An Efficient Catalyst System for Pd-Catalyzed Amination of [2.2]Paracyclophanyl Bromides

Bo Qu, Yudao Ma*, Qingshuang Ma, Xiao Liu, Fuyan He, and Chun Song*

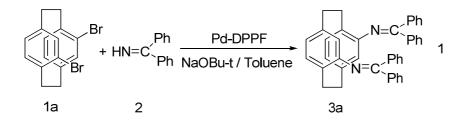
Department of Chemistry, Shandong University, Shanda South Road #27, Jinan 250100, P. R. China Tel.: 0086-531-88361869 Fax: 0086-531-88565211,

Supporting Information

ydma@sdu.edu.cn; chunsong@sdu.edu.cn

Table of Contents:

1. General considerations	S2
2. Synthetic procedures	S3
3. References	S13
4. ¹ H NMR and ¹³ C NMR spectra	S14

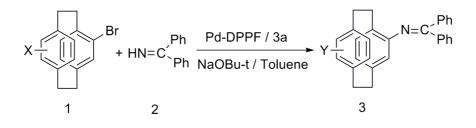

General Considerations

All reactions were carried out under an atmosphere of argon or nitrogen using Schlenk techniques. All reagents and solvents were purchased from commercial sources and were used without further purification, unless indicated otherwise. Toluene, THF, DME and 1,4-Dioxane were dried under nitrogen over sodiumbenzophenone and handled under nitrogen. t-Butanol was dried under nitrogen over sodium and vacuum distilled. Benzhydrylideneamine, sodium t-butoxide and [2.2]paracyclophane were prepared according to published procedures. 4,12-dibromo[2.2]paracyclophane 1a, 4-Bromo[2.2] paracyclophane 1b, 4,16-dibromo[2,2]paracyclophane 1c, 4,15- dibromo[2,2]paracyclophane 1d, and 4,7,12,15- tetrabromo[2.2]paracyclophane **1m** were prepared according to Cram's methods^[1,2], R_p -4-bromo-12-methoxy[2.2] paracyclophane **1e** was prepared according to Bolm's method^[5]; Tetrakis (triphenylphosphine) palladium, Bis(triphenylphosphine)dichloropalladium, 1,1'-Bis(diphenylphosphino)ferrocene dichloropalladium dichloromethane, 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (IPr·HCl,) and 1,3-bis(2,6- diisopropylphenyl)-4,5-dihydroimidazolium chloride (SIPr·HCl) were purchased from commercial sources. Thin layer chromatography (TLC) was performed on Silica Gel 60 F254 glass plates and were visualized using UV light (254 nm), iodine or potassium permanganate or phosphomolybdic acid stains. Column chromatography purifications were carried out using silica gel (200-400 mesh). ¹H and ¹³C NMR spectra were recorded on 400 and 300 MHz spectrometers at 298K. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) with reference to internal solvent for ¹H NMR and ¹³C NMR spectra. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), septet (sept), multiplet (m), and broad (br). Optical rotations were taken on a polarimeter with a wavelength of 589 nm. The concentration "c" has units of g/100mL (or 10 mg/mL) unless otherwise noted. Elemental analyses Found values for carbon, hydrogen, and nitrogen were within 0.4% of the theoretical (Calcd) values for the proposed formula. Mass spectra were measured by electrospray ionization (ESI-MS) in CH₃OH on a mass spectrometer. Melting points were recorded on a melting point apparatus and are uncorrected. Imidazolium salts, phosphine ligands and Pd precursors for catalyst preparation (Table 1-2) were weighed in a glovebox.

