Supporting Information

Asymmetric aldol reaction of acetaldehyde and isatin derivatives for the synthesis of convolutamydine E, CPC-1, and a 3a-hydroxyfuroindoline part of madindoline A and B

Takahiko Itoh, Hayato Ishikawa, Yujiro Hayashi*
Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

General Remarks

All reactions were carried out under argon atmosphere and monitored by thin-layer chromatography using Merck 60 F254 precoated silica gel plates (0.25 mm thickness). FT-IR spectra were recorded on a JASCO FT/IR-410 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker AM400 (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR) instrument. Data for ${ }^{1} \mathrm{H}$ NMR are reported as chemical shift $(\delta \mathrm{ppm})$, coupling constant (Hz), integration, and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift. High-resolution mass spectral analyses (HRMS) were carried out using Bruker ESI-TOF MS. Preparative thin layer chromatography was performed using Wakogel B-5F purchased from Wako Pure Chemical Industries, Tokyo, Japan. Flash chromatography was performed using silica gel 60 N of Kanto Chemical Co. Int., Tokyo, Japan. GC-MS was performed on Shimazu GC-MS QP2010, equipped with a split-mode capillary injecton system and electron ionization detectors using Bodman Chiraldex Г-TA (30 $\mathrm{m} \times 0.25 \mathrm{~mm}$). HPLC analysis was performed on a HITACHI Elite LaChrom Series HPLC, UV detection monitered at appropriate wavelength respectively, using Chiralcel OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$).

(2S,4R)-1-Ethyl 2-methyl 4-hydroxypyrrolidine-1,2-dicarboxylate

To a solution of ($2 S, 4 R$)-4-hydroxypyrrolidine-2-carboxylic acid ($15.1 \mathrm{~g}, 115.7 \mathrm{mmol}$) and potassium carbonate ($20.7 \mathrm{~g}, 150.4 \mathrm{mmol}$) in $\mathrm{MeOH}(230 \mathrm{~mL})$ was added ethyl chloroformate ($24.4 \mathrm{~mL}, 254.5$ mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h at room temperature. The resulting mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(115 \mathrm{~mL})$ and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 1$) gave ($2 S, 4 R$)-1-Ethyl 2-methyl 4-hydroxypyrrolidine-1,2-dicarboxylate ($17.5 \mathrm{~g}, 80.7 \mathrm{mmol}$) in 70% yield.

NMR spectra data was observed as a mixture of rotamer.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.15(1.5 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.21(1.5 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.96-2.06(1 \mathrm{H}, \mathrm{m})$, 2.17-2.31 ($1 \mathrm{H}, \mathrm{m}$), 2.69 (1H, br-s), 3.41-3.62 ($2 \mathrm{H}, \mathrm{m}$), $3.68(1.5 \mathrm{H}, \mathrm{m}), 3.70(1.5 \mathrm{H}, \mathrm{m}), 3.95-4.15(2 \mathrm{H}, \mathrm{m})$, 4.33-4.45 ($2 \mathrm{H}, \mathrm{m}$);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.5,14.6,38.5,39.2,52.2,52.3,54.6,55.1,57.7,57.8,61.5,61.6,69.4$, 70.1, 154.9, 155.3, 173.2, 173.3;

IR (KBr): v 3439, 2984, 2954, 1749, 1682, 1434, 1383, 1350, 1205, $1174 \mathrm{~cm}^{-1}$;

HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}\right]: 240.0842$, found: 240.0849; $[\alpha]_{\mathrm{D}}{ }^{23}=-75.5(c 1.36, \mathrm{MeOH})$.

(2S,4R)-1-Ethyl 2-methyl 4-(tetrahydro-2H-pyran-2-yloxy)pyrrolidine-1,2-dicarboxylate

To a solution of ($2 S, 4 R$)-1-Ethyl 2-methyl 4-hydroxypyrrolidine-1,2-dicarboxylate ($17.5 \mathrm{~g}, 80.7 \mathrm{mmol}$) and pyridinium p-toluenesulfonate ($4.0 \mathrm{~g}, 15.9 \mathrm{mmol}$) in methylene chloride $(167 \mathrm{~mL})$ was added 3,4-dihydro-2H-pyran $(11.2 \mathrm{~mL}, 142.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at room temperature. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 2$) gave $(2 S, 4 R)$-1-ethyl 2-methyl 4-(tetrahydro- $2 H$-pyran-2-yloxy)-pyrrolidine-1,2-dicarboxylate ($20.2 \mathrm{~g}, 67.0 \mathrm{mmol}$) in 83% yield.

NMR spectra data was observed as a mixture of diastereomer and rotamer.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(1.5 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.13(1.5 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.32-1.50(4 \mathrm{H}, \mathrm{m})$, $1.52-1.76(2 \mathrm{H}, \mathrm{m}), 1.88-2.07(1 \mathrm{H}, \mathrm{m}), 2.11-2.38(1 \mathrm{H}, \mathrm{m}), 3.33-3.64(6 \mathrm{H}, \mathrm{m}), 3.66-3.76(1 \mathrm{H}, \mathrm{m})$, 3.86-4.09 (2H, m), 4.20-4.39 (2H, m), 4.48-4.58 (1H, m);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.2,14.3,18.9,19.28,19.34,25.0,25.1,30.33,30.37,30.44,35.1,35.9$, $36.5,37.4,38.1,38.9,51.2,51.5,51.76,51.82,51.9,52.4,52.7,54.2,54.6,57.3,57.4,57.5,57.6,57.8$, $60.99,61.06,61.14,62.1,62.2,62.4,62.5,62.6,68.7,69.4,73.1,74.0,74.1,94.2,97.2,97.55,97.63,97.7$, 154.2, 154.4, 154.89, 154.93, 172.8, 172.9, 173.0, 176.2; IR (KBr): v 3461, 2952, 2870, 1756, 1681, 1469, 1442, 1270, 1203, 1122, $1022 \mathrm{~cm}^{-1}$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}\right]$: 324.1418, found: 324.1418; $[\alpha]_{\mathrm{D}}{ }^{23}=-60.2(c \quad 1.13, \mathrm{MeOH})$.

(2S,4R)-Ethyl 2-(bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)methyl)-

 4-(tetrahydro-2H-pyran-2-yloxy)pyrrolidine-1-carboxylate

To a solution of (2S,4R)-1-ethyl 2-methyl 4-(tetrahydro-2H-pyran-2-yloxy)-pyrrolidine-1,2dicarboxylate ($7.6 \mathrm{~g}, 25.2 \mathrm{mmol}$) in tetrahydrofuran $(30 \mathrm{~mL})$ was added (3,5-bis(trifluoromethyl)phenyl) magnesium bromide tetrahydrofuran solution $(0.75 \mathrm{M}$ solution, 114 mL$)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at room temperature. The resulting mixture was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 2$) gave $(2 S, 4 R)$-ethyl 2-(bis(3,5-bis(trifluoromethyl) phenyl)(hydroxy)methyl)-4-(tetrahydro-2H-pyran-2-yloxy)pyrrolidine-1-carboxylate ($16.2 \mathrm{~g}, 23.0 \mathrm{mmol}$) in 92% yield.

NMR spectra data was observed as a mixture of diastereomer and rotamer.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.10-1.38(3 \mathrm{H}, \mathrm{m}), 1.14-1.58(3 \mathrm{H}, \mathrm{m}), 1.60-1.80(4 \mathrm{H}, \mathrm{m}), 1.84-1.95(1 \mathrm{H}$, m), 1.96-2.20 ($1 \mathrm{H}, \mathrm{m}$), 3.36-3.46 (1H, m), 3.68-3.97 (3H, m), 3.98-4.17 ($2 \mathrm{H}, \mathrm{m}$), 4.42-4.51 ($1 \mathrm{H}, \mathrm{m}$), $4.92-5.06(1 \mathrm{H}, \mathrm{m}), 7.81-7.85(3 \mathrm{H}, \mathrm{m}), 7.87-7.93(3 \mathrm{H}, \mathrm{m})$;
IR (KBr): v 2954, 2875, 1735, 1513, 1451, 1247, 1144, 1109, 1005, $736 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~F}_{12} \mathrm{Na}\right]: 720.1590$, found: 720.1566;
$[\alpha]_{\mathrm{D}}{ }^{23}=+48.3(c 1.72, \mathrm{MeOH})$.

