405.

Triene (–)-**11.** At –72 °C, *t*-BuLi (1.7 M in pentane, 250 μ L, 420 μ mol) was added via syringe to a solution of sulfone (–)-**3** (292 mg, 420 μ mol) in 3:1 DMF/HMPA (5.3 mL). After 2 min, a solution of aldehyde (–)-**2** (96 mg, 312 μ mol) in 3:1 DMF/HMPA (3.9 mL) was rapidly added via cannula, and the

resulting mixture was allowed to warm to rt over 2.5 h in the dark. A solution of saturated NH₄Cl solution (5 mL) was added to the reaction mixture, followed by H₂O (10 mL). The aqueous phase was extracted with Et₂O (3x10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resulting crude oil was purified by preparatory TLC (SiO₂, 1 mm) eluting with hexanes/Et₂O (1:2) to afford triene (-)-11 (94 mg, 39%) as a pale yellow oil, along with recovered (-)-2 (12 mg, 13%) and (-)-3 (113 mg, 39%). $[\alpha]_{D}^{20}$ -32.3 (c 0.55, C₆H₆); IR (neat, cm⁻¹) 1602, 1461, 1379, 1250, 1216, 1144, 1099, 1067, 1038; ¹H NMR (500 MHz, C_6D_6) δ 6.82 (dd, J = 14.5, 4.8 Hz, 1H), 6.43 (dd, J = 14.5, 1.5 Hz, 1H), 5.93 (ddd, J = 15.2, 6.7, 6.7 Hz, 1H), 5.82 (dd, J = 15.2, 6.3 Hz, 1H), 5.68 (m, 1H), 5.45 (dd, J = 15.2, 7.1 Hz, 1H), 4.76 (dd, J = 5.9, 5.9 Hz, 1H), 4.52 (d, $J_{AB} = 6.7$ Hz, 1H), 4.50 (d, J_{AB} = 6.7 Hz, 1H), 4.05 (m, 2H), 3.98 (m, 2H), 3.91 (d, J = 6.3 Hz, 1H), 3.88 (ddd, J = 2.6, 2.6, 2.6 Hz, 1H), 3.83 (ddd, J = 4.8, 2.2, 2.2 Hz, 1H), 3.66 (ddd, J = 2.9, 2.9, 2.9 Hz, 1H), 3.61 (app t, J = 6.3 Hz, 2H), 3.19 (s, 3H), 2.34 (ddd, J = 13.4, 6.7, 6.7 Hz, 1H), 2.22 (m, 2H), 2.05 (m, 1H), 2.02 (d, J = 14.5Hz, 1H), 1.76-1.62 (m, 4H), 1.51 (s, 3H), 1.44 (d, J = 11.5 Hz, 1H), 1.40 (ddd, J = 11.5, 5.9, 2.6 Hz, 1H), 1.31 (s, 3H), 1.08 (dq, J = 9.3, 6.7 Hz, 1H), 1.00 (s, 9H), 0.81 (d, J = 7.1 Hz, 3H), 0.80 (d, J = 6.7 Hz, 3H), 0.09 (s, 6H); ¹³C NMR (125 MHz, C₆D₆) δ 142.0, 132.7, 132.55, 129.2, 127.5, 108.3, 95.2, 83.5, 80.6, 79.4, 79.1, 78.9, 78.6, 75.8, 75.5, 73.9, 72.0, 62.7, 55.2, 41.8, 38.7, 36.3, 35.6, 323.0, 29.6, 29.1, 28.2, 26.2, 25.7, 18.5, 15.2, 10.8, -5.0; HRMS (ES) m/z (M+Na)⁺ calcd for C₃₆H₆₁IO₈SiNa⁺ 799.3078, obsd 799.3081.

Alcohol (–)-S5. To a –20 °C solution of TBS ether (–)-11 (11.1 mg, 14.2 μ mol) in THF (500 μ L) was added tetrabutylammonium fluoride (TBAF, 1 M in THF, 21 μ L, 21 μ mol). The solution was then allowed to warm to room temperature. After 2 h, additional TBAF (21 μ L) was added. After another 1.5 h, additional TBAF (21 μ L) was again added. After 1 h, the reaction mixture was diluted with saturated NaHCO₃ solution (3 mL), water (10 mL) and EtOAc (15 mL). The aqueous phase was then extracted with EtOAc (3x5 mL), and the combined organic layers were dried over MgSO₄ and

concentrated *in vacuo*. Purification by flash chromatography (50% to 70% EtOAc/hexanes) afforded alcohol (–)-**S5** (8.5 mg, 90%) as a pale yellow oil. $[\alpha]_D^{20}$ –26.2 (*c* 0.42, C₆H₆); IR (neat, cm⁻¹) 3480, 1670, 1602, 1455, 1379, 1247, 1216, 1144, 1097, 1066, 1037; ¹H NMR (500 MHz, C₆D₆) δ 6.82 (dd, *J* = 14.6, 4.9 Hz, 1H), 6.43 (dd, *J* = 14.6, 1.7 Hz, 1H), 5.89 (ddd, *J* = 15.3, 6.6, 6.6 Hz, 1H), 5.80 (ddd, *J* = 15.3, 6.2, 0.8 Hz, 1H), 5.70 (ddd, *J* = 15.3, 6.7, 6.7 Hz, 1H), 5.45 (dd, *J* = 15.3, 7.2 Hz, 1H), 4.76 (dd, *J* = 5.8, 5.8 Hz, 1H), 4.50 (br s, 2H), 4.06 (m, 2H), 4.00 (dd, *J* = 9.2, 7.6 Hz, 1H), 3.95 (ddd, *J* = 7.1, 7.1, 1.7 Hz, 1H), 3.89 (m, 2H), 3.81 (ddd, *J* = 4.5, 2.0, 2.0 Hz, 1H), 3.64 (ddd, *J* = 2.7, 2.7, 2.7 Hz, 1H), 3.47 (app t, *J* = 6.4 Hz, 2H), 3.19 (s, 3H), 2.31 (ddd, *J* = 14.1, 7.0, 7.0 Hz, 1H), 2.14 (ddd, *J* = 11.4, 1.4 Hz, 1H), 1.38 (ddd, *J* = 11.4, 6.2, 2.7 Hz, 1H), 1.31 (s, 3H), 1.07 (dq, *J* = 9.3, 6.8 Hz, 1H), 0.80 (d, *J* = 7.0 Hz, 3H), 0.79 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 141.94, 132.53, 132.40, 129.63, 127.66, 108.35, 95.29, 83.54, 80.55, 79.41, 79.08, 78.65, 76.03, 75.51, 74.13, 71.99, 62.07, 55.25, 41.74, 38.72, 36.37, 35.76, 32.82, 29.62, 29.13, 28.13, 25.62, 15.17, 10.85; HRMS (ES) *m/z* (M+Na)⁺ calcd for C₃₀H₄₇IO₈Na⁺ 685.2213, obsd 685.2204.