Synthetic Procedures:

General procedure A:

4,12-Bis(benzhydrylideneamino)[2.2]paracyclophane 3a:



In a glovebox, an oven-dried Schlenk flask were charged with Pd-DPPF (4.1 mg, 5.0×10^{-3} mmol), 4,12-dibromo[2.2]paracyclophane 1a (366 mg, 1.0 mmol), benzhydrylideneamine (542 mg, 3.0 mmol), sodium *t*-butoxide (288 mg, 3.0 mmol) and toluene (0.60 mL). The mixture was stirred at 110 °C under nitrogen for 8 hours. After the reaction mixture was cooled to room temperature, diluted with CH₂Cl₂ (15.0 mL), HOAc was added to the mixture until the stirred solution tested acidic (pH = 6). The acidic solution was washed with water $(3 \times 10.0 \text{ mL})$, saturated aqueous NaCl solution $(3 \times 10.0 \text{ mL})$ and dried over magnesium sulfate. The solvent was removed under reduced pressure to give a residue, which was purified by recrystallization (ethanol: 50.0mL) to give 4,12-bis(benzhydrylideneamino)[2,2]paracyclophane **3a** as a yellow solid (431 mg, 76%). Mp: 217–219 °C. ¹H NMR (400 MHz, CDCl₃, RT) δ 7.87–7.75 (m, 4H), 7.50–7.37 (m, 6H), 7.25–7.22 (m, 7H), 7.07–7.06 (m, 4H), 6.38–6.36 (m, 2H), 6.24–6.22 (m, 3H), 3.34–3.29 (m, 2H), 3.09–3.02 (m, 2H), 2.86–2.81 (m, 2H), 2.50–2.48 (d, 2H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 164.1, 147.8, 140.6, 140.3, 136.9, 133.7, 132.4, 130.1, 129.1, 128.6, 128.2, 127.9, 127.7, 123.4, 33.4, .32.9. Anal. Calcd. For C₄₂H₃₄N₂ (566.73): C, 89.01; H, 6.05; N, 4.94. Found: C, 88.80; H, 6.02; N, 4.95.

4-Benzhydrylideneamino-12-bromo[2.2]paracyclophane 3aa:

Following the general procedure A, starting from 4,12-dibromo[2.2]paracyclophane **1a** and 0.2 mol% Pd-DPPF, a yellow solid was obtained; Yield: 52%, Mp: 206–208 °C. ¹H NMR (400 MHz, CDCl₃, RT) δ 7.87–7.85 (m, 2H), 7.49–7.44 (m, 4H), 7.17–7.15 (m, 3H), 7.04–7.02 (m, 2H), 6.50–6.49 (m, 2H), 6.39–6.37 (d, 1H), 5.23–5.20 (dd, 1H), 5.93 (d, 1H), 3.37–3.25 (m, 3H), 3.03–3.01 (t, 1H), 2.86–2.73 (m, 3H) 2.56–2.50 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 165.1, 148.5, 142.1, 140.1, 140.0, 138.2, 136.7, 134.3, 134.1, 133.5, 132.1, 131.8, 130.3, 129.3, 129.3, 128.3, 128.2, 128.1, 127.6, 126.2, 121.8, 35.5, 33.1, 33.0, 32.7. Anal. Calcd. For C₂₉H₂₄NBr (466.41): C, 74.68; H, 5.19; N, 3.00. Found: C, 74.79; H, 5.15; N, 3.01.

General procedure B:

In a glovebox, an oven-dried Schlenk flask were charged with Pd-DPPF (0.5 mol%), 4,12-bis(benzhydrylideneamino)[2,2]paracyclophane (0.5 mol%), bromo[2.2] paracyclophane derivate (0.50 mmol), benzhydrylideneamine (1.5 equiv.), sodium *t*-butoxide (1.5 equiv.) and toluene (2.0 mL). The mixture was stirred at 110 °C under nitrogen for 8 hours. After the reaction mixture was cooled to room temperature, diluted with CH_2Cl_2 (15.0 mL), HOAc was added to the mixture until the stirred solution tested acidic (pH 6), washed with water (3 × 10.0 mL), saturated aqueous NaCl solution (3 × 10.0 mL) and dried over magnesium sulfate. The solvent was removed under reduced pressure to give a residue, which was purified by silica gel column chromatography using hexanes:ethyl acetate (10:0 – 10:5) as eluent to give the desired product as a yellow solid.