(2S,4R)-Ethyl 2-(bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)methyl)-

4-hydroxypyrrolidine-1-carboxylate

To a solution of (2S,4R)-ethyl 2-(bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)methyl)-4-(tetrahydro-2H-pyran-2-yloxy)pyrrolidine-1-carboxylate ($17.7 \mathrm{~g}, 25.2 \mathrm{mmol}$) in tetrahydrofuran (95 mL) and $\mathrm{H}_{2} \mathrm{O}$ (47 $\mathrm{mL})$ was added acetic acid $(188 \mathrm{~mL}, 197.4 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 1$) gave $(2 S, 4 R)$-ethyl 2-(bis(3,5-bis(trifluoromethyl)phenyl) (hydroxy)methyl)-4-hydroxylpyrrolidine-1-carboxylate ($14.5 \mathrm{~g}, 23.4 \mathrm{mmol}$) in 93% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.13(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.77-1.88(1 \mathrm{H}, \mathrm{m}), 1.90-1.99(2 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}$, dd, $J=4.0,12.8 \mathrm{~Hz}), 3.70-3.77(1 \mathrm{H}, \mathrm{m}), 3.91-4.14(3 \mathrm{H}, \mathrm{m}), 4.15-4.20(1 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz})$, $7.81-7.87$ ($3 \mathrm{H}, \mathrm{m}$), $7.88-7.94$ ($3 \mathrm{H}, \mathrm{m}$);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 14.6,39.6,56.7,62.8,67.4,69.0,80.3,107.9$ (4C), 121.7 (4C), 131.4 (4C), 144.9 (2C), 146.5 (2C), 158.4; IR (KBr): v 3393, 2987, 1675, 1429, 1372, 1348, 1279, 1173, 1134, $682 \mathrm{~cm}^{-1}$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F}_{12} \mathrm{Na}\right]$: 636.1015, found: 636.1020; $[\alpha]_{\mathrm{D}}{ }^{22}=+54.5(c 1.49, \mathrm{MeOH})$.
(3R,5S)-5-(Bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)methyl)pyrrolidin-3-ol (6)

To a solution of ($2 S, 4 R$)-ethyl 2-(bis(3,5-bis(trifluoromethyl)phenyl)(hydroxy)methyl)-4-hydroxyl pyrrolidine-1-carboxylate $(10.7 \mathrm{~g}, 17.3 \mathrm{mmol})$ in $\mathrm{MeOH}(57 \mathrm{~mL})$ was added potassium hydroxide (29.0 g , 519 mmol) at room temperature. The reaction mixture was stirred for 3 h at $90^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane =1: 1) gave $(3 R, 5 S)-5-(\operatorname{bis}(3,5-\mathrm{bis}($ trifluoromethyl $)$ phenyl)(hydroxy)methyl)pyrrolidin-3-ol (7.1 g, 13.1 mmol) in 88% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.42-1.51(1 \mathrm{H}, \mathrm{m}), 1.68-1.78(1 \mathrm{H}, \mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=1.6,10.0 \mathrm{~Hz})$, $3.17(1 \mathrm{H}, \mathrm{dd}, J=4.0,12.0 \mathrm{~Hz}), 4.41-4.46(1 \mathrm{H}, \mathrm{m}), 4.72(1 \mathrm{H}, \mathrm{dd}, J=6.0,10.0 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{d}, J=10.8$ Hz), 7.94 ($2 \mathrm{H}, \mathrm{s}$), 8.11 ($2 \mathrm{H}, \mathrm{s}$);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): \delta 37.1,56.3,64.6,73.0,78.7,122.2,123.4,126.1,127.5$ (2C), 128.2 (2C), $128.9,132.8(2 \mathrm{C}, \mathrm{d}, ~ J=4.0 \mathrm{~Hz}), 133.1(2 \mathrm{C}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 149.3$ (2C), 150.2 (2C);
IR (KBr): v 3365, 1372, 1278, 1174, 1131, 902, 844, 711, $682 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~F}_{12}\right]$: 542.0984, found: 542.0984;
$[\alpha]_{\mathrm{D}}{ }^{23}=+27.7(c 1.64, \mathrm{MeOH})$.

1-Benzylindoline-2,3-dione (7a)

A solution of isatin ($5.0 \mathrm{~g}, 34 \mathrm{mmol}$) in DMF (62 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath). $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $1.4 \mathrm{~g}, 36 \mathrm{mmol}$) was added portionwise to the orange solution. The color of solution changed to deep purple. When the gas evolution stopped, benzyl bromide ($6.7 \mathrm{~g}, 39 \mathrm{mmol}$) was added slowly, whereupon the mixture turned red-brown. After the reaction mixture was stirred for 15 min at room temperature, $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was introduced to precipitate the product. After filtration, the product was washed with hexane to afford1-benzylindoline-2,3-dione ($7.6 \mathrm{~g}, 95 \%$) after drying.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.85(2 \mathrm{H}, \mathrm{s}), 6.70(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dt}, J=0.4,7.2 \mathrm{~Hz})$, $7.19-7.31(5 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=0.4,7.2 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 44.1,111.0,117.7,123.9,125.4,127.4$ (2C), 128.2, 129.1 (2C), 134.5, 138.3, 150.8, 158.3, 183.2;

IR (KBr): v 1731, 1613, 1471, 1349, 1177, 1078, 1004, 766, 754, $694 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}\right]: 260.0682$, found: 260.0681;
(R)-1-Benzyl-3-hydroxy-3-(2-hydroxyethyl)indolin-2-one (8a) (Table 1, entry 13)

To a solution of (2S,4R)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($48 \mathrm{mg}, 0.090 \mathrm{mmol}$), chloroacetic acid (17 mg) and 1-benzylindoline-2,3-dione ($71 \mathrm{mg}, 0.30 \mathrm{mmol}$) in DMF $(0.30 \mathrm{~mL})$ was added acetaldehyde $(84 \mu \mathrm{~L}, 1.50 \mathrm{mmol})$ in the sealed tube (ACE GLASS, product number 5027-05) at $4{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 48 h at $4^{\circ} \mathrm{C}, \mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(56 \mathrm{mg}, 1.5 \mathrm{mmol})$ were added, and the mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and the organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-1-benzyl-3-hydroxy-3-(2-hydroxyethyl)indolin-2-one ($47 \mathrm{mg}, 0.17$ mmol) in 55% yield with 86% ee.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.01-2.10(1 \mathrm{H}, \mathrm{m}), 2.23-2.32(1 \mathrm{H}, \mathrm{m}), 3.90-4.01(2 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=15.6 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{dt}, J=$ $1.2,7.6 \mathrm{~Hz}), 7.20-7.31(5 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{dd}, J=0.8,8.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 39.4,43.9,58.6,76.1,109.6,123.3,123.9,127.2$ (2C), 127.8, 128.9 (2C), 129.7, 130.7, 135.4, 142.0, 178.5;

IR (KBr): v 3393, 2946, 1705, 1614, 1489, 1468, 1368, 1174, 1080, $753 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}\right]$: 306.1101, found: 306.1106;
$[\alpha]_{\mathrm{D}}{ }^{22}=+23.4(c 0.95, \mathrm{MeOH})$.
Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol = $10: 1, \lambda=254 \mathrm{~nm}$), $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=24.3 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=19.3 \mathrm{~min}$.

