A Multi-responsive Switchable Diarylethene and Its Application in Bioimaging

Xijun Piao, Ying Zou, Junchen Wu, Chunyan Li, Tao Yi*
Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, PR China
vitao@fudan.edu.cn

Supporting Intormation

EXPERIMENTAL

General

All starting materials were obtained from commercial supplies and used as received. n-Butyl lithium, tetrakis (triphenylphosphine) palladium, 1-(pyridin-2-yl)ethanone were purchased from Sigma-Aldrich. 4-bromophenol, 4-bromobenzaldehyde, 1-bromododecane and other chemicals were purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai). Column chromatography was carried out on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded on a Mercuryplus-Varian instrument. Proton chemical shifts are reported in ppm downfield from tetramethylsilane (TMS). MALDI-TOF-MS was recorded on BIFLEX III MALDI-TOF mass spectroscopy instrument (Bruker Daltonics Inc.). Melting points were determined on a hot-plate melting point apparatus XT4-100A.

Synthesis and characterizations

Scheme S1 Synthetic routes of 10

4'-(4-bromophenyl)-2, $\mathbf{2}^{\prime}: \mathbf{6}^{\prime}, \mathbf{2 \prime}$ "-terpyridine (3) was prepared according to reference 1. To a $30 \mathrm{~mL} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution of 4-bromobenzaldehyde ($2.0 \mathrm{~g}, 10.9 \mathrm{mmol}$), a 40 $\mathrm{mL} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ solution of 2-acetyl-pyridine ($2.42 \mathrm{~g}, 20.0 \mathrm{mmol}$), $\mathrm{KOH}(1.7 \mathrm{~g})$ and 29 mL concentrated $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$ were added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was refluxed for 1 day. The oil-bath was then removed and the reaction mixture was stirred at room temperature for 1 h . The slight yellow precipitate which was formed upon cooling was filtered and was washed sequentially with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. The pure product was then obtained by column chromatography on activated basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) as a white solid ($1.64 \mathrm{~g}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.69(\mathrm{~m}, 6 \mathrm{H}), 7.87(\mathrm{t}, J$ $=7.7,2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H})$.
thien-3-yl] cyclopentene (2) was prepared according to reference 2 . To 25 mL anhydrous THF solution of 1, 2-Bis(5-chloro-2-methylthien-3-yl) cyclopentene (1.0 g , 3.04 mmol), $n-\mathrm{BuLi}(1.9 \mathrm{~mL}$ of 1.6 M solution in hexane, 3.04 mmol) was added dropwise under Ar atmosphere at $-5^{\circ} \mathrm{C}$. The mixture was stirred for 15 minutes at room temperature and $\mathrm{B}(\mathrm{OBu})_{3}(1.2 \mathrm{~mL}, 3.4 \mathrm{mmol})$ was added in one portion. This resulting reddish solution was stirred for 6 hours at room temperature and was added to a flask containing 1-bromo-4-(dodecyloxy) benzene ($1.0 \mathrm{~g}, 2.9 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $10 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($20 \mathrm{wt} \%$) at $50^{\circ} \mathrm{C}$. The mixture was refluxed under Ar atmosphere for 18 hours. The pure product was obtained by column chromatograph (petroleum ether) as a yellow solid ($660 \mathrm{mg}, 41 \%$) M.p: $50{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.40(\mathrm{~d}, J=8.9,2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.9,2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.96$ $(\mathrm{t}, J=6.6,2 \mathrm{H}), 2.80(\mathrm{t}, J=7.4,2 \mathrm{H}), 2.74(\mathrm{t}, J=7.4,2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $1.87(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.46(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.8,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=14.146,14.194,14.329,22.701,22.887,26.023,29.239,29.360$, 29.399, 29.583, 29.604, 29.641, 29.666, 31.920, 38.332, 38.443, 68.072, 114.732, $122.575,124.861,126.492,126.800,127.048,133.201,133.278$, 133.473, 135.146, 135.376, 136.135, 139.787, 158.410.