4-Benzhydrylideneamino[2.2]paracyclophane 3b:

Following the general procedure B, starting from 4-bromo[2.2]paracyclophane **1b**, a yellow solid was obtained; Yield: 79%, Mp: 208–210 °C. ¹H NMR (400 MHz, CDCl₃, RT) δ 7.89–7.87 (m, 2H), 7.50–7.48 (m, 3H), 7.37–7.35 (m, 1H) 7.17–7.14 (d, 3H), 7.01–7.00 (m, 2H), 6.55–6.46 (m, 3H), 6.27–6.25 (m, 2H), 5.48 (br, 1H), 3.35–3.26 (m, 2H), 3.07–2.89 (m, 4H), 2.79–2.73 (m, 1H), 2.51–2.46 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 165.2, 148.7, 140.0, 139.9, 139.9, 138.9, 136.7, 134.3, 133.2, 132.4, 131.9, 131.4, 130.4, 129.5, 129.3, 129.2, 128.2, 128.2, 128.0, 127.6, 126.7, 35.3, 35.1, 34.0, 33.0. Anal. Calcd. For C₂₉H₂₅N (387.52): C, 89.88; H, 6.50; N, 3.61. Found: C, 89.92; H, 6.48; N, 3.60.

4-Benzhydrylideneamino-15-bromo[2.2]paracyclophane 3d:

Following the general procedure B, starting from 4,15-dibromo[2.2]paracyclophane **1d**, a yellow solid was obtained; Yield: 41%, Mp: 204–206 °C. ¹H NMR (300 MHz, CDCl₃, RT) δ 7.86–7.83 (m, 2H), 7.52–7.43 (m, 4H), 7.25–7.11 (m, 4H), 7.10–7.02 (m, 2H), 6.52–6.45 (m, 3H), 5.97 (s, 1H), 3.32–3.21 (m, 3H), 3.17–2.99 (m, 3H), 2.79–2.68 (m, 1H), 2.53–2.44 (m, 1H). ¹³C NM R (75 MHz, CDCl₃, RT) δ 165.9,

148.1, 141.6, 139.8, 139.2, 138.2, 137.4, 136.3, 134.2, 134.1, 133.0, 131.3, 130.8, 130.6, 129.3, 129.2, 128.5, 128.2, 127.8, 126.6, 123.1, 121.7, 35.6, 33.2, 32.8, 32.7, 32.4. Anal. Calcd. For C₂₉H₂₄NBr (466.41): C, 74.68; H, 5.19; N, 3.00. Found: C, 74.67; H, 5.24; N, 2.82.

*R*_p-4-Benzhydrylideneamino-12-methoxy[2.2]paracyclophane 3e:

Following the general procedure B, starting from R_p -4-bromo-12-methoxy[2.2] paracyclophane **1e**, a yellow solid was obtained; Yield: 84%, Mp: 168–170 °C. $[\alpha]_D^{20}$ = - 436.5 (c 1.6, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃, RT) δ 7.86–7.83 (m, 2H), 7.50–7.42 (m, 3H), 7.18–7.15 (m, 3H), 7.03–7.01 (m, 2H), 6.68 (s, 1H), 6.46–6.43 (d, 1H), 6.29–6.22 (m, 2H), 6.11–6.08 (m,1H), 5.77–5.76 (d, 1H), 3.76 (s, 3H), 3.34–3.22 (m, 3H), 2.98–2.95 (m, 1H), 2.87–2.77 (m, 2H), 2.55–2.46 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 165.1, 157.3, 148.6, 142.8, 140.6, 139.7, 136.7, 134.6, 134.2, 130.6, 130.4, 129.1, 129.0, 128.6, 128.2, 127.6, 126.9, 124.1, 122.0, 113.3, 54.0, 34.0, 33.5, 32.4, 31.5. Anal. Calcd. For C₃₀H₂₇NO · 0.2H₂O (421.14): C, 85.56; H, 6.56; N, 3.33. Found: C, 85.77; H, 6.45; N, 3.23.