1-(4-Methoxybenzyl)indoline-2,3-dione (7c)

A solution of isatin ($10.2 \mathrm{~g}, 69 \mathrm{mmol}$) in DMF (690 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath). Potassium carbonate $(11.5 \mathrm{~g}, 83 \mathrm{mmol})$ and potassium iodide $(2.3 \mathrm{~g}, 13.9 \mathrm{mmol})$ were added to the orange solution. The color of solution changed to deep purple. When the gas evolution stopped, p-methoxybenzyl chloride $(11.2 \mathrm{~mL}, 76 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred for 3 h at $110^{\circ} \mathrm{C}$. The reaction was quenched with aqueous $1 \mathrm{~N}-\mathrm{HCl}$ and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. The product was washed with hexane to afford 1-(4-methoxybenzyl)indoline-2,3-dione (17.5 g, 96%) after drying.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.77(3 \mathrm{H}, \mathrm{s}), 4.85(2 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.82-6.88(2 \mathrm{H}, \mathrm{m})$, $7.06(1 \mathrm{H}, \mathrm{dt}, J=0.4,7.6 \mathrm{~Hz}), 7.22-7.29(2 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=0.8,6.8$ Hz);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 43.6,55.3,111.0,114.4$ (2C), 117.7, 123.8, 125.4, 126.5, 128.9 (2C), 138.3, 150.8, 158.3, 159.5, 183.4;

IR (KBr): v 1735, 1610, 1513, 1467, 1353, 1248, 1182, 1021, 856, $762 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}\right]: 290.0788$, found: 290.0782;

(R)-3-Hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one (8c)

To a solution of (2S,4R)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($48 \mathrm{mg}, 0.090 \mathrm{mmol}$), chloroacetic acid (17 mg) and 1-(4-methoxybenzyl)indoline-2,3-dione ($80 \mathrm{mg}, 0.30$ mmol) in DMF (0.60 mL) was added acetaldehyde ($84 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) in the sealed tube (ACE GLASS, product number 5027-05) at $4^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 48 h at $4^{\circ} \mathrm{C}, \mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(56 \mathrm{mg}, 1.5 \mathrm{mmol})$ were added, and the reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. The
resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-3-hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one ($68 \mathrm{mg}, 0.22 \mathrm{mmol}$) in 73% yield with 86% ee.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.03-2.12(1 \mathrm{H}, \mathrm{m}), 2.23-2.32(1 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.92-3.99(2 \mathrm{H}, \mathrm{m})$, $4.71(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 6.79-6.86(2 \mathrm{H}, \mathrm{m}), 7.05$ $(1 \mathrm{H}, \mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}), 7.20(3 \mathrm{H}, \mathrm{dt}, J=0.6,7.6 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=0.8,7.2 \mathrm{~Hz}) ;$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 39.5,43.3,55.3,58.6,76.1,109.7,114.2$ (2C), 123.7, 123.9, 127.5, 128.6 (2C), 129.6, 130.7, 142.0, 159.2, 178.5;
IR (KBr): v 3395, 1704, 1614, 1513, 1468, 1367, 1249, 1176, 1033, $751 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}\right]$: 336.1206, found: 336.1206;
$[\alpha]_{\mathrm{D}}{ }^{22}=+21.5(c 1.53, \mathrm{MeOH})$.
Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol = $10: 1, \lambda=254 \mathrm{~nm}$), $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=29.7 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=27.9 \mathrm{~min}$.

1-(Methoxymethyl)indoline-2,3-dione (7d)

A solution of isatin ($1.0 \mathrm{~g}, 6.8 \mathrm{mmol}$) in THF (27 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath). Triethylamine (4.7 $\mathrm{mL}, 34 \mathrm{mmol})$ and trimethylsilyl chloride $(4.3 \mathrm{~mL}, 34 \mathrm{mmol})$ were added to the orange solution. The reaction mixture was stirred for 2 h at $80{ }^{\circ} \mathrm{C}$. After cooled the reaction mixture to $0{ }^{\circ} \mathrm{C}$, chloro(methoxy)methane ($3.0 \mathrm{~mL}, 34 \mathrm{mmol}$) was added slowly. The reaction mixture was stirred for 6 h at $80{ }^{\circ} \mathrm{C}$, then the resulting mixture was quenched with pH 7.0 phosphate buffer solution. Organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 9$) gave 1-(methoxymethyl)indoline-2,3-dione ($694 \mathrm{mg}, 3.6$ mmol) in 53% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.37(3 \mathrm{H}, \mathrm{s}), 5.15(2 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=0.8$, 8.0 Hz), 7.58-7.67 (2H, m);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 56.6,71.7,111.6,117.5,124.3,125.4,138.6,150.1,158.4,182.8$;
IR (KBr): v 2944, 1726, 1605, 1467, 1346, 1287, 1183, 1076, 910, $755 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{Na}\right]:$ 214.0475, found: 214.0480;

To a solution of (2S,4R)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($48 \mathrm{mg}, 0.090 \mathrm{mmol}$), chloroacetic acid (17 mg) and 1-(methoxymethyl)indoline-2,3-dione ($58 \mathrm{mg}, 0.30$ mmol) in DMF (60 mL) was added acetaldehyde $(84 \mu \mathrm{~L}, 1.50 \mathrm{mmol})$ in the sealed tube (ACE GLASS, product number 5027-05) at $4^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 48 h at $4^{\circ} \mathrm{C}, \mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(56 \mathrm{mg}, 1.5 \mathrm{mmol})$ were added, and the reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-3-Hydroxy-3-(2-hydroxyethyl)-1-(methoxymethyl)indolin-2-one ($52 \mathrm{mg}, 0.22 \mathrm{mmol}$) in 72% yield with 86% ee.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.01-2.09(1 \mathrm{H}, \mathrm{m}), 2.25-2.35(1 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.90-4.03(2 \mathrm{H}, \mathrm{m})$, $5.05(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dt}, J=0.8,8.4$ $\mathrm{Hz}), 7.32(1 \mathrm{H}, \mathrm{dt}, J=0.8,8.4 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{dd}, J=0.8,6.8 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 39.4,56.4,58.6,71.6,76.3,110.0,123.8,124.0,129.9,130.0,141.2$, 178.8;

IR (KBr): v 3399, 1718, 1614, 1487, 1468, 1350, 1182, 1094, 913, $755 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}\right]: 260.0893$, found: 260.0891;
$[\alpha]_{\mathrm{D}}{ }^{22}=+12.5(c 0.44, \mathrm{MeOH})$.
Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol $=$ $30: 1, \lambda=215 \mathrm{~nm}$), $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=49.1 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=53.2 \mathrm{~min}$.

1-[(Triisopropylsilyloxy)methyl]indoline-2,3-dione (7e)

A solution of isatin ($7.3 \mathrm{~g}, 49.8 \mathrm{mmol}$) in DMF (100 mL) was cooled to $0^{\circ} \mathrm{C}$ (ice bath). Triethylamine $(10.4 \mathrm{~mL}, 75 \mathrm{mmol})$ and (chloromethoxy)triisopropylsilane ($5.6 \mathrm{~g}, 24.9 \mathrm{mmol}$) was added to the orange solution. The reaction mixture was stirred for 24 h at room temperature, then the resulting mixture was quenched with pH 7.0 phosphate buffer solution. Organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 10$) gave 1-[(triisopropylsilyloxy)methyl]indoline-2,3-dione ($2.1 \mathrm{~g}, 6.3 \mathrm{mmol}$) in 25% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(18 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.12-1.22(3 \mathrm{H}, \mathrm{m}), 5.41(2 \mathrm{H}, \mathrm{s}), 7.12-7.19(2 \mathrm{H}$, m), $7.62(2 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.9(3 \mathrm{C}), 17.7$ (6C), 64.8, 111.8, 117.5, 124.0, 125.3, 138.4, 150.5,

(R)-3-Hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one (8e)

To a solution of (2S,4R)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($71 \mathrm{mg}, 0.13 \mathrm{mmol}$), chloroacetic acid ($25 \mathrm{mg}, 0.26$) and 1-[(triisopropylsilyloxy)methyl]indoline-2,3dione $(146 \mathrm{mg}, 0.44 \mathrm{mmol})$ in DMF $(0.44 \mathrm{~mL})$ was added acetaldehyde $(123 \mu \mathrm{~L}, 2.2 \mathrm{mmol})$ in the sealed tube (ACE GLASS, product number 5027-05) at $4{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 72 h at 4 ${ }^{\circ} \mathrm{C}$, $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(82 \mathrm{mg}, 2.2 \mathrm{mmol})$ were added, and the reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropyl silyloxy)methyl)indolin-2-one ($121 \mathrm{mg}, 0.31 \mathrm{mmol}$) in 73% yield with 85% ee.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(18 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 1.11-1.22(3 \mathrm{H}, \mathrm{m}), 1.94-2.04(1 \mathrm{H}, \mathrm{m})$, $2.22-2.32(1 \mathrm{H}, \mathrm{m}), 2.60-2.75(1 \mathrm{H}, \mathrm{m}), 3.90-4.08(3 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.42(1 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}), 7.09(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{dd}$, $J=11.6 \mathrm{~Hz}$);
${ }^{13} \mathrm{C}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.9(3 \mathrm{C}), 17.8(6 \mathrm{C}), 39.2,58.6,64.9,76.4,110.3,123.4,123.7,129.7$, 130.2, 141.4, 177.3;

IR (KBr): v 3392, 2944, 2866, 1718, 1615, 1469, 1364, 1279, 1092, $751 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}\right]: 402.2071$, found: 402.2078;
$[\alpha]_{\mathrm{D}}{ }^{20}=+12.8(c 0.78, \mathrm{MeOH})$.
Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol = $10: 1, \lambda=254 \mathrm{~nm}$), $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=13.1 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=13.7 \mathrm{~min}$.