PTS Ether (–)-**S6.** To a solution of alcohol (–)-**S5** (6.9 mg, 10.4 μmol), triphenylphosphine (4.4 mg, 16.6 μmol) and 1-phenyl-1H-tetrazole-5-thiol (5.0 mg, 28.1 μmol) in THF (1.3 mL) was added one drop of diisopropylazodicarboxylate (DIAD, ~5 μL, ~25 μmol). The resulting pale yellow solution gradually become colorless, and after 45 min, was concentrated *in vacuo* and purified via Preparative-TLC (1:1, hexanes/EtOAc on ½ of a 500 mM plate) to furnish of PTS ether (–)-**S6** (7.9 mg, 93%) as a colorless oil. $[\alpha]_D^{20}$ –12.1 (*c* 0.45, C₆H₆); IR (neat, cm⁻¹) 1597, 1499, 1456, 1380, 1244, 1216, 1145, 1096, 1066, 1037; ¹H NMR (500 MHz, C₆D₆) δ 7.23 (m, 2H), 6.90-6.99 (m, 3H), 6.82 (dd, *J* = 14.5, 4.9 Hz, 1H), 6.43 (dd, *J* = 14.5, 1.7 Hz, 1H), 5.81 (m, 2H), 5.71 (ddd, *J* = 15.3, 7.0, 7.0 Hz, 1H), 5.45 (dd, *J* = 15.3, 6.9 Hz, 1H), 4.74 (m, 1H), 4.51 (br s, 2H), 4.02 (m, 3H), 3.95 (m, 1H), 3.90 (m, 2H), 3.86 (m, 1H), 3.65 (ddd, *J* = 2.6, 2.6, 2.6 Hz, 1H), 3.23 (m, 2H), 3.18 (s, 3H), 2.29 (ddd, *J* = 14.1, 7.0, 7.0 Hz, 1H)

1H), 2.12 (m, 2H), 2.00 (m, 2H), 1.84 (m, 2H), 1.72 (m, 1H), 1.64 (m, 1H), 1.50 (s, 3H), 1.43 (m, 2H), 1.30 (s, 3H), 1.09 (dq, J = 9.7, 6.7 Hz, 1H), 0.81 (d, J = 7.1 Hz, 3H), 0.80 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 154.27, 142.03, 134.37, 132.58, 130.91, 129.56, 129.27, 128.71, 124.00, 108.40, 95.19, 83.61, 80.54, 79.40, 79.06, 78.84, 78.49, 75.75, 75.57, 73.96, 71.94, 55.22, 41.82, 38.73, 36.44, 35.80, 32.94, 31.49, 30.16, 29.68, 29.10, 28.11, 25.56, 15.23, 10.84; HRMS (ES) *m/z* (M+Na)⁺ calcd for C₃₇H₅₁IN₄O₇SNa⁺ 845.2421, obsd 845.2408.

Sulfone (–)-12. To a 0 $^{\circ}$ C solution of PTS ether (–)-S6 (10.1 mg, 12.2 μ mol) in absolute EtOH (1 mL), not under argon, was added a pre-mixed solution of (NH₄)₆Mo₇O₂₄•4H₂O (5.6 mg, 4.9 µmol) in H₂O₂ (30% aq., 40 µL) via a glass pipette, followed by 2x100 µL absolute EtOH rinses. The resulting yellow solution was then removed from the ice bath and allowed to warm to room temperature. After 8 h, the reaction mixture was diluted with diethyl ether (10 mL), saturated NaHCO₃ solution (5 mL) and water (10 mL). The aqueous layer was then extracted with diethyl ether (3x5 mL), and the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purificaton via preparative-TLC (2:1, hexanes/EtOAc, 500 µM plate) furnished sulfone (-)-12 (7.7 mg, 74%) as a colorless oil. $[\alpha]_{\rm D}^{20}$ -20.3 (c 0.32. C₆H₆): IR (neat, cm⁻¹) 1598, 1498, 1479, 1461, 1343, 1247, 1216, 1153, 1097, 1066, 1037; ¹H NMR (500 MHz, C_6D_6) δ 7.36 (m, 2H), 6.90 (m, 3H), 6.82 (dd, J = 14.5, 5.0 Hz, 1H), 6.42 (dd, J = 14.5, 5.0 Hz, 1H), 6.50 (dd, J = 14.5, 5.0 Hz, 1H 1.7 Hz, 1H), 5.79 (dd, J = 15.4, 5.9 Hz, 1H), 5.68-5.76 (m, 2H), 5.47 (dd, J = 15.3, 6.9 Hz, 1H), 4.71 (dd, J = 15.3, 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H, 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H, 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H, 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H, 7.8 Hz, 1H), 7.8 Hz, 1H), 7.8 Hz, 1H, 7.8 1.8 Hz, 1H), 3.65 (ddd, J = 2.6, 2.6, 2.6 Hz, 1H), 3.53-3.43 (m, 2H), 3.21 (s, 3H), 2.29 (ddd, J = 14.1, 7.1, 7.1, 1H), 2.04-1.92 (m, 6H), 1.74 (m, 1H), 1.64 (m, 1H), 1.51 (s, 3H), 1.42 (m, 2H), 1.30 (s, 3H), 1.09 (dq, J = 9.3, 6.7 Hz, 1H), 0.81 (br d, J = 7.0 Hz, 6H); ¹³C NMR (125 MHz, C₆D₆) δ 154.17, 141.99, 133.60, 132.65, 130.89, 129.86, 129.58, 129.45, 129.35, 108.48, 95.21, 83.65, 80.48, 79.38, 79.20, 78.67, 78.48, 75.72, 75.58, 73.96, 71.89, 55.74, 55.24, 41.87, 38.72, 36.44, 35.84, 30.86, 29.68, 28.10, 25.54, 22.21, 15.22, 10.83; HRMS (ES) m/z (M+Na)⁺ calcd for C₃₇H₅₁IN₄O₉SNa⁺ 877.2319, obsd 877.2283.