Sp-4-Benzhydrylideneamino-12-*i*-propoxy[2.2]paracyclophane 3f:

Following the general procedure B, starting from S_p -4-bromo-12-*i*-propoxy[2.2] paracyclophane **1f**, a yellow solid was obtained; Yield: 62%, Mp: 129–130 °C. $[\alpha]_D^{20}$ = -538.7 (c 0.40, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃, RT) δ 7.86–7.82 (m, 2H), 7.50–7.43 (m, 3H), 7.19–7.16 (m, 3H), 7.02–6.99 (m, 2H), 6.65 (s, 1H), 6.45–6.42 (d, 1H), 6.33–6.30 (d, 1H), 6.22–6.19 (dd, 1H), 6.12–6.09 (dd,1H), 5.75–5.74 (d, 1H), 4.55–4.51 (sept, 1H), 3.36–3.3.27 (m, 2H), 3.23–3.21 (m, 1H), 3.02–2.99 (m, 1H), 2.84–2.75 (m, 2H), 2.52–2.46 (m, 2H), 1.40–1.38 (d, 3H), 1.24–1.22 (d. 3H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 164.7, 156.1, 148.3, 142.5, 140.6, 139.8, 136.7, 134.7, 134.2, 131.3, 130.3, 130.1, 129.2, 129.0, 128.6, 128.3, 127.7, 127.6, 123.8, 122.4, 115.3, 68.7, 33.9, 33.5, 32.6, 31.7, 23.4, 21.7. Anal. Calcd. For C₃₂H₃₁NO (445.59): C, 86.25; H, 7.01; N, 3.14. Found: C, 86.34; H, 6.98; N, 3.05.

S_p-4-Benzhydrylideneamino-12-hydroxy[2.2]paracyclophane 3g:

Following the general procedure B, starting from S_p -4-bromo-12-acetoxy [2.2]paracyclophane **1g**, a yellow solid was obtained; Yield: 75%, Mp: 220–222 °C. $[\alpha]_D^{20} = -131.6$ (c 1.0, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃, RT) δ 7.80–7.77 (m, 2H), 7.51–7.43 (m, 3H), 7.20–7.13 (m, 3H), 7.04–7.00 (m, 2H), 6.50–6.49 (d, 1H), 6.45–6.42 (d, 1H), 6.29–6.27 (d, 1H), 6.23–6.12 (m, 3H), 5.54 (br, 1H), 3.33–3.27 (m, 1H), 3.10–3.06 (m, 2H), 2.94–2.86 (m, 3H), 2.59–2.52 (m, 1H), 2.49–2.41 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 166.8, 154.0, 148.6, 142.5, 140.6, 139.7, 136.8, 135.2, 134.5, 134.4, 130.6, 129.7, 129.5, 129.4, 129.3, 128.6, 128.5, 128.3, 127.6, 125.5, 124.8, 122.0, 118.7, 33.6, 33.4, 32.4, 31.3. HRMS (ESI) Mass calculated for C₂₉H₂₆NO (M⁺ + H) 405.2048, found: 405.2058.