(R)-3-Hydroxy-3-(2-hydroxyethyl)indolin-2-one (14)

To a solution of (R)-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one (498 mg , 1.3 mmol) in $\mathrm{MeOH}(2.6 \mathrm{~mL})$ was added ammonium fluoride ($147 \mathrm{mg}, 3.9 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 12 h at $70{ }^{\circ} \mathrm{C}$. After that reaction mixture was concentrated in vacuo, purification by preparative thin layer chromatography (ethyl acetate) gave (R)-3-hydroxy-3-(2-hydroxyethyl)indolin-2-one ($225 \mathrm{mg}, 1.2 \mathrm{mmol}$) in 88% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.00-2.09(1 \mathrm{H}, \mathrm{m}), 2.22-2.31(1 \mathrm{H}, \mathrm{m}), 3.90-4.03(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.6 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.93(1 \mathrm{H}$, br-s);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 39.2,58.6,76.3,110.3,123.3,124.3,129.8,131.0,139.9,180.2$;
IR (KBr): v 3284, 2923, 1358, 1715, 1621, 1471, 1279, 1178, 753, $584 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{Na}\right]:$ 216.0631, found: 216.0631; $[\alpha]_{D}{ }^{20}=+21.6(c 0.23, \mathrm{MeOH})$.

(3aR,8aS)-3,3a,8,8a-Tetrahydro-2H-furo[2,3-b]indol-3a-ol (15)

To a solution of (R)-3-hydroxy-3-(2-hydroxyethyl)indolin-2-one ($118 \mathrm{mg}, 0.61 \mathrm{mmol}$) in tetrahydrofuran $(1.2 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(116 \mathrm{mg}, 3.1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 48 h at room temperature. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate $:$ hexane $=1: 1$) gave $(3 \mathrm{a} R, 8 \mathrm{aS})-3,3 \mathrm{a}, 8,8 \mathrm{a}$-tetrahydro- 2 H -furo[2,3-b] indol-3a-ol ($51 \mathrm{mg}, 0.28 \mathrm{mmol}$) in 47% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.36(1 \mathrm{H}, \mathrm{ddd}, J=2.2,5.4,12.0 \mathrm{~Hz}), 2.48(1 \mathrm{H}, \operatorname{ddd}, J=7.6,11.0,12.0$ $\mathrm{Hz}), 3.69(1 \mathrm{H}, \mathrm{ddd}, J=5.4,9.0,11.0 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{ddd}, J=2.2,7.6,9.0 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{br}-\mathrm{s}), 5.41(1 \mathrm{H}$, s), $6.62(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{dt}, J=1.5$, 7.6 Hz);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 40.9,67.4,89.5,99.4,109.5,119.5,124.1,130.1,130.3,149.6$;
IR (KBr): v 3382, 2952, 2873, 1668, 1613, 1471, 1313, 1111, 1021, 949, $747 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}\right]: 200.0682$, found: 200.0681;
$[\alpha]_{\mathrm{D}}^{22}=-114.8\left(c 0.77, \mathrm{CHCl}_{3}\right)$;
lit. ${ }^{\mathrm{S} 1)}[\alpha]_{\mathrm{D}}=-144\left(c 0.84, \mathrm{CHCl}_{3}\right)$.

5,7-Dibromo-1-((triisopropylsilyloxy)methyl)indoline-2,3-dione (9)

5,7-Dibromoindoline-2,3-dione was prepared by known method ${ }^{\text {S2 }}$. A solution of 5,7-dibromoindoline-2,3-dione ($9.9 \mathrm{~g}, 32.5 \mathrm{mmol}$) in DMF (130 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath). Triethylamine $(9.0 \mathrm{~mL}, 65$ $\mathrm{mmol})$ and (chloromethoxy)triisopropylsilane $(4.8 \mathrm{~g}, 21.6 \mathrm{mmol})$ were added to the orange solution. The reaction mixture was stirred for 24 h at room temperature, then the resulting mixture was quenched with pH 7.0 phosphate buffer solution. Organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate $:$ hexane $=1: 10$) gave 5,7-dibromo-1-((triisopropylsilyloxy)methyl)indoline-2,3-dione ($4.5 \mathrm{~g}, 9.1 \mathrm{mmol}$) in 42% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.02-1.08(18 \mathrm{H}, \mathrm{m}), 1.10-1.22(3 \mathrm{H}, \mathrm{m}), 5.73(2 \mathrm{H}, \mathrm{s}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0$ $\mathrm{Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.2$ (3C), 17.1 (6C), 63.7, 105.3, 116.4, 120.6, 126.5, 144.4, 145.9, 156.8, 180.6;

IR (KBr): v 2941, 2468, 1746, 1600, 1452, 1313, 1274, 1227, 1160, $1092 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{SiNa}\right]$: 513.9843, found: 513.9864;
(R)-5,7-Dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one (11)

To a solution of ($2 S, 4 R$)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($71 \mathrm{mg}, 0.13 \mathrm{mmol}$), chloroacetic acid ($25 \mathrm{mg}, 0.26$) and 5,7-dibromo-1-((triisopropylsilyloxy)methyl) indoline-2,3-dione ($220 \mathrm{mg}, 0.44 \mathrm{mmol}$) in DMF $(0.89 \mathrm{~mL})$ was added acetaldehyde ($123 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) in the sealed tube (ACE GLASS, product number 5027-05) at $4^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 48 h at $4{ }^{\circ} \mathrm{C}$, $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(82 \mathrm{mg}, 2.2 \mathrm{mmol})$ were added, and the reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-5,7-Dibromo-3-hydroxy-3-(2-hydroxy ethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one ($200 \mathrm{mg}, 0.83 \mathrm{mmol}$) in 83% yield with 81% ee.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(18 \mathrm{H}, \mathrm{dd}, J=2.0,9.2 \mathrm{~Hz}), 1.10-1.20(3 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \operatorname{ddd}, J=4.0$, $4.8,15.2 \mathrm{~Hz}), 2.27(1 \mathrm{H}$, ddd, $J=4.8,9.2,15.2 \mathrm{~Hz}), 3.85-3.96(1 \mathrm{H}, \mathrm{m}), 4.06-4.18(1 \mathrm{H}, \mathrm{m}), 5.66(2 \mathrm{H}, \mathrm{s})$, $7.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.8(3 \mathrm{C}), 17.8(6 \mathrm{C}), 36.4,58.3,65.1,77.5,113.1,119.8,123.8,126.9$, 129.7, 144.4, 176.3;

IR (KBr): v 3356, 2941, 2864, 1725, 1598, 1464, 1278, 1174, 1093, $881 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{NO}_{4} \mathrm{SiNa}\right]: 535.0389$, found: 535.0394;
$[\alpha]_{\mathrm{D}}{ }^{22}=+14.2(c 0.85, \mathrm{MeOH})$.
Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol $=$ $30: 1, \lambda=298 \mathrm{~nm}$), $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=6.2 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=7.2 \mathrm{~min}$.