TBS Ether (-)-14. At -72 °C, KHMDS (0.5 M in PhMe, 23 µL, 11.5 µmol) was added via syringe to a solution of (-)-12 (8 mg, 9.35 µmol) in DME (0.12 mL). After 10 min, the bright vellow mixture was treated via cannula with a solution of (-)-13 (6 mg, 12.2 µmol) in DME (0.12 mL) and the mixture was allowed to warm to rt over 2 h. The reaction mixture was guenched with saturated NH₄Cl solution (2 mL). The aqueous phase was extracted with Et₂O (3x1 mL) and the combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. The crude mixture was purified by flash chromatography (SiO₂) eluting with 3:1 hexanes/EtOAc to afford TBS ether (-)-14 (2.9 mg, 28%) as a pale yellow oil, along with recovered sulfone (-)-12 (4 mg, 50%) and aldehyde (-)-13 (2.4 mg, 40%). $[\alpha]_{D}^{24}$ -34.9 (*c* 0.59, C₆H₆); IR (neat, cm⁻¹) 1730, 1459, 1368, 1251, 1150, 1066, 1038, 971, 837, 775; ¹H NMR (500 MHz, CDCl₃) δ 6.84-6.79 (dd, J = 14.5, 4.5 Hz, 1H), 6.56-6.52 (dd, J = 14.6, 1.7 Hz, 1H), 5.80-5.69 (m, 3H), 5.60-5.46 (m, 3H), 5.44-5.35 (m, 1H), 5.25-5.22 (d, J = 9.0 Hz, 1H), 4.67-4.59 (m, 3H), 4.35-4.33 (m, 1H), 4.31-4.28 (m, 1H), 4.24-4.22 (d, J = 6.4 Hz, 1H), 4.14-4.08 (m, 2H), 3.93-3.90(m, 1H), 3.87-3.84 (t, J = 8.0 Hz, 1H), 3.77-3.69 (m, 3 H), 3.67-3.65 (d, J = 7.8 Hz, 1H), 3.34 (s, 3H), 2.44-2.35 (m, 2H), 2.29-2.21 (m, 2H), 2.19-2.02 (m, 7H), 1.98-1.86 (m, 1H), 1.86-1.83 (m, 1H), 1.78-1.73 (m, 1H), 1.71-1.65 (m, 1H), 1.63-1.59 (m, 4H), 1.58-1.49 (m, 6H), 1.42 (s, 9H), 1.38-1.15 (m, 11H), 0.94-0.77 (m, 15H), 0.05-0.01 (d, J = 21.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 141.0, 136.6, 133.7, 132.4, 131.7, 131.1, 130.3, 130.1, 129.73, 129.66, 126.5, 125.9, 108.2, 94.9, 83.5, 79.9, 79.8, 79.4, 79.3, 78.9, 78.7, 77.8, 75.6, 75.3, 73.6, 73.2, 71.6, 65.8, 55.4, 41.3, 37.1, 37.0, 36.9, 35.8, 35.6, 35.1, 32.4, 32.3, 31.9, 29.7, 28.6, 28.1, 27.7, 26.8, 25.9, 25.4, 25.3, 22.7, 20.3, 18.1, 15.1, 14.1, 12.8, 10.6, -4.2, -4.5; HRMS (ES) m/z (M+Na)⁺ calcd for C₅₇H₉₃IO₁₁SiNa⁺ 1131.5429, obsd 1131.5425.

Alcohol (–)-S5: TBS ether (–)-11 (44 mg, 57 μ mol) was dissolved in THF (1.1 mL) in a polyethylene vial. Neat Et₃N·3HF (65 μ L, 0.39 mmol) was added via autopipetter and the resulting solution was stirred in the dark for 17 h. The reaction mixture was concentrated *in vacuo* and directly purified by flash chromatography (SiO₂) eluting with 2:3 hexanes/EtOAc to afford (–)-S5 (36 mg, 96%) as a pale yellow oil. All characterization data are same as above.

Aldehyde (–)-15: At room temperature, solid Dess-Martin periodinane (35 mg, 82 µmol) was added in one portion to a slurry of (–)-S5 (18 mg, 27 µmol) and NaHCO₃ (27 mg, 0.33 mmol) in CH₂Cl₂ (1.4 mL). The mixture was stirred in the dark for 2 h and then diluted with Et₂O (1.5 mL), whereupon a 1:1:1 solution of saturated NaHCO₃/brine/Na₂S₂O₃ (3 mL) was added and stirring was continued until the aqueous layer became homogenous (20 min). The layers were separated and the aqueous phase was extracted with Et₂O (2x1 mL). The combined organic extracts were dried (Na₂SO₄), filtered through a pad of SiO₂ (5 g) with an Et₂O rinse (10 mL) and concentrated *in vacuo*. The crude residue was purified by flash chromatography (SiO₂) eluting with 1:1 hexanes/EtOAc to afford (–)-15 (17.7 mg, 99%) as a pale yellow oil. $[\alpha]_D^{24}$ –31.9 (*c* 1.0, C₆H₆); IR (neat, cm⁻¹) 1724, 1457, 1378, 1216, 1144, 1101, 1066, 1036, 970, 941, 877, 799, 676; ¹H NMR (500 MHz, C₆D₆) δ 9.39-9.38 (m, 1H), 6.83-6.79 (dd, *J* = 14.5, 4.5 Hz, 1H), 6.46-6.42 (dd, *J* = 15.0, 2.0 Hz, 1H), 5.84-5.67 (m, 3H), 5.49-5.44 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.73-4.70 (t, *J* = 6.0 Hz, 1H), 4.53 (s, 2H), 4.05-3.94 (m, 4H), 3.92-3.90 (d, *J* = 5.5 Hz, 1H), 3.98-