4-Benzhydrylideneamino-12-amino[2.2]paracyclophane 3h:

Following the general procedure B, starting from 4-bromo-12-amino[2.2]para cyclophane **1h**, a yellow solid was obtained; Yield: 55%, Mp: 198–200 °C. ¹H NMR (400 MHz, CDCl₃, RT) δ 7.84–7.82 (m, 2H), 7.50–7.43 (m, 3H), 7.18–7.16 (m, 3H), 7.05–7.03 (m, 2H), 6.37–6.31 (m, 3H), 6.18 (s, 1H), 6.14–6.09 (m, 2H), 3.30 (br, 2H), 3.19–3.16 (t, 1H), 3.09–3.04 (m, 2H), 2.92–2.83 (m, 3H), 2.60–2.56 (m, 1H), 2.50–2.46 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 165.2, 148.5, 144.9, 141.9, 139.9, 139.7, 136.8, 134.9, 134.0, 130.7, 130.3, 129.3, 129.1, 128.3, 128.2, 128.2, 127.6, 124.0, 123.0, 120.5, 118.8, 33.5, 32.7, 32.6, 32.1. Anal. Calcd. For C₂₉H₂₆N₂ (402.53): C, 86.53; H, 6.51; N, 6.96. Found: C, 86.59; H, 6.60; N, 6.82.

R_{p} -4-Benzhydrylideneamino-12-dimethylamino[2.2]paracyclophane 3i:

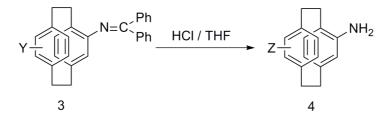
Following the general procedure B, starting from R_p -4-bromo-12-dimethylamino [2.2]paracyclophane **1i**, a yellow solid was obtained; Yield: 96%, Mp: 168–171 °C. $[\alpha]_D^{20} = -418.6$ (c 2.1, CH₂Cl₂). ¹HNMR (300 MHz, CDCl₃, RT) δ 7.87–7.84 (m, 2H), 7.49–7.44 (m, 3H), 7.18–7.14 (m, 3H), 7.02–7.68 (m, 2H), 6.57 (d, 1H), 6.44–6.41 (d, 1H), 6.33–6.30 (d, 1H), 6.22–6.15 (m, 2H), 5.69–5.68 (d, 1H), 3.34–3.21 (m, 3H), 3.01–2.94 (m, 1H), 2.85–2.81 (m, 2H), 2.73 (s, 6H), 2.65–2.58 (m, 1H), 2.56–2.49 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 164.6, 151.4, 148.2, 141.5, 140.4, 139.8, 136.7, 135.9, 133.9, 131.0, 130.6, 130.3, 129.1, 129.0, 128.2, 127.6, 125.6, 122.4, 118.4, 43.6, 35.5, 33.6, 33.2, 32.7. Anal. Calcd. For C₃₁H₃₀N₂ (430.58): C, 86.47; H, 7.02; N, 6.51. Found: C, 86.61; H, 7.03; N, 6.36.

4*R*_p, 13*S*_p-4-Benzhydrylideneamino-13-methoxy[2.2]paracyclophane 3k:

Following the general procedure B, starting from $4R_{p}$, $13S_{p}$ -4-bromo-13-methoxy [2.2]paracyclophane **1k**, a yellow solid was obtained; Yield: 98%, Mp: 157–160 °C. $[\alpha]_{D}^{20} = +14.0$ (c 1.0, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃, RT) δ 7.88–7.85 (m, 2H), 7.48–7.41 (m, 3H), 7.17–7.11 (m, 3H), 6.94–6.91 (m, 2H), 6.47–6.44 (d, 1H), 6.27–6.24 (dd, 1H), 6.16 (m, 2H), 5.86–5.80 (d, 2H), 3.86 (s, 3H), 3.69–3.60 (m, 1H), 3.45–3.36 (m, 1H), 3.00–2.90 (m, 3H), 2.85–2.77 (m, 1H), 2.69–2.60 (m, 1H), 2.54–2.45 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 165.9, 158.6, 149.0, 141.2, 140.2, 138.5, 137.0, 134.7, 134.5, 130.9, 130.3, 129.3, 128.1, 128.0, 127.6, 127.4, 125.6, 124.7, 115.1, 54.9, 35.3, 35.1, 30.8, 30.5. Anal. Calcd. For C₃₀H₂₇NO⁻ 0.25H₂O (422.05): C, 85.38; H, 6.57; N, 3.32. Found: C, 85.65; H, 6.47; N, 3.23.