5,7-Dibromo-1-(4-methoxybenzyl)indoline-2,3-dione

A solution of 5,7-dibromoindoline-2,3-dione ($2.3 \mathrm{~g}, 7.5 \mathrm{mmol}$) in DMF $(75 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ (ice bath). Potassium carbonate $(1.3 \mathrm{~g}, 9.1 \mathrm{mmol})$ and potassium iodide $(0.25 \mathrm{~g}, 1.5 \mathrm{mmol})$ were added to the orange solution. The color of solution changed to deep purple. When the gas evolution stopped, p-methoxybenzyl chloride ($1.2 \mathrm{~mL}, 8.3 \mathrm{mmol}$) was added slowly. The reaction mixture was stirred for 4 h
at $110{ }^{\circ} \mathrm{C}$. The resulting mixture was quenched with aqueous $1 \mathrm{~N}-\mathrm{HCl}$ and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. The product was washed with hexane to afford 5,7-dibromo-1-(4-methoxybenzyl)indoline-2,3-dione ($3.0 \mathrm{~g}, 95 \%$) after drying.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.77(3 \mathrm{H}, \mathrm{s}), 5.35(2 \mathrm{H}, \mathrm{s}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 44.2,55.3,105.2,114.1,114.3,117.1,121.5,127.5,127.6,128.0,129.2$, 145.3, 146.8, 158.4, 159.3, 181.4;

IR (KBr): v 1744, 1600, 1513, 1447, 1315, 1247, 1178, 1144, 1031, $724 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Na}\right]: 445.8998$, found: 445.8985;
(R)-5,7-Dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one
$30 \mathrm{~mol} \%$

To a solution of (2S,4R)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($63 \mathrm{mg}, 0.12 \mathrm{mmol}$), chloroacetic acid ($22 \mathrm{mg}, 0.23 \mathrm{mmol}$) and 5,7-dibromo-1-(4-methoxybenzyl) indoline-2,3-dione ($163 \mathrm{mg}, 0.38 \mathrm{mmol}$) in DMF $(0.77 \mathrm{~mL})$ was added acetaldehyde $(108 \mu \mathrm{~L}, 1.93$ mmol) in the sealed tube (ACE GLASS, product number 5027-05) at $4^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 48 h at $4{ }^{\circ} \mathrm{C}$, $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(56 \mathrm{mg}, 1.5 \mathrm{mmol})$ were added, and the mixture stirred for 1 h at $-20^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane =1:1) gave (R)-5,7-dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one ($153 \mathrm{mg}, 0.32 \mathrm{mmol}$) in 85% yield.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.92-2.01(1 \mathrm{H}, \mathrm{m}), 2.24-2.35(1 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.88-3.96(1 \mathrm{H}, \mathrm{m})$, $4.01-4.16(1 \mathrm{H}, \mathrm{m}), 5.20-5.33(2 \mathrm{H}, \mathrm{m}), 6.80(2 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}$, 1.6 Hz), $7.52-7.56(1 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 39.2,44.0,55.2,58.5,75.5,103.4,114.1$ (2C), 116.4, 126.5, 127.7 (2C), 128.6, 135.6, 137.3, 138.8, 158.9, 178.7;

IR (KBr): v 3393, 2362, 2330, 1716, 1513, 1452, 1247, 1177, 1144, $1033 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NO}_{4} \mathrm{Na}\right]$: 491.9417, found: 491.9423;
$[\alpha]_{\mathrm{D}}{ }^{22}=+15.5(c 1.53, \mathrm{MeOH})$.
(R)-5,7-Dibromo-1-(4-methoxybenzyl)-3-(triethylsilyloxy)-3-(2-(triethylsilyloxy)ethyl)indolin-2-one

To a solution of (R)-5,7-dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one (238 $\mathrm{mg}, 0.51 \mathrm{mmol}$), 2,6-lutidine ($380 \mu \mathrm{~L}, 2.55 \mathrm{mmol}$) in methylene chloride (5.1 mL) were added triethylsilyl trifluoromethanesulfonate ($354 \mu \mathrm{~L}, 1.53 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution. Organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane = 1:7) gave (R)-5,7-dibromo-1-(4-methoxybenzyl)-3-(triethylsilyloxy)-3-(2-(triethyl silyloxy)ethyl)indolin-2-one ($320 \mathrm{mg}, 0.46 \mathrm{mmol}$) in 90% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.35-0.54(12 \mathrm{H}, \mathrm{m}), 0.83(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $2.04-2.13(1 \mathrm{H}, \mathrm{m}), 2.18-2.27(1 \mathrm{H}, \mathrm{m}), 3.54-3.67(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 5.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}), 5.24$ $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 6.80-6.85(2 \mathrm{H}, \mathrm{m}), 7.19-7.25(1 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\mathrm{Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 4.3$ (3C), 5.7 (3C), 6.7 (6C), 43.1, 43.9, 55.2, 57.8, 75.9, 77.3, 102.7, 113.9 (2C), 115.6, 126.7, 128.4 (2C), 129.1, 136.8, 138.8, 158.9, 177.3;

IR (KBr): v 2954, 2875, 1735, 1513, 1450, 1247, 1144, 1110, 1005, $736 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{Br}_{2} \mathrm{NO}_{4} \mathrm{Si}_{2} \mathrm{Na}\right]$: 720.1146, found: 720.1120;
$[\alpha]_{\mathrm{D}}{ }^{21}=-15.3(c 1.36, \mathrm{MeOH})$.

The absolute configuration of (R)-5,7-Dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy) methyl)indolin-2-one (11) was determined after debromination of (R)-5,7-dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one;

(R)-3-Hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one

To a solution of (R)-5,7-dibromo-1-(4-methoxybenzyl)-3-(triethylsilyloxy)-3-(2-(triethylsilyloxy)ethyl) indolin-2-one ($27.0 \mathrm{mg}, 0.039 \mathrm{mmol}$) in $\mathrm{MeOH}(0.39 \mathrm{~mL}$) was added $20 \% \mathrm{Pd} / \mathrm{C}(5.4 \mathrm{mg}, 0.0078 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 1 h under H_{2} atomosphere. Warmed MeOH (5 ml) was added, and the resulting mixture was filtered through a pad of celite, and concentrated in vacuo. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-3-Hydroxy-3-(2-hydroxyethyl)-1-(4-methoxybenzyl)indolin-2-one ($10.7 \mathrm{mg}, 0.019 \mathrm{mmol}$) in 88% yield. In this reaction, the deprotection of TES group proceeded in addition to debromination.

Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol $=$ $10: 1, \lambda=254 \mathrm{~nm}$), $1.0 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=28.2 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=26.8 \mathrm{~min}$.

The absolute configuration was determined by the comparison with retention time of previous synthetic compound 7c; see page S5.

4,6-Dibromo-1-((triisopropylsilyloxy)methyl)indoline-2,3-dione (10)

4,6-Dibromoindoline-2,3-dione was prepared from p-nitroaniline by known method ${ }^{53)}$. A solution of 4,6-dibromoindoline-2,3-dione ($6.1 \mathrm{~g}, 20.1 \mathrm{mmol}$) in DMF (80 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath). Triethylamine ($5.6 \mathrm{~mL}, 40 \mathrm{mmol}$) and (chloromethoxy)triisopropylsilane ($3.0 \mathrm{~g}, 13.4 \mathrm{mmol}$) were added to the orange solution. The reaction mixture was stirred for 24 h at room temperature, then the resulting mixture was quenched with pH 7.0 phosphate buffer solution. Organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1$: 10) gave 4,6-dibromo-1-((triisopropylsilyloxy)methyl)indoline-2,3-dione ($1.6 \mathrm{~g}, 3.2 \mathrm{mmol}$) in 24% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.04-1.09(18 \mathrm{H}, \mathrm{m}), 1.01-1.23(3 \mathrm{H}, \mathrm{m}), 5.40(2 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6$ $\mathrm{Hz}), 7.49(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.2$ (3C), 17.1 (6C), 63.7, 105.3, 116.4, 120.6, 126.5, 144.4, 145.9, 156.8, 180.6;

IR (KBr): v 2942, 2865, 1745, 1591, 1393, 1321, 1239, 1096, 883, $689 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[M+N a]^{+}$calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{SiNa}\right]: 513.9843$, found: 513.9861;
(S)-4,6-Dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one (12)

To a solution of ($2 S, 4 R$)-4-hydroxy-2-(bis-[3,5-bis(trifluoromethyl)phenyl]hydroxymethyl)pyrrolidine ($71 \mathrm{mg}, 0.13 \mathrm{mmol}$), chloroacetic acid ($25 \mathrm{mg}, 0.26$) and 4,6-dibromo-1-((triisopropylsilyloxy)methyl) indoline-2,3-dione ($220 \mathrm{mg}, 0.44 \mathrm{mmol}$) in DMF $(0.89 \mathrm{~mL}$) was added acetaldehyde ($123 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) in the sealed tube (ACE GLASS, product number 5027-05) at $4^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 48 h at $4{ }^{\circ} \mathrm{C}$, $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(82 \mathrm{mg}, 2.2 \mathrm{mmol})$ were added, and the reaction mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (S)-4,6-dibromo-3-hydroxy-3-(2-hydroxy ethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one ($207 \mathrm{mg}, 0.86 \mathrm{mmol}$) in 86% yield with 82% ee.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.03-1.09(18 \mathrm{H}, \mathrm{m}), 1.10-1.20(3 \mathrm{H}, \mathrm{m}), 2.01-2.14(1 \mathrm{H}, \mathrm{m})$, $2.75-2.86(1 \mathrm{H}, \mathrm{m}), 3.79-4.00(3 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=$ $0.8 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.8(3 \mathrm{C}), 17.8(6 \mathrm{C}), 36.4,58.3,65.1,77.5,113.1,119.8,123.8,126.9$, 129.7, 144.4, 176.3;