3.87 (m, 1H), 3.85-3.82 (m, 1H), 3.67-3.65 (m, 1H), 3.21 (s, 3H), 2.33-2.20 (m, 2H), 2.08-1.97 (m, 4H), 1.77-1.71 (m, 1H), 1.68-1.62 (m, 1H), 1.51 (s, 3H), 1.43-1.27 (m, 6H), 1.11-1.05 (m, 1H), 0.87-0.75 (m, 6H); 13 C NMR (125 MHz, C₆D₆) δ 200.6, 142.4, 133.0, 131.1, 129.6, 108.8, 95.6, 84.0, 80.9, 79.8, 79.3, 79.2, 78.8, 76.2, 75.9, 74.4, 72.3, 55.6, 43.6, 42.2, 39.1, 36.8, 36.2, 30.5, 30.1, 28.5, 26.0, 25.6, 21.6, 15.6, 11.2; HRMS (ES) *m/z* (M+Na)⁺ calcd for C₃₀H₄₅IO₈Na⁺ 683.2057, obsd 683.2081.

TBS Ether (+)-S7. At -72 °C, KHMDS (0.5 M in PhMe, 30 µL, 15 µmol) was added via syringe to a solution of (+)-10 (10.2 mg, 15 µmol) in DME (0.16 mL). After 10 min, the bright yellow mixture was treated via cannula with a solution of (-)-15 (5 mg, 7.6 µmol) in DME (0.16 mL) and the mixture was allowed to warm to rt over 2 h. The reaction mixture was quenched with saturated NH₄Cl solution (5 mL). The aqueous phase was extracted with Et₂O (3x5 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude mixture was purified by flash chromatography (SiO₂, 5% to 30% EtOAc/hexanes, silica gel was pretreated with 0.5% Et₃N) to afford TBS ether (+)-S7 (7.4 mg, 88%) as a pale vellow oil, along with recovered sulfone (+)-10 (5.2 mg, 51%). $[\alpha]_{\rm p}^{29}$ +26.0 (c 0.54, C₆H₆); IR (neat, cm⁻¹) 1730, 1457, 1367, 1251, 1099, 1066, 1038, 837, 775; ¹H NMR (500 MHz, C_6D_6) δ 6.84 (dd, J = 14.6, 4.8 Hz, 1H), 6.46 (dd, J = 14.6, 1.8 Hz, 1H), 5.96 (ddd, J = 14.6, 1.8 Hz, 1H 15.2, 6.8, 6.8 Hz, 1H), 5.88 (ddd, J = 10.2, 4.7, 2.1 Hz, 1H), 5.83 (dd, J = 15.2, 6.4 Hz, 1H), 5.76 (dd, J = 15.2, 75 (dd, = 10.2, 2.5 Hz, 1H), 5.71 (ddd, J = 15.2, 7.8, 7.8 Hz, 1H), 5.57-5.53 (m, 3H), 5.46 (dd, J = 15.2, 7.1 Hz, 1H), 4.79 (dd, J = 5.5, 5.5 Hz, 1H), 4.54 (ABq, J = 6.9 Hz, $\Delta v = 10.1$ Hz, 2H), 4.29-4.26 (m, 1H), 4.12 (s, 1H), 4.08-4.06 (m, 3H), 4.04-3.96 (m, 2H), 3.93 (d, J = 6.0 Hz, 1H), 3.91 (s, 1H), 3.87-3.85 (m, 1H), 3.69-3.67 (m, 1H), 3.21 (s, 3H), 2.45-2.40 (m, 2H), 2.37-2.31 (m, 1H), 2.27-2.18 (m, 7H), 2.06-2.00 (m, 2H), 1.84 (s, 3H), 1.74-1.62 (m, 4H), 1.54 (s, 3H), 1.48-1.40 (m, 2H), 1.42 (s, 9H), 1.34 (s, 3H), 1.31- $1.27 \text{ (m, 4H)}, 1.12-1.06 \text{ (m, 1H)}, 1.04 \text{ (d, } J = 6.6 \text{ Hz}, 3\text{H)}, 1.00 \text{ (s, 9H)}, 0.83 \text{ (d, } J = 7.1 \text{ Hz}, 3\text{H)}, 0.82 \text{ (d, } J = 7.1 \text{ Hz}, 3\text{H}), 0.82 \text{ (d, } J = 7.1 \text{ Hz}, 3\text{H}), 0.82 \text{ (d, } J = 7.1 \text{ Hz}, 3\text{H}), 0.82 \text{ ($ J = 6.7 Hz, 3H), 0.12 (s, 3H), 0.08 (s, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 172.6, 142.1, 133.2, 132.65, 132.54, 132.47, 132.1, 131.3, 129.5, 127.64, 127.62, 127.0, 108.4, 95.2, 83.6, 80.7, 79.5, 79.4, 79.14,

79.05, 78.6, 76.8, 75.8, 75.5, 74.0, 72.8, 72.0, 66.1, 55.3, 41.8, 38.8, 37.8, 37.0, 36.5, 35.9, 35.8, 33.0, 32.9, 32.3, 29.7, 28.2 (4C), 27.5, 26.2 (3C), 25.8, 25.7, 21.3, 18.5, 15.3, 14.6, 10.9, -3.6, -4.1; HRMS (ES) m/z (M+Na)⁺ calcd for C₅₇H₉₃IO₁₁SiNa⁺ 1131.5429, obsd 1131.5415.