4*R*_p,13*S*_p-4-Amino-13-*i*-propoxy[2.2]paracyclophane 31:

Following the general procedure B and C, starting from $4R_p$, 13 S_p -4-bromo-13-*i*-propoxy[2.2]paracyclophane **11**, a white solid was obtained; Yield: 63%; Mp: 79–82 °C; $[\alpha]_D^{20} = +40.0$ (c 0.10, CH₂Cl₂). ¹HNMR (300 MHz, CDCl₃, RT) δ 6.40–6.37 (d, 1H), 6.33–6.31 (d, 1H), 6.24–6.21 (dd, 1H), 6.11–6.08 (dd, 2H), 5.75–5.74 (d, 1H), 4.22–4.14 (sept, 1H), 3.63–3.53 (m, 1H), 3.34–3.24 (m, 1H), 3.04–2.89 (m, 4H), 2.85–2.74 (m, 2H), 1.30–1.28 (d, 3H), 1.21–1.19 (d, 3H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 157.3, 145.5, 140.8, 140.5, 135.1, 134.9, 129.1, 127.3, 125.3, 124.9, 123.0, 122.2, 72.9, 35.3, 35.1, 31.0, 28.3, 22.7, 22.0. HRMS (ESI) Mass calculated for C₁₉H₂₄NO (M⁺ + H) 283.1891, found: 283.1886.


4-Benzhydrylideneamino-7,12,15-tribromo[2.2]paracyclophane 3m:

Following the general procedure B, starting from 4,7,12,15-tetrabromo[2.2] paracyclophane **1m**, a yellow solid was obtained; Yield: 20%, Mp: 210–211 °C. ¹H NMR (300 MHz, CDCl₃, RT) δ 7.83–7.81 (d, 2H), 7.56–7.47 (m, 4H), 7.26–7.20 (m, 5H), 7.15 (s, 1H), 7.06–7.03 (m, 3H), 6.02 (s, 1H), 3.24–3.04 (m, 5H), 2.95–2.89 (m, 1H), 2.86–2.69 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 166.2, 148.6, 141.1, 140.1, 139.7, 138.8, 136.2, 135.3, 134.2, 133.6, 135.5, 130.7, 129.3, 129.2, 128.6, 128.3, 127.9, 125.5, 124.9, 123.5, 121.2, 33.1, 32.7, 32.5, 29.8. Anal. Calcd. For C₂₉H₂₂NBr₃ (624.20): C, 55.80; H, 3.55; N, 2.24. Found: C, 55.84; H, 3.61; N, 2.18.

4,7,12,15-Tetra(benzhydrylideneamino)[2.2]paracyclophane 3ma:

Following the general procedure B, starting from 4,7,12,15-tetrabromo [2.2]paracyclophane **1m**, a yellow solid was obtained; Yield: 23% Mp: 242–244 °C. ¹H NMR (300 MHz, CDCl₃, RT) δ 7.73–7.71 (d, 8H), 7.40–7.18 (m, 24H), 7.03–7.00 (d, 8H), 6.02 (s, 4H), 2.94–2.91 (m, 4H), 2.70–2.67 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 163.8, 146.0, 140.4, 137.1, 132.9, 132.4, 130.1, 129.8, 129.7, 129.1, 128.2, 127.9, 127.9, 127.5, 124.2, 30.7. Anal. Calcd. For C₆₈H₅₂N₄ (925.17): C, 88.28; H, 5.67; N, 6.06. Found: C, 88.14; H, 5.70; N, 5.85.