1-[2-methyl-(5-(2, 6-di (pyridin-2-yl) pyridin-4-yl) benzene-4-yl) thien-3-yl]-2 -[2-methyl-5-(4-(dodecylcoxy) benzene-4-yl) thien-3-yl] cyclopentene (1): To 6.0 mL anhydrous THF solution of $2(0.3 \mathrm{~g}, 0.54 \mathrm{mmol}), n-\mathrm{BuLi}(0.4 \mathrm{~mL}$ of 1.6 M solution in hexane, 0.64 mmol) was added under Ar atmosphere at $-5^{\circ} \mathrm{C}$. The mixture was stirred for 45 minutes at room temperature and $\mathrm{B}(\mathrm{OBu})_{3}(0.40 \mathrm{~mL}, 1.15 \mathrm{mmol})$ was added in one portion. This resulting reddish solution was stirred for 6 hours at room temperature and was added to a flask containing $\mathbf{3}(0.23 \mathrm{~g}, 0.59 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 3 \mathrm{~mL} \mathrm{Na} 2 \mathrm{CO}_{3}$ solution ($20 \mathrm{wt} \%$) at $50^{\circ} \mathrm{C}$. The reaction was refluxed under Ar atmosphere for 19 hours. The pure product was obtained as a white solid $(156 \mathrm{mg}, 35 \%)$ by column chromatograph (petroleum ether: triethylamine $=18: 1)$ and was washed with petroleum ether/ $\mathrm{CH}_{3} \mathrm{OH}$. M.p: $162{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta=8.75(\mathrm{t}, J=3.2,4 \mathrm{H}), 8.68(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.90(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4$, $2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8,2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8$, $2 \mathrm{H}), 3.96(\mathrm{t}, J=6.5,2 \mathrm{H}), 2.86(\mathrm{~d}, J=6.7,4 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, $3 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.47(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.8,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=14.394,14.672,14.795,22.944,23.266,26.272,29.494,29.600,29.647$, 29.824, 29.845, 29.880, 29.907, 32.161, 38.743, 68.327, 114.992, 118.670, 121.630, 123.002, 124.089, 124.834, 125.851, 126.779, 127.403, 127.923, 133.584, 134.505, 135.178, 135.442, 135.472, 136.691, 137.160, 139.019, 139.956, 149.338, 149.807, 156.140, 156.445, 158.627. MALDI-TOF-MS m/z: 828.4. Anal. Caled for $\mathrm{C}_{54} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{OS}_{3}$: C, 78.31; H, 6.94; N, 5.07. Found: C, 78.48; H, 6.96; N, 5.06.

Technology

UV-visible spectra were obtained with a Shimadzu 2550 spectrometer (Japan). Edinburgh 900 spectrometer was used for fluorescence spectra. The UV and visible irradiations were carried out on a CHF-XM 550W power system (China) by using suitable band-pass filter (Omega). Confocal fluorescence imaging was performed with an OLYMPUS ZX81 laser scanning microscopy and a 60x oil-immersion objective lens. Excitation at 405 nm was carried out with a semiconductor laser, and emission was collected from 420 to 520 nm .

The fluorescent quantum yield means the ratio amount of emissive photons /amount of absorbed photons: $Q_{\mathrm{S}}=Q_{\mathrm{R}}\left(I_{\mathrm{S}} A_{\mathrm{R}} n^{2}{ }_{\mathrm{S}}\right) /\left(I_{\mathrm{R}} A_{\mathrm{S}} n^{2}{ }_{\mathrm{R}}\right)$. Here Q means the fluorescent quantum yield; I refers to the fluorescent integrated area; A is the absorbance at the excitation wavelength; and n is the refractive index of the solvent. (Subscript R is the reference and subscript S is the sample)