Vinyl Iodide (-)-16. Solid TBAF•3H₂O (33 mg, 0.126 mmol) was added to a solution of (+)-S7 (7 mg, 6.3 µmol) in THF (0.15 mL) at rt. The reaction mixture was stirred in the dark for 20 h, and then diluted with Et₂O (2 mL) and saturated NH₄Cl solution (2 mL). The aqueous phase was extracted with Et₂O (4×2 mL). The combined organic extracts were dried (Na₂SO₄), filtered through a short plug of SiO₂, washed with additional Et₂O (25 mL), and concentrated *in vacuo*. The resulting crude product was purified by flash chromatography (SiO₂, 0.5% to 1.5% MeOH/CH₂Cl₂, silica gel was pretreated with 0.5% Et₃N) to afford vinyl iodide (+)-**16** (6.1 mg, 97%) as a pale yellow oil. $[\alpha]_{D}^{29}$ +26.9 (*c* 0.32, C₆H₆); IR (neat, cm⁻¹) 3436, 1729, 1456, 1367, 1217, 1149, 1066, 1038, 970; ¹H NMR (500 MHz, C₆D₆) δ 6.85 (dd, J = 14.6, 4.9 Hz, 1H), 6.46 (dd, J = 14.6, 1.8 Hz, 1H), 6.00 (ddd, J = 10.2, 5.6, 1.9 Hz, 1H), 5.96(ddd, J = 15.2, 6.6, 6.6 Hz, 1H), 5.84 (dd, J = 15.2, 6.4 Hz, 1H), 5.75 (dd, J = 10.2, 3.3 Hz, 1H), 5.7115.2, 7.1 Hz, 1H), 4.80 (dd, J = 5.8, 5.8 Hz, 1H), 4.54 (ABq, J = 6.8 Hz, $\Delta v = 9.7$ Hz, 2H), 4.31-4.27 (m, 1H), 4.08-3.97 (m, 5H), 3.93 (d, J = 6.0 Hz, 1H), 3.91-3.90 (m, 1H), 3.86-3.84 (m, 1H), 3.78-3.77 (m, 1H), 3.69-3.67 (m, 1H), 3.21 (s, 3H), 2.45-2.32 (m, 3H), 2.23-2.15 (m, 7H), 2.07-2.01 (m, 2H), 1.72 (d, J = 0.8 Hz, 3H), 1.70-1.57 (m, 4H), 1.54 (s, 3H), 1.47-1.40 (m, 2H), 1.41 (s, 9H), 1.33 (s, 3H), 1.31-1.24 (m, 4H), 1.12-1.06 (m, 1H), 0.98 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 7.1 Hz, 3H), 0.82 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 172.7, 142.1, 132.8, 132.6, 132.5, 132.4, 132.3, 131.3, 129.5, 127.7, 127.6, 126.9, 108.4, 95.2, 83.6, 80.7, 79.44, 79.36, 79.12, 79.08, 78.7, 76.8, 75.8, 75.5, 75.0, 74.1, 74.0, 72.0, 63.3, 55.3, 41.8, 38.8, 37.8, 36.5, 36.3, 35.84, 35.77, 33.0, 32.9, 32.2, 29.7, 28.2 (4C), 27.5, 25.72, 25.68, 21.6, 15.3, 14.3, 10.9; HRMS (ES) m/z (M+Na)⁺ calcd for C₅₁H₇₉IO₁₁Na⁺ 1017.4565, obsd 1017.4566.

Trienoate (+)-17. A 15 mL round bottom flask was charged with stannane 5 (16 mg, 40 µmol), vinyl iodide (+)-16 (10 mg, 10 µmol), Ph₂PO₂NBu₄ (55 mg, 120 µmol), and dissolved in degassed DMF (1.1 mL). To this was added PdCl₂(PhCN)₂ (0.2 mg, 0.5 µmol), and the reaction mixture was purged with argon for 5 min, and stirred at rt in the dark overnight. The reaction mixture was diluted with Et₂O/hexanes (1:1, 4 mL), filtered through a Celite plug into brine (5 mL), and rinsed with Et₂O/hexanes (1:1, 20 mL). The mixture was extracted using Et₂O/hexanes (1:1, 3×10 mL), and the combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated *in vacuo* to give a crude residue, which was purified by flash chromatography (SiO₂, 0.2% to 1.5% MeOH/CH₂Cl₂, silica gel was pretreated with 0.5% Et₃N) to afford trienoate (+)-17 (8.6 mg, 88%) as a yellow oil. $[\alpha]_{D}^{29}$ +49.0 (*c* 0.26, C₆H₆); IR (neat, cm⁻¹) 3417, 1720, 1650, 1612, 1454, 1368, 1246, 1218, 1149, 1097, 1067, 1038, 974, 876; ¹H NMR (500 MHz, C_6D_6) δ 7.75 (dd, J = 11.5, 11.5 Hz, 1H), 7.05-7.00 (m, 1H), 6.88 (dd, J = 11.5, 11.5 Hz, 1H), 6.26 (dd, J = 11.5, 11.5 Hz, 1H), 6.10 (dd, J = 15.3, 4.9 Hz, 1H), 6.01 (ddd, J = 10.2, 5.6, 2.0 Hz, 1H), 5.93 (ddd, J = 15.4, 6.4, 6.4 Hz, 1H), 5.82 (dd, J = 15.4, 6.3 Hz, 1H), 5.74 (dd, J = 10.2, 3.2 Hz, 1H), 5.71 (ddd, J = 15.2, 7.6, 7.6 Hz, 1H), 5.64 (d, J = 11.5 Hz, 1H), 5.59 (d, J = 9.5 Hz, 1H), 5.54-5.43 (m, 3H), 4.78 (dd, J = 5.8, 5.8 Hz, 1H), 4.51 (ABq, J = 6.8 Hz, $\Delta v = 11.0$ Hz, 2H), 4.30-4.26 (m, 1H), 4.24-4.23 (m, 1H), 4.11-4.04 (m, 6H), 4.00-3.96 (m, 1H), 3.80-3.78 (m, 1H), 3.67-3.65 (m, 1H), 3.38 (s, 3H), 3.19 (s, 3H), 2.46-2.33 (m, 3H), 2.19-2.13 (m, 7H), 2.08-2.02 (m, 2H), 1.79-1.47 (m, 6H), 1.73 (s, 3H), 1.53 (s, 3H), 1.41 (s, 9H), 1.33 (s, 3H), 1.31-1.23 (m, 4H), 1.20-1.14 (m, 1H), 0.99 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.82 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 172.7, 166.5, 138.7, 136.9, 134.6, 132.8, 132.7, 132.5, 132.3 (2C), 131.4, 129.1, 127.7, 127.6, 126.9, 126.8, 125.0, 118.0, 108.4, 95.2, 82.0, 80.7, 79.5, 79.4, 79.1, 78.7, 76.4, 75.9, 75.0, 74.1, 74.0, 72.0, 63.4, 55.2, 50.8, 42.0, 39.3, 37.8, 36.5, 36.3, 35.83, 35.77, 33.0, 32.8, 32.2, 29.7, 28.2 (4C), 27.5, 25.7 (2C), 21.6, 15.4, 14.3, 10.9; HRMS (ES) m/z (M+Na)⁺ calcd for C₅₇H₈₆O₁₃Na⁺ 1001.5966, obsd 1001.5975.

