## Malachite nanoparticle: a new basic hydrophilic surface for pH controlled adsorption of BSA with a high loading capacity

Bedabrata Saha<sup>a</sup> and Gopal Das<sup>a,b</sup>\*

<sup>a</sup> Centre for the Environment, Indian Institute of Technology Guwahati, Assam – 781039, India

<sup>b</sup> Department of Chemistry, Indian Institute of Technology Guwahati, Assam – 781039, India

E-mail: gdas@iitg.ernet.in; Tel: +91 361 2582313; Fax: +91 361 2582349

**Supporting information** 

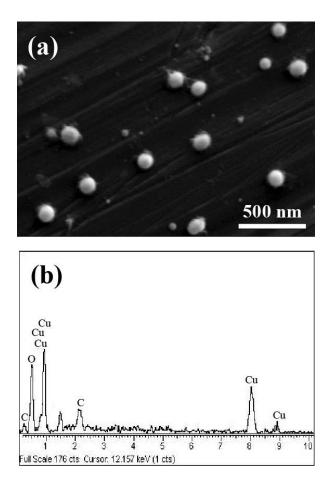



Figure S1. (a) SEM images of malachite NPs and (b) EDX spectra of malachite NPs showing the

presence of Cu, C and O.

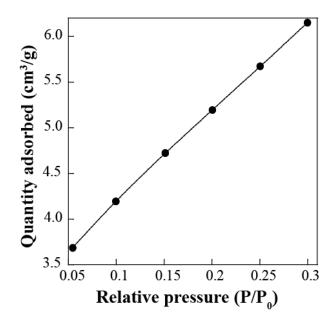
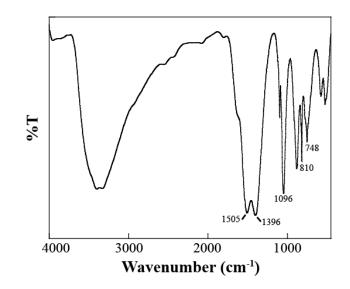
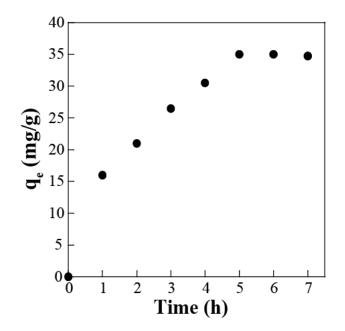
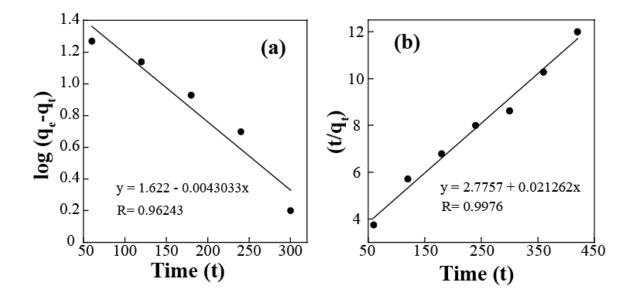
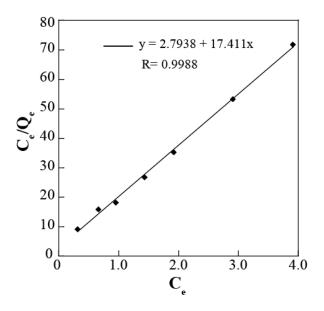
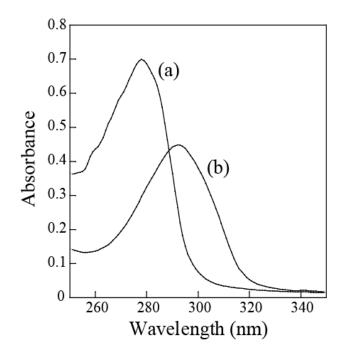



Figure S2. N<sub>2</sub> adsorption/desorption isotherms of malachite NPs measured from BET analysis.

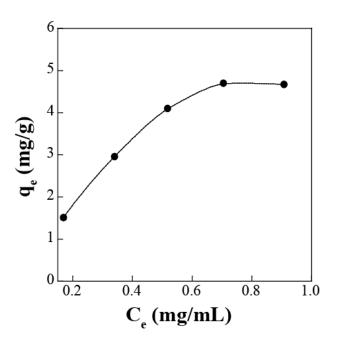






Figure S3. FT-IR spectra of malachite NPs.