Table S1. Absorption Characteristics and Photochromic Quantum Yields of 10

Compound	$\begin{gathered} \lambda_{\max }^{\mathrm{Abs}} / \mathrm{nm} \\ \left(\varepsilon \times 10^{4}, \mathrm{THF}\right) \\ (\text { Open }) \end{gathered}$	$\begin{gathered} \lambda_{\max }^{\mathrm{Abs}} / \mathrm{nm} \\ \left(\varepsilon \times 10^{4}, \mathrm{THF}\right) \\ (\mathrm{PSS}) \end{gathered}$	Photochromic quantum yields (THF) ${ }^{\text {a }}$		$\begin{gathered} \text { Ratio (PSS) } \\ (\text { Open: Closed) } \end{gathered}$
			$\Phi_{\text {o-c }}(\lambda / \mathrm{nm})$	$\Phi_{\mathrm{c}-\mathrm{o}}(\lambda / \mathrm{nm})$	
10	289 (3.43)	550 (1.70)	0.23 (365)	0.22 (549)	
		305 (3.10)	0.21 (380)	0.02 (650)	

${ }^{\text {a }}$ Calculated from absorption spectral change.
${ }^{\mathrm{b}}$ Obtained from the result of ${ }^{1} \mathrm{H}$ NMR.

Figure S1 The absorption at 550 nm of $\mathbf{1}\left(1 \times 10^{-5} \mathrm{M}\right.$ in THF) upon the alternative irradiation of 365 nm for 4 min and 549 nm for 2 h .

Figure S2 Fluorescence intensity changes of $\mathbf{1 0}$ in THF $\left(1 \times 10^{-5} \mathrm{M}\right)$ by adding Cu^{2+} from 0 equiv to 3.5 equiv.

Figure S3 Fluorescence intensity changes (centered at 440 nm) of $\mathbf{1 0}$ in THF $\left(1 \times 10^{-5}\right.$ M) by adding various metal ions ($5 \times 10^{-4} \mathrm{M}, 3.5$ equiv)

Figure S4 The fluorescent intensity at 440 nm of $\mathbf{1 o}\left(1 \times 10^{-5} \mathrm{M}\right.$ in THF) at the alternative addition of 1.0 equiv $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\left(1 \times 10^{-3} \mathrm{M}\right.$ in water $)$ and 1.0 equiv EDTA ($1 \times 10^{-3} \mathrm{M}$ in water).

Cytotoxicity Assay.

MTT assay: The cytotoxicity study was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in human nasopharyngeal epiclermal carcinoma cell line KB. Cells growing in log phase were seeded into 96 -well cell-culture plate at $1 \times 10^{4} /$ well. The cells were incubated for 24 h at $37{ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$. The compound $\mathbf{1 0}(20 \mu \mathrm{~L} /$ well $)$ at concentrations of 1,10 , $100 \mu \mathrm{M}$, was added to the wells of the treatment group, and $20 \mu \mathrm{~L} /$ well DMSO diluted in RPMI 1640 (DMSO: RPMI $1640=5: 100, \mathrm{v} / \mathrm{v}$) to the control group, respectively. The cells were incubated for $6,8,12,24 \mathrm{~h}$ at $37{ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2} ; 5$ $\mathrm{mg} / \mathrm{mL}$ MTT ($10 \mu \mathrm{~L} /$ well) in PBS solution was added to each well and incubated at $37{ }^{\circ} \mathrm{C}$ for 4 hours. Formazan extraction was performed with sodium dodecyl sulfate (SDS) and the quantity determined colorimetrically by using a Mutil reader (TECAN, Infinite M200), which was used to measure the OD570 nm (absorbance value) with the correction of interference at 690 nm . The following formula was used to calculate the viability of cell growth: Viability (\%) = (mean of absorbance value of treatment group/mean absorbance value of control) $\times 100$. The results are expressed as an average over five nominally identical measurement.

Figure S5. Cell viability values (\%) estimated by MTT assay in KB, which were cultured in the presence of $1-100 \mu \mathrm{M} 1 \mathrm{o}$ at $37^{\circ} \mathrm{C}$ for $6 \sim 24$ hours.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}
(

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 o}$ in CDCl_{3}

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of 1 o in CDCl_{3}

Figure S11. Maldi-tof-mass spectrum of $\mathbf{1 0}$

References

1) Han, F. S.; Higuchi, M.; Kurth D. G. Org. Lett. 2007, 9, 559-562.
2) Lucas, L. N.; de Jong, J. J. D.; van Esch, J. H.; Kellogg, R. M.; Feringa, B. L. Eur. J. Org. Chem., 2003, 155-166.