Seco Acid 18. A solution of trienoate (+)-17 (6.6 mg, 6.7 µmol) in THF (1.6 mL) and H₂O (0.4 mL) was treated with 1 M LiOH solution (0.4 mL). The yellow reaction mixture was stirred for 1.5 days at rt in the dark. Brine (1 mL) was added and the pH value of the reaction mixture was adjusted to ca. 3 with 1 M NaHSO₄. The aqueous layer was extracted with EtOAc (4×2 mL), and the combined organic layers were washed with brine (2 mL), dried (Na₂SO₄) and concentrated *in vacuo* to give a crude residue, which was purified by flash chromatography (SiO₂, 0.5% to 5% MeOH/CH₂Cl₂) to afford seco acid 18 (5.6 mg, 86%) as a yellow oil. Seco acid 18 proved very unstable, and was carried on to the next step immediately after the ¹H NMR spectrum was taken. ¹H NMR (500 MHz, C_6D_6) δ 7.64 (dd, J = 11.5, 11.5 Hz, 1H), 7.03-6.97 (m, 1H), 6.89 (dd, J = 11.5, 11.5 Hz, 1H), 6.27 (dd, J = 11.5, 11.5 Hz, 1H), 6.08 (dd, J = 15.0, 4.7 Hz, 1H), 6.02 (ddd, J = 10.1, 5.8, 2.0 Hz, 1H), 5.93 (ddd, J = 15.4, 6.3, 6.3 Hz, 1H),5.81 (dd, J = 15.4, 6.3 Hz, 1H), 5.74 (dd, J = 10.1, 3.1 Hz, 1H), 5.67-5.58 (m, 3H), 5.52-5.41 (m, 3H), 4.78 (dd, J = 5.5, 5.5 Hz, 1H), 4.53 (ABq, J = 6.9 Hz, $\Delta v = 9.8$ Hz, 2H), 4.33-4.28 (m, 1H), 4.24-4.23 (m, 1H), 4.09-4.04 (m, 6H), 3.98-3.95 (m, 1H), 3.82 (dd, J = 5.6, 2.0 Hz, 1H), 3.68-3.67 (m, 1H), 3.20 (s, 3H), 2.47-2.34 (m, 3H), 2.19-2.12 (m, 7H), 2.11-2.01 (m, 2H), 1.74 (d, J = 0.7 Hz, 3H), 1.72-1.47 (m, 6H), 1.53 (s, 3H), 1.41 (s, 9H), 1.33 (s, 3H), 1.31-1.24 (m, 4H), 1.18-1.12 (m, 1H), 1.00 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 7.1 Hz, 3H).

Macrolide (+)-19. A slurry of seco acid 18 (5.4 mg, 5.6 µmol) and NaHCO₃ (120 mg, 1.4 mmol) in CH₂Cl₂ (12 mL) was treated with solid 2-bromo-1-ethylpyridinium tetrafluoroborate 22 (31 mg, 0.11 mmol) in one portion. The reaction mixture was vigorously stirred in the dark overnight, then transferred directly onto a silica gel column and purified by flash chromatography (0.2% to 1.6% MeOH/CH₂Cl₂) to afford macrolide (+)-**19** (4.5 mg, 85%) as a pale yellow foam. $[\alpha]_{D}^{28}$ +41.6 (*c* 0.36, MeOH): IR (neat. cm⁻¹) 1722, 1698, 1610, 1452, 1367, 1250, 1211, 1148, 1095, 1066, 1037, 971, 916, 871: ¹H NMR (500 MHz, CD₃OD) δ 7.16-7.06 (m, 2H), 7.04-6.99 (m, 1H), 6.44 (dd, *J* = 10.6, 10.6 Hz, 1H), 6.26 (dd, J = 15.4, 3.3 Hz, 1H), 6.14 (dd, J = 10.1, 3.1 Hz, 1H), 6.02 (ddd, J = 10.1, 5.9, 2.1 Hz, 1H), 5.73 (ddd, J = 15.1, 6.7, 6.7 Hz, 1H), 5.61 (d, J = 10.5 Hz, 1H), 5.56-5.52 (m, 3H), 5.38-5.34 (m, 5H), 5.38-5.34 (m, 3H), 5.26 (d, J = 10.1 Hz, 1H), 4.64 (ABq, J = 7.1 Hz, $\Delta v = 17.6$ Hz, 2H), 4.61-4.57 (m, 2H), 4.41-4.39 (m, 2H), 4.31 (d, J = 6.3 Hz, 1H), 4.21 (s, 1H), 3.94 (dd, J = 8.4, 6.3 Hz, 1H), 3.84 (dd, J = 9.6, 7.5 Hz, 1H), 3.77-3.68 (m, 3H), 3.32 (s, 3H), 2.42-2.33 (m, 2H), 2.23-2.01 (m, 9H), 1.92 (d, J = 10.5 Hz, 1H), 1.75 (d, J = 13.8 Hz, 1H), 1.69-1.62 (m, 2H), 1.61 (d, J = 0.8 Hz, 3H), 1.60-1.50 (m, 2H), 1.44 (s, 9H),1.42 (s, 3H), 1.41-1.36 (m, 1H), 1.32 (s, 3H), 1.27-1.15 (m, 4H), 0.90 (d, J = 7.2 Hz, 3H), 0.86 (d, J = 7.2 H 6.6 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 174.9, 167.8, 138.9, 137.7, 137.1, 135.7, 134.2, 133.9, 133.6 (2C), 131.24, 131.17, 128.0, 127.9, 127.6, 126.8, 123.7, 119.8, 109.8, 96.0, 81.9, 81.22 (2C), 81.18, 81.09, 80.1, 77.7, 76.6, 74.9, 74.4, 73.8, 73.3, 66.6, 55.8, 41.8, 39.6, 38.9, 36.7 (2C), 35.6, 35.1, 34.1, 33.1, 32.9, 30.8, 30.4, 28.5 (3C), 28.3, 28.2, 26.3, 25.7, 22.3, 15.3, 14.5, 10.8; HRMS (ES) m/z (M+Na)⁺ calcd for C₅₆H₈₂O₁₂Na⁺ 969.5704, obsd 969.5670.