IR (KBr): v 3356, 2941, 2864, 1725, 1598, 1464, 1278, 1174, 1093, $881 \mathrm{~cm}^{-1}$;

HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{NO}_{4} \mathrm{SiNa}\right]$: 535.0389 , found: 535.0391;
$[\alpha]_{\mathrm{D}}{ }^{17}=-11.2(c 0.76, \mathrm{MeOH})$.
Enantiometric excess was determined by HPLC with a Chiralcel OJ-H column (hexane : 2-propanol = $50: 1, \lambda=222 \mathrm{~nm}$), $0.5 \mathrm{~mL} / \mathrm{min}$; major enantiomer $t_{\mathrm{R}}=22.9 \mathrm{~min}$, minor enantiomer $t_{\mathrm{R}}=21.1 \mathrm{~min}$.

ent-Convolutamydine E (13)

To a solution of (S)-4,6-dibromo-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one ($40 \mathrm{mg}, 0.082 \mathrm{mmol}$) in $\mathrm{MeOH}(0.16 \mathrm{~mL})$ was added ammonium fluoride ($9.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 12 h at $70^{\circ} \mathrm{C}$. After that reaction was concentrated in vacuo, purification by preparative thin layer chromatography (ethyl acetate) gave ent-Convolutamydine $\mathrm{E}(19.0 \mathrm{mg}, 0.062 \mathrm{mmol})$ in 76% yield
${ }^{1} \mathrm{H}$ NMR (pyridine- $\left.\mathrm{d}_{5}, 400 \mathrm{MHz}\right): \delta 3.20(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{s}), 4.00-4.04(2 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{s})$, 7.49 ($1 \mathrm{H}, \mathrm{s}$);
${ }^{13} \mathrm{C}$ NMR (pyridine- ${ }_{5}, 100 \mathrm{MHz}$): $\delta 39.2,58.0,77.4,112.5,120.8,128.1,130.1,130.1,146.7,180.6$; IR (KBr): v 3275, 2923, 2380, 2348, 1729, 1607, 1574, 1424, 1168, $1082 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Na}\right]$: 371.8841, found: 371.8832;
$[\alpha]_{\mathrm{D}}{ }^{20}=-7.8(c 0.67, \mathrm{MeOH}$, ent-Convolutamydine E).
lit. ${ }^{\text {S4) }}[\alpha]_{\mathrm{D}}=+12.6$ (c 1.00, MeOH, Convolutamydine E).

(R)-2-(3-Hydroxy-2-oxo-1-((triisopropylsilyloxy)methyl)indolin-3-yl)ethyl methanesulfonate (16)

To a solution of (R)-3-hydroxy-3-(2-hydroxyethyl)-1-((triisopropylsilyloxy)methyl)indolin-2-one (492 $\mathrm{mg}, 1.30 \mathrm{mmol})$ in pyridine $(13 \mathrm{~mL})$ was added methanesulfonyl chloride $(111 \mu \mathrm{~L}, 1.43 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at room temperature. The resulting mixture was quenched with aqueous $1 \mathrm{~N}-\mathrm{HCl}$ and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 3$) gave (R)-2-(3-hydroxy-2-oxo-1-((triisopropylsilyloxy)methyl)indolin-3-yl)ethyl methanesulfonate ($445 \mathrm{mg}, 0.97 \mathrm{mmol}$) in 75% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.03-1.09(18 \mathrm{H}, \mathrm{m}), 1.11-1.24(3 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{dt}, J=6.4,14.4 \mathrm{~Hz})$, $2.41-2.51(1 \mathrm{H}, \mathrm{m}), 2.90(3 \mathrm{H}, \mathrm{s}), 4.32-4.38(2 \mathrm{H}, \mathrm{m}), 5.36(2 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 7.09-7.18(2 \mathrm{H}, \mathrm{m})$, 7.33-7.43 (2H, m);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.9$ (3C), 17.8 (6C), 37.2, 37.3, 65.0, 74.8, 77.3, 110.6, 123.6, 124.0, 128.7, 130.3, 141.8, 176.1;

IR (KBr): v 3437, 2944, 2866, 1730, 1615, 1469, 1359, 1175, 1094, $752 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NSO}_{6} \mathrm{SiNa}\right]: 480.1847$, found: 480.1835;
$[\alpha]_{\mathrm{D}}{ }^{21}=+7.8(c 0.80, \mathrm{MeOH})$.

(R)-3-(2-Azidoethyl)-3-hydroxy-1-((triisopropylsilyloxy)methyl)indolin-2-one (17)

To a solution of (R)-2-(3-hydroxy-2-oxo-1-((triisopropylsilyloxy)methyl)indolin-3-yl)ethyl methane sulfonate ($572 \mathrm{mg}, 1.25 \mathrm{mmol}$) in DMF (4.2 mL) was added sodium azide ($98 \mathrm{mg}, 1.50 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 6 h at $60^{\circ} \mathrm{C}$. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1$: 3) gave (R)-2-(3-hydroxy-2-oxo-1-((triisopropylsilyloxy)methyl)indolin-3-yl)ethyl methanesulfonate $(419 \mathrm{mg}$, 1.04 mmol) in 83% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.06(18 \mathrm{H}, \mathrm{dd}, J=2.4,7.2 \mathrm{~Hz}), 1.10-1.23(3 \mathrm{H}, \mathrm{m}), 2.09-2.20(1 \mathrm{H}, \mathrm{m})$, $2.28(1 \mathrm{H}, \mathrm{dt}, J=8.0,13.6 \mathrm{~Hz}), 3.34-3.45(2 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$, 7.08-7.16 ($2 \mathrm{H}, \mathrm{m}$), 7.32-7.41 ($2 \mathrm{H}, \mathrm{m}$);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.9(3 \mathrm{C}), 17.8(6 \mathrm{C}), 37.0,46.2,64.9,75.2,110.5,123.4,123.8,128.9$, 130.1, 141.7, 176.3;

IR (KBr): v 3402, 2943, 2866, 2097, 1715, 1616, 1469, 1366, 1092, $751 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SiNa}\right]$: 427.2136, found: 427.2133;
$[\alpha]_{\mathrm{D}}{ }^{20}=+12.5(c 1.20, \mathrm{MeOH})$.

(R)-3-(2-Azidoethyl)-3-hydroxyindolin-2-one (18)

To a solution of (R)-3-(2-azidoethyl)-3-hydroxy-1-((triisopropylsilyloxy)methyl)indolin-2-one (390 mg, $0.97 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added ammonium fluoride ($144 \mathrm{mg}, 3.8 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 3 h at $70{ }^{\circ} \mathrm{C}$. The resulting mixture was concentrated in vacuo. Purification by preparative thin layer chromatography (ethyl acetate : hexane $=1: 1$) gave (R)-3-(2-azidoethyl)-3-hydroxylindolin-2-one ($207 \mathrm{mg}, 0.97 \mathrm{mmol}$) in 98% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.14-2.23(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{dt}, J=7.6,14.0 \mathrm{~Hz}), 3.41(2 \mathrm{H}, \mathrm{dt}, J=2.4$, $7.6 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{dt}, J=1.6,8.0 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}$);
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 36.9,46.3,75.3,110.4,123.4,124.4,129.6,130.1,140.1,178.9$; IR (KBr): v 3313, 2358, 2098, 1706, 1471, 1333, 1264, 1212, 1183, $753 \mathrm{~cm}^{-1}$; HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}\right]: 241.0696$, found: 241.0692; $[\alpha]_{\mathrm{D}}{ }^{24}=+2.8(c 0.31, \mathrm{MeOH})$.