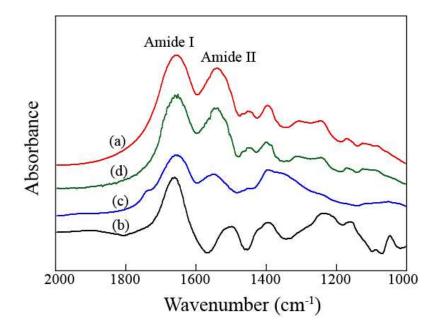



**Figure S4.** Adsorption kinetics with 1 mg/L BSA and 20 g/L malachite NPs at pH ~5.0. The steady state reaches within 5 h.




**Figure S5.** (a) Pseudo first order and (b) second order kinetics model of BSA adsorption studies on malachite performed with 1 mg/mL BSA and 20 g/L of malachite at pH ~5.0.




**Figure S4.** Scatchard plot of BSA adsorption on malachite NPs at different protein concentration. Correlation coefficient (R) value of 0.998 implies no significant co-operative effect.



**Figure S5.** UV spectra of BSA in (a) native and (b) after desorption from malachite surface. Desorbed spectra shows a ~10 nm shift which is due to alteration in protein conformation upon adsorption-desorption cycle.



**Figure S6.** Steady state adsorption isotherm of BSA on stearic acid coated malachite NPs at pH ~5.0. Maximum adsorption capacity was very much lower (~5 mg/g) compared to that on bare malachite surface (~50 mg/g).



**Figure S7.** FTIR of lyophilized BSA in (a) native, (b) adsorbed (after subtraction of only malachite spectra), (c) desorbed and (d) after interaction with SA-malachite NPs.

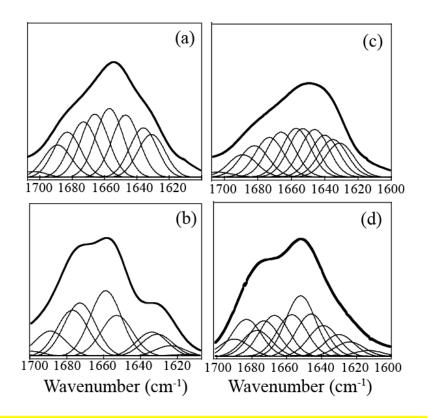
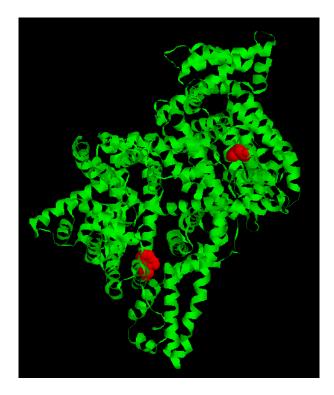




Figure S8. Gaussian distribution plot of amide I peak of FT-IR spectra of lyophilized BSA at (a) native,

(b) adsorbed, (c) desorbed and (d) after interaction with SA-malachite NPs.

| Area (%) of Gaussian bands of BSA |      |              |   |                |              |
|-----------------------------------|------|--------------|---|----------------|--------------|
| orbed of                          | d on | after        |   | interacted wit | h assignment |
| state malachite NI                |      | s desorption |   | SA-malachite N | <b>JPs</b>   |
| 2 ± 1                             | 1    | 4 ± 1        |   | 3 ± 1          | Un-ordered   |
| 7 ± 2                             | 2    | $12 \pm 2$   | 2 | 6 ± 1          | β-sheet      |
| 5 ± 1                             | 1    | 4 ± 1        |   | $12 \pm 2$     | Un-ordered   |
| 7 ± 1                             | 1    | 8 ± 2        |   | $10 \pm 1$     | Un-ordered   |
| $1 \pm 2$                         | 2    | 8 ± 1        |   | $6 \pm 2$      | Un-ordered   |
| 5 ± 1                             | 1    | $23 \pm 2$   | 2 | $30 \pm 1$     | α-helix      |
| ↓±1                               | 1    | 8 ± 2        |   | 8 ± 2          | Un-ordered   |
| 2 ± 1                             | 1    | $11 \pm 2$   | 2 | 6 ± 1          | β-sheet      |
| $3 \pm 2$                         | 2    | 9±1          |   | 6 ± 1          | Un-ordered   |
| 5±1                               | 1    | $9 \pm 2$    |   | 9 ± 1          | β-sheet      |
| $3 \pm 1$                         | 1    | 4 ± 1        |   | $4 \pm 1$      | Un-ordered   |

**TABLE S1.** Secondary structural elements of lyophilized BSA at different stages as calculated fromGaussian distribution of amide I peak of FT-IR spectra.



**Figure S9.** PDB structure of 'BSA-like' human serum albumin dimer showing the tryptophan residue (red) (PDB ID 1bm0).