(+)-Sorangicin A (1). To a stirred solution of macrolide (+)-19 (3.5 mg, 3.7 μ mol) and 2,6-lutidine (13 μ L, 111 μ mol) in CH₂Cl₂ (200 μ L) was added TBSOTf (9 μ L, 37 μ mol) at 0 °C. After 30 min at 0 °C, the reaction mixture was warmed to rt and stirred for 3 h before being quenched with 0.2N HCl (1 mL). The aqueous layer was extracted with Et₂O (4×2 mL), and the combined organic layers were washed with brine (2 mL), dried (Na₂SO₄) and evaporated to give the crude TBS ester S8.

Without further purification, TBS ester S8 was dissolved in THF (200 µL) and treated with 4N HCl (200 µL) at 0 °C. The reaction mixture was warmed to rt and stirred for 24 h before being cooled to 0 °C and carefully neutralized with saturated NaHCO₃ solution (2 mL), and then acidified with HCOOH $(0.5 \text{ mL}, \text{pH} \sim 3)$. The aqueous phase was extracted with CH₂Cl₂ (4×3 mL), and the combined organic layers were concentrated in vacuo to give a crude residue, which was purified by flash chromatography (SiO₂, 1% to 5% MeOH/CH₂Cl₂) to furnish (+)-sorangicin A (1) (2.1 mg, 70%, 2 steps) as an off-white solid. $[\alpha]_{D}^{20}$ +56 (c 0.06, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 7.22-7.12 (m, 2H, 40-H, 41-H), 6.99 (dd, J = 15.0, 11.0 Hz, 1H, 38-H), 6.44 (dd, J = 10.5, 10.5 Hz, 1H, 39-H), 6.22 (dd, J = 15.5, 4.5 Hz, 1H, 1H, 1H)37-H), 6.13 (dd, J = 9.9, 3.0 Hz, 1H, 12-H), 6.01 (ddd, J = 9.9, 5.7, 2.0 Hz, 1H, 11-H), 5.75 (ddd, J = 15.4, 6.2, 6.2 Hz, 1H, 19-H), 5.62 (d, J = 10.6 Hz, 1H, 42-H), 5.60 (dd, J = 15.4, 7.4 Hz, 1H, 20-H), 5.55-5.53 (m, 2H, 15-H, 16-H), 5.52-5.48 (m, 1H, 29-H), 5.38 (ddd, J = 15.0, 8.4, 1.0 Hz, 1H, 30-H), 5.32-5.30 (m, 2H, 7-H, 10-H), 4.57 (br s, 1H, 36-H), 4.40-4.38 (m, 2H, 35-H, 13-H), 4.28 (d, J = 6.2 Hz, 1H, 33-H), 4.23 (s, 1H, 9-H), 4.15 (dd, J = 7.4, 4.5 Hz, 1H, 21-H), 3.88-3.82 (m, 3H, 27-H, 25-H, 31-H), 3.71 (ddd, J = 11.0, 7.3, 2.7 Hz, 1H, 23-H), 3.48 (dd, J = 7.3, 4.5 Hz, 1H, 22-H), 2.42-2.36 (m, 2H, 14-1) H_a , 6-H), 2.28-2.22 (m, 1H, 28- H_a), 2.23 (t, J = 7.5 Hz, 2H, 2-H), 2.19-2.09 (m, 6H, 17-H, 14- H_b , 28- H_b , 18-H), 2.05 (ddd, J = 11.5, 6.5, 2.6 Hz, 1H, 34-H_a), 1.93 (dd, J = 11.5, 1.5 Hz, 1H, 34-H_b), 1.74 (ddd, J= 14.0, 2.5, 2.5 Hz, 1H, 24-H_a), 1.66 (ddd, J = 14.0, 11.5, 2.6 Hz, 1H, 24-H_b), 1.63 (d, J = 0.7 Hz, 3H, 45-H), 1.61-1.53 (m, 3H, 3-H, 26-H), 1.42 (m, 1H, 32-H), 1.37-1.16 (m, 4H, 5-H, 4-H), 0.88 (d, J = 7.2 Hz, 3H, 46-H), 0.87 (d, J = 6.6 Hz, 3H, 44-H), 0.82 (d, J = 6.8 Hz, 3H, 47-H); ¹³C NMR (125 MHz, CD₃OD) δ 179.18 (C-1), 167.66 (C-43), 139.16 (C-41), 137.77 (C-39), 136.95 (C-12), 134.94 (C-37), 134.61 (C-19), 134.10 (C-7), 133.69 (C-16), 132.98 (C-29), 132.79 (C-30), 131.09 (C-8), 129.96 (C-20), 128.25 (C-15), 127.74 (C-38), 126.96 (C-40), 123.71 (C-11), 119.55 (C-42), 82.08 (C-36), 81.20 (C-31), 80.98 (C-33), 77.76 (C-22), 77.49 (C-35), 75.23 (C-13), 74.85 (C-23), 74.67 (C-27), 74.37 (C-21), 74.17 (C-9), 71.01 (C-25), 66.68 (C-10), 42.06 (C-32), 39.80 (C-34), 38.69 (C-5), 38.28 (C-26), 37.14 (C-28), 36.23 (C-2), 35.34 (C-14), 34.20 (C-18), 33.51 (C-17), 32.96 (C-6), 30.89 (C-24), 28.40 (C-4), 26.64 (C-3), 21.85 (C-44), 15.39 (C-47), 14.39 (C-45), 10.85 (C-46); HRMS (ES) m/z (M+Na)⁺ calcd for $C_{47}H_{66}O_{11}Na^+$ 829.4503, obsd 829.4507.