(R)-3-(2-Azidoethyl)-3-methoxy-1-methylindolin-2-one (19)

To a solution of (R)-3-(2-azidoethyl)-3-hydroxyindolin-2-one ($218 \mathrm{mg}, 0.99 \mathrm{mmol}$) in THF (3.3 mL) was cooled to $0^{\circ} \mathrm{C}$ (ice bath). Then $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $129 \mathrm{mg}, 2.97 \mathrm{mmol})$ was added portionwise. When the gas evolution stopped, methyl iodide ($0.18 \mathrm{~mL}, 2.97 \mathrm{mmol}$) was added slowly. The reaction mixture was stirred for 4 h at room temperature. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by column chromatography (ethyl acetate : hexane $=1: 3$) gave (R)-3-(2-azidoethyl)-3-methoxy-1-methylindolin-2-one ($207 \mathrm{mg}, 0.84 \mathrm{mmol}$) in 85% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.06-2.16(1 \mathrm{H}, \mathrm{m}), 2.20-2.31(1 \mathrm{H}, \mathrm{m}), 2.99(3 \mathrm{H}, \mathrm{s}), 3.22(3 \mathrm{H}, \mathrm{s})$, $3.27-3.45(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.11-7.16(1 \mathrm{H}, \mathrm{m}), 7.29(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.34-7.41(1 \mathrm{H}$, m);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 26.1,36.6,45.9,52.8,80.9,108.5,123.1,124.1,126.3,130.2,143.9$, 175.3;

IR (KBr): v 2934, 2098, 1725, 1613, 1492, 1469, 1372, 1348, 1105, $754 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for [$\left.\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}\right]:$ 269.1009, found: 269.1005;
$[\alpha]_{\mathrm{D}}{ }^{23}=-18.8(c 1.20, \mathrm{MeOH})$.

(3aR,8aR)-3a-Methoxy-8-methyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (20)

To a solution of (R)-3-(2-azidoethyl)-3-methoxy-1-methylindolin-2-one ($14 \mathrm{mg}, 0.058 \mathrm{mmol}$) in toluene $(1.2 \mathrm{~mL}$) was added sodium bis(2-methoxyethoxy)aluminum hydride ($65 \mathrm{wt} \%$ in toluene; $0.26 \mathrm{~mL}, 0.87$ mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h at room temperature. After that the solution was heated to $80^{\circ} \mathrm{C}$ and maintained at $80^{\circ} \mathrm{C}$ for 8 h . After cooling to room temperature, the resulting mixture was quenched with saturated aqueous sodium potassium tartrate $(7 \mathrm{~mL})$, diluted with ethyl acetate $(5 \mathrm{~mL})$, and stirred vigorously for 45 min . Organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (methanol : chloroform $=1: 10$) gave ($3 \mathrm{a} R, 8 \mathrm{a} R$)-3a-methoxy-8-methyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole ($7.2 \mathrm{mg}, 0.035 \mathrm{mmol}$) in 61\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.17-2.23(2 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dt}, J=8.4,11.2 \mathrm{~Hz}), 2.86(3 \mathrm{H}, \mathrm{s}), 3.09(3 \mathrm{H}$, s), $3.11-3.17(1 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{s}), 6.41(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}), 7.14-7.21(2 \mathrm{H}$, m);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 31.8,41.9,45.4,52.9,86.4,94.7,106.0,117.1,124.4,126.7,129.9$, 152.3;

IR (KBr): v 2937, 2360, 2341, 1609, 1490, 1294, 1099, 938, $743 \mathrm{~cm}^{-1}$;

HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{ONa}\right]$: 227.1155, found: 227.1164;
$[\alpha]_{\mathrm{D}}{ }^{19}=-79.1(c 0.64, \mathrm{MeOH})$.

CPC-1 (21)

To a solution of (3aR,8aR)-3a-methoxy-8-methyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (37 mg , $0.18 \mathrm{mmol})$ in $\mathrm{MeOH}(2.4 \mathrm{~mL})$ was added formaldehyde (37% water solution, $23 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at room temperature. Then, $\mathrm{NaBH}_{3} \mathrm{CN}(34 \mathrm{mg}, 0.54 \mathrm{mmol})$ was added and the reaction mixture was stirred for 1 h at room temperature. The resulting mixture was quenched with pH 7.0 phosphate buffer solution and organic materials were extracted with ethyl acetate three times, and then combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo after filtration. Purification by preparative thin layer chromatography (methanol : chloroform $=1$: 10) gave CPC-1 ($27 \mathrm{mg}, 0.12 \mathrm{mmol}$) in 67% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.13(1 \mathrm{H}, \mathrm{ddd}, J=4.5,6.0,12.3 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{ddd}, J=6.8,8.3,12.3 \mathrm{~Hz})$, $2.58(3 \mathrm{H}, \mathrm{s}), 2.62(1 \mathrm{H}, \mathrm{dt}, J=6.0,8.8 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{ddd}, J=4.4,6.8,9.2 \mathrm{~Hz}), 2.97(3 \mathrm{H}, \mathrm{s}), 3.04(3 \mathrm{H}, \mathrm{s})$, $4.36(1 \mathrm{H}, \mathrm{s}), 6.51(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}), 7.20$ ($1 \mathrm{H}, \mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}$);
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 36.2,38.6,39.3,52.4,52.5,91.7,94.1,107.8,117.9,124.1,128.1,129.7$, 153.1

IR (KBr): v 2938, 2791, 1608, 1489, 1162, 1098, 1041, 933, $742 \mathrm{~cm}^{-1}$;
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}\right]$: 241.1311, found: 241.1302;
$[\alpha]_{\mathrm{D}}{ }^{19}=-83.0(c 0.73, \mathrm{MeOH})$.
lit. ${ }^{\mathrm{S})}[\alpha]_{\mathrm{D}}{ }^{26}=-88(c 0.1, \mathrm{MeOH})$.

References;

S1) T. Sunazuka, T. Hirose, T. Shirahata, Y. Harigaya, M. Hayashi, K. Komiyama, S. Omura, A. B. Smith III, J. Am. Chem. Soc. 2000, 122, 2122.
S2) H. G. Lindwall, J. Bandes, I. Weinberg, J. Am. Chem. Soc. 1931, 53, 317.
S3) S. J. Garden, J. C. Torres, A. A. Ferreira, R. B. Silva, A. C. Pinto, Tetrahedron Lett. 1997, 38, 1501.
S4) T. Nakamura, S. Shirokawa, S. Hosokawa, A. Nakazaki, S. Kobayashi, Org. Lett. 2006, 8, 677.
S5) M. Kitajima, I. Mori, K. Arai, N. Kogure, H. Takayama, Tetrahedron Lett. 2006, 47, 3199.

$\begin{array}{lllllllllllllllllllllll} \\ 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & & \mathrm{ppm}\end{array}$

分槃タイイ゙ーション
スキャンスビード
$4 \mathrm{om-1}$
cosine
$2 \mathrm{~mm} / \mathrm{sec}$

$\begin{array}{rlr}\text { 3：} & 2954.41, & 65.9904 \\ 7: & 1383.68, & 55.5817 \\ 11: & 1174.44, & 44.1738 \\ 15: & 1024.02, & 67.1091 \\ 19: & 773.32, & 61.0680\end{array}$
$\begin{array}{rrr}\text { 4：} & 1749.12, & 24.7730 \\ \text { 8：} & 1350.89, & 57.1559 \\ \text { 12：} & 1126.22, & 58.0948 \\ \text { 16：} & 978.70, & 84.7850 \\ \text { 20：} & 562.15, & 8 .\end{array}$

積算回数＝the number of accumulation	分解＝resolution
ゼロフィリング＝zero filling	アポダイゼーション＝apodization
ゲイン＝gain	スキャンスピード＝scan speed
日時 $=$ date	
測定者＝user name	
ファイル名＝file name	
サンプル名＝sample name	
コメント＝comment	

器

4 om-1
cosine
$2 \mathrm{~mm} / \mathrm{sec}$
PO,

1 1:	3461. 60,	42. 8242	2 :	2952. 48,	21.6119	$3:$	2870. 52,	45. 6707	4	2741. 32.	93. 0954
5	1756. 83,	18.5669	6 :	1681. 62,	21.7069	$7:$	1543. 74,	82.5993	8	1469.49,	24. 7528
$9:$	1442. 49 ,	24.9478	$10:$	1383, 68,	55.1146	$11:$	1347. 03,	46. 4233	12	1321.00,	88, 6932
3:	1270.86,	62.0144	14.	1203. 36,	40. 0492	15:	1173.47,	47.6789	16	1122.37,	47. 2491
17:	1077.05,	50.6431	18 :	1022. 09,	38. 4555	19:	969. 05,	46.7079	20	900. 59,	47. 5202

21: $\quad 869,74, \quad 45.5165 \quad 22: \quad 813.81, \quad 55,4627 \quad 23: \quad 772.35, \quad 22,4313 \quad 24: \quad 733.78, \quad 71.2444$

${ }^{64}$
109/01/03 15:25
Bnisatin. JWS
Bnisatin.
buckground

7a

$\begin{array}{ll}\text { 分解 } & \\ \text { スギイゼージヨン } & \begin{array}{l}4 \mathrm{om-1} \\ \text { スキャンズート } \\ \text { Cosine } \\ 2 \mathrm{~m} / \mathrm{sec}\end{array}\end{array}$

8a

PMB-isatin
ミ.

7c
-
$\underset{\text { NAME }}{\substack{\text { Current } \\ \text { Data Parameters } \\ \text { Dec06-2008-hayas }}}$

23
ON
2
108
08/12/24 18:53
Memor y\#7
buokground

$1:$	${ }^{3395.07 .}$	66. 2394	2.	2933. 20.	86. 0409	3:	1704. 76.	34. 3685	4:	1614.13.	37. 2696
$5:$	1513.85,	38. 4710	6 :	1487. 81,	63.7787	7:	1467.56,	51.2527	8 :	1439.60,	78.9403
9 9:	1367. 28,	69.1035	$10:$	1302. 68,	83. 2122	11:	1248. 68,	47.7100	12:	1176.36,	55. 1991
$13:$	1108.87,	77.7164	14.	1032.69,	72.3730	15:	910. 24,	89.0688	16:	843. 70 ,	84.6343
17:	751. 14,	64.6205	18 :	620.00 ,	87. 1548	19:	537. 08,	87.8828	20	490. 79,	89. 1436

 ？（i）

21
ON
2
108
2
108／12／24 18：34
Memory\＃3
buckground

分船ダイゼーション $\quad \begin{aligned} & 40 \mathrm{om-1} \\ & \text { Cosine }\end{aligned}$
アボボイゼーション
スキャンスビード
$2 \mathrm{~mm} / \mathrm{sec}$

8d

1 ：	3399，89，	94． 0082	2 ：	2936．09，	96． 7471	3：	1718．26，	81． 1851	4：	1614．13，	87.1222
5.	1487．81，	91． 1412	6	1468． 53 ，	88.9544	7：	1350．89，	91． 4184	8 ：	1281．47，	96． 4765
9 9：	1182．15，	93.7824	10	1094．41，	90.8186	11：	1021．12，	96． 5099	12：	913． 13,	96． 1381
13：	755．96，	90.5991	14.	492． 72.	96． 4407						

$\begin{array}{ccc}\text { 1: } & 3392.17, & 82.4051 \\ \text { 5: } & \text { 1815. } 09, & 84.5627 \\ \text { 9: } & 1279.54, & 81.5174 \\ \text { 13: } & 751.14, & 87.6203\end{array}$ 87. 6203

分解タタイゼーション
スキャンスビード
4 amp 1
Cosine $2 \mathrm{mN} / \mathrm{sec}$

14

1 ：	3284．18，	93.6011	2 ：	2923．56，	97． 8678	3 ：	2358． 52,	97． 9053	4：	1715． 37	86.7881
$5:$	1621．84，	93． 8252	$6:$	1471．42，	92． 8601	7：	1337．39，	98． 2566	8 ：	1279．54，	97.5109
9 ：	1178． 29.	97． 6699	10：	753．07，	95． 4080	11：	584． 33,	98． 1779	12：	437．78，	99.0196

32 ON 2 $209 / 04 / 23 \quad 18: 43$ Nomory**5 buckground

1:	3476. 06,	91.4517	2 :	3066. 26,	83. 2333	3 :	2941. 88,	27. 3585	4:	2864.74,	27.0436
5 :	1746.23,	1. 8945	6 :	1600. 63 ,	9. 7920	7:	1452. 14,	16. 2026	$8:$	1313.29,	44.5592
$9:$	1274.72,	37.7887	10:	1227.47,	39.7451	11:	1160. 94,	16.6128	12:	1092. 48,	21.6006
13 :	884. 20 ,	31.9686	14.	800.31 ,	35. 3972	15.	689. 43 ,	41. 2033	16 :	656. 64,	56. 9665
17:	499. 47,	63. 8390	18:	429. 08 ,	75. 1549						

64
ON
2
109／01／03 23：06 Memory\＃3

分慗 アボダイゼーション スキャンスビード $4 \mathrm{~cm}-1$
Cosine
$2 \mathrm{~mm} / \mathrm{sec}$

1：	3356.50,	96.1773	$2:$	2941.88,	92.2225	$3:$	2864.74,	92.1813	$4:$	1725.98,
$5:$	1598.70,	85.0725	$6:$	1464.67,	95.0076	$7:$	1278.57,	94.8629	$8:$	1174.44,
$9:$	1093.44,	89.2615	$10:$	881.31,	95.6806	$11:$	683.64,	95.3996		

32 ON 2

109／04／23 18：36
buckground
分㙰ダイぜーション
スキャンスビード
4 arr－1
$\cos \mid n e$ $\mathrm{Cos} / \mathrm{ne}$
$2 \mathrm{~mm} / \mathrm{sec}$

分薢ダイぜーション $\quad 4$ om－
Cosine

$\begin{array}{llllllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & & \mathrm{ppm}\end{array}$

1:	3850. 18.	95.8923	2	3741. 23,	96.8167	3 :	3730. 62 ,	97. 0873	4:	3845. 77	97. 3724
5 :	3625. 52,	97. 7652	6	2942. 84,	93, 8090	7:	2885. 70	94. 3987	$8:$	1745. 26 ,	89. 4255
$9:$	1591. 95,	82. 0831	10	1482. 74,	95, 4954	11:	1393. 32.	93. 8870	12.	1321. 86 ,	95.5032
13:	1239.04,	96.3097	14	1096.33,	92. 9626	$15:$	883.24.	92. 8413	16:	780. 06,	95.4653
17:	689.43 ,	95.2644	$18:$	532. 26 ,	97. 2834						

㯒算回数	64
せロフィリング	ON
ゲイン	2
旦即	109／01／03 23：06
矵定者	
ファイル名	Memory ${ }^{\text {\＃}}$
サンブル名	buckground

12

1	3356.50,	96.1773	2	2941． 88	92． 2225	3.	2884， 74	92． 1813	4	1725．98，	89.8775
5	1598．70，	85.0725	6 ：	1484．67，	95． 0076	7：	1278．57，	94.8629	8	1174.44.	95． 9840
θ	1093.44.	89． 2615	10 ：	881.31.	95．6806	$11:$	683.64.	95.3996			

1:	3437. 49.	88. 7907	2 :	2944.77	76. 9865						
5.	1615. 09.	74.3235	6 :	1489.74	82. 1824	7:	2866.67, 1489.49,	82. 8222 74.4732	$8:$	1730.80 1359. 57	67.6003
9:	1280. 50 ,	${ }^{89} .1570$	$10:$	1175. 40 ,	70.8730	11:	1094.41,	74.4732 74.1168	2 :	1359.57, 9738 88	68.0199 85.8708
$13:$	883.24.	83.5410	14:	806. 10,	90. 7340	15 :	752. 10 ,	81.8180	16 :	684. 61	85. 3872
17 :	528.40 ,	85. 8095					75.10.	8.8180	:	684. 61.	85. 3872

分鷩タイザージン
スキャンスビード
$4 \operatorname{con}-1$
cosine
$2 m / 300$
$\begin{array}{rrr}\text { 1：} & 3734.48, & 98.619 \\ 5: & 2344.11, & 95.870 \\ 9: & 1294.00, & 96.804 \\ \text { 13：} & 669.18, & 68.211\end{array}$
$\begin{array}{rrr} & & \\ \text { 2：} & 3848,68, & 98.8743 \\ \text { 8：} & 1609,31, & 93.3449 \\ \text { 10：} & 1089.23, & 96.5995 \\ 14: & 437.76, & 92.2009\end{array}$
$\begin{array}{cc}2937.08, & 97.3080 \\ 1540.85, & 98.4 .429 \\ 938.20, & 97.4886\end{array}$
$\begin{array}{lll}\text { 4：} & 2360,44, & 84.6147 \\ \text { 8：} & 1480.70, & 94.7051\end{array}$
$\begin{array}{cc}\text { 1440．} 70, & 94.7051 \\ 743.42, & 95.326 \\ 408.81, & 92.8490\end{array}$
$\begin{array}{ll}743.42 . & 95.3726 \\ 408.81, & 92.8490\end{array}$