Proton Number Synthetic (+)-Sorangicin A Natural (+)-Sorangicin A 40-H, 41-H 7.22-7.12 (m, 2H) 7.22-7.12 (m, 2H) 38-H 6.99 (dd, J = 15.0, 11.0 Hz, 1H)6.99 (dd, J = 14.9, 11.1 Hz, 1H)39-H 6.44 (dd, J = 10.5, 10.5 Hz, 1H) $6.44 \,(dd, J = 10.6, 10.6 \,Hz, 1H)$ 37-H 6.22 (dd, J = 15.5, 4.5 Hz, 1H)6.22 (dd, J = 15.4, 4.7 Hz, 1H)12-H 6.13 (dd, J = 9.9, 3.0 Hz, 1H)6.13 (dd, J = 10.0, 3.1 Hz, 1H)11-H 6.01 (ddd, J = 9.9, 5.7, 2.0 Hz, 1H)6.01 (ddd, J = 10.0, 5.8, 2.1 Hz, 1H)19-H 5.75 (ddd, J = 15.4, 6.2, 6.2 Hz, 1H)5.75 (ddd, J = 15.4, 6.2, 6.2 Hz, 1H)42-H 5.62 (d, J = 10.6 Hz, 1H)5.62 (d, J = 10.5 Hz, 1H)20-H 5.60 (dd, J = 15.4, 7.4 Hz, 1H)5.60 (dd, J = 15.5, 7.5 Hz, 1H)15-H, 16-H 5.55-5.53 (m, 2H) 5.55-5.53 (m, 2H) 29-H 5.52-5.48 (m, 1H) 5.52-5.48 (m, 1H) 30-H 5.38 (ddd, J = 15.0, 8.4, 1.0 Hz, 1H)5.38 (ddd, J = 15.0, 8.5, 1.0 Hz, 1H)7-H, 10-H 5.32-5.30 (m, 2H) 5.32-5.30 (m, 2H) 36-H 4.57 (br s, 1H) 4.57 (br s, 1H) 4.40-4.38 (m, 2H) 35-H, 13-H 4.40-4.38 (m, 2H) 33-H 4.28 (d, J = 6.2 Hz, 1H)4.28 (d, J = 6.4 Hz, 1H)9-H 4.23 (s, 1H) 4.23 (s, 1H) 21-H 4.15 (dd, J = 7.4, 4.5 Hz, 1H)4.15 (dd, J = 7.4, 4.6 Hz, 1H)27-Н, 25-Н, 31-Н 3.88-3.82 (m, 3H) 3.88-3.82 (m, 3H) 23-H 3.71 (ddd, J = 11.0, 7.3, 2.7 Hz, 1H)3.71 (ddd, J = 11.0, 7.3, 2.7 Hz, 1H)22-H 3.48 (dd, J = 7.3, 4.5 Hz, 1H) $3.48 \,(dd, J = 7.2, 4.6 \,Hz, 1H)$ 14-H_a, 6-H 2.42-2.36 (m, 2H) 2.42-2.36 (m, 2H) 28-H_a 2.28-2.22 (m, 1H) 2.28-2.23 (m, 1H) 2-H 2.23 (t, J = 7.5 Hz, 2H) 2.24 (t, J = 7.6 Hz, 2H) 17-H,14-H_b,28-H_b,18-H 2.19-2.09 (m, 6H) 2.19-2.09 (m, 6H) 34-H_a 2.05 (ddd, J = 11.5, 6.5, 2.6 Hz, 1H)2.05 (ddd, J = 11.6, 6.5, 2.8 Hz, 1H)34-H_b 1.93 (dd, J = 11.5, 1.5 Hz, 1H)1.93 (dd, J = 11.6, 1.4 Hz, 1H)24-H_a 1.74 (ddd, J = 14.0, 2.5, 2.5 Hz, 1H)1.73 (ddd, J = 14.0, 2.5, 2.5 Hz, 1H)1.66 (ddd, J = 14.0, 11.5, 2.6 Hz, 1H)1.66 (ddd, J = 14.0, 11.6, 2.6 Hz, 1H)24-H_b 45-H 1.63 (d, J = 0.7 Hz, 3H)1.63 (d, J = 0.6 Hz, 3H)3-H, 26-H 1.61-1.53 (m, 3H) 1.60-1.53 (m, 3H) 32-H 1.42 (m, 1H)1.42 (m, 1H) 1.37-1.16 (m, 4H) 1.38-1.16 (m, 4H) 5-H, 4-H 46-H 0.88 (d, J = 7.2 Hz, 3H)0.88 (d, J = 7.4 Hz, 3H)44-H 0.87 (d, J = 6.6 Hz, 3H)0.87 (d, J = 6.5 Hz, 3H)47-H 0.82 (d, J = 6.8 Hz, 3H)0.82 (d, J = 6.5 Hz, 3H)

 δ (ppm in CD₃OD)

Carbon Number	Synthetic (+)-Sorangicin A	Natural (+)-Sorangicin A
C-1	179.18	178.61
C-43	167.66	167.66
C-41	139.16	139.19
C-39	137.77	137.78
C-12	136.95	136.96
C-37	134.94	134.93
C-19	134.61	134.63
C-7	134.10	134.10
C-16	133.69	133.70
C-29	132.98	132.97
C-30	132.79	132.80
C-8	131.09	131.17
C-20	129.96	129.95
C-15	128.25	128.25
C-38	127.74	127.74
C-40	126.96	126.96
C-11	123.71	123.70
C-42	119.55	119.55
C-36	82.08	82.09
C-31	81.20	81.21
C-33	80.98	80.99
C-22	77.76	77.76
C-35	77.49	77.49
C-13	75.23	75.22
C-23	74.85	74.85
C-27	74.67	74.67
C-21	74.37	74.36
C-9	74.17	74.19
C-25	71.01	71.01
C-10	66.68	66.73
C-32	42.06	42.05
C-34	39.80	39.81
C-5	38.69	38.64
C-26	38.28	38.30
C-28	37.14	37.14

Carbon Number	Synthetic (+)-Sorangicin A	Natural (+)-Sorangicin A
C-2	36.23	35.78
C-14	35.34	35.34
C-18	34.20	34.20
C-17	33.51	33.51
C-6	32.96	32.95
C-24	30.89	30.88
C-4	28.40	28.33
C-3	26.64	26.46
C-44	21.85	21.84
C-47	15.39	15.39
C-45	14.39	14.38
C-46	10.85	10.85