General procedure C:

To a solution of benzhydrylideneamino[2,2]paracyclophane derivate (1.0 mmol) in THF (4.0 mL) was added concentrated HCl (12.0 M, 0.25 mL, 3.0 mmol), and stirred at room temperature for 4h. After the yellow mixture fading, white precipitate formed was filtered, washed with ether (3×5.0 mL), and dried in vacuo. The remaining solid (amino[2.2]paracyclophane hydrochloride) in ethanol (4.0 mL) was stirred, saturated NaOH was added dropwise until the stirred mixture tested basic (pH 9). The solvent was removed, and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to furnish the desired product as a white solid.

4, 12-Diamino[2.2] paracyclophane 4a:

Following the general procedure C, starting from 4-amino-12-benzophenone imino[2.2]paracyclophane **3h**, a white solid was obtained, yield: 86%; Starting from 4,12 –bis(benzhydrylideneamino)[2.2]paracyclophane **3a**, **4a** was obtained, yield: 86%; Mp: 216–218°C; ¹HNMR (400 MHz, CDCl₃, RT) δ 6.39–6.37 (d, 2H), 6.28–6.27 (d, 2H), 6.08–6.06 (dd, 2H), 4.00 (br, 4H), 3.11–3.05 (m, 2H), 2.95–2.92 (m, 4H), 2.68–2.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, RT) δ 140.6, 134.7, 124.1, 123.2, 116.2, 32.3, 31.5. HRMS (ESI) Mass calculated for C₁₆H₁₉N₂ (M⁺ + H) 239.1548, found: 239.1549.

4-Amino-12-bromo[2.2]paracyclophane 4aa (1h):^[7]

Following the general procedure C, starting from 4-benzhydrylideneamino-12-bromo [2,2]paracyclophane **3aa**, a white solid was obtained; Yield: 97%, Mp: 201–203 °C. ¹H NMR (300 MHz, CDCl₃, RT) δ 6.57–6.55 (d, 1H), 6.42–6.39 (dd, 1H), 6.35–6.33 (d, 1H), 6.14–6.10 (dd, 1H), 6.08–6.07 (d, 1H), 3.50 (br, 2H), 3.39–3.32 (m, 1H), 3.14–2.62 (m, 7H). ¹³C NMR (100 MHz, CDCl₃, RT) δ 144.3, 140.7, 140.6, 137.8, 134.8, 133.9, 131.4, 130.4, 125.4, 123.9, 122.2, 117.1, 35.1, 32.4, 31.8, 31.6. Anal. Calcd. For C₁₆H₁₆NBr (302.21): C, 63.59; H, 5.34; N, 4.63. Found: C, 63.64; H, 5.48; N, 4.42.

4-Amino[2.2]paracyclophane 4b:^[6]

Following the general procedure C, starting from 4-benzhydrylideneamino[2.2] paracyclophane **3b**, a white solid was obtained; Yield: 98%, Mp: 243–245 °C. (lit.6 Mp: 239–241.5 °C). ¹H NMR (300 MHz, CDCl₃, RT) δ 7.19–7.15 (dd, 1H), 6.60–6.57 (dd, 1H), 6.40–6.37 (dd, 2H), 6.28–6.25 (d, 1H), 6.14–6.11 (dd, 1H), 5.38–6.37 (d, 1H), 3.49 (br, 2H), 3.18–2.84 (m, 8H). ¹³C NMR (100 MHz, CDCl₃, RT) δ 144.2, 140.6, 138.5, 138.4, 134.7, 132.9, 131.9, 131.0, 126.3, 124.1, 122.5, 121.8, 34.9, 34.4, 32.5, 31.7. Anal. Calcd. For C₁₆H₁₇N (223.31): C, 86.05; H, 7.67; N, 6.27. Found: C, 86.28; H, 7.44; N, 6.09.

*R*_p-4-Amino-12-methoxy[2.2]paracyclophane 4e:

Following the general procedure C, starting from R_p -4-benzhydrylideneamino-12methoxy[2.2]paracyclophane **3e**, a white solid was obtained; Yield: 96%; Mp: 168–170 °C; $[\alpha]_D^{20} = + 80.4$ (c 0.54, CH₂Cl₂).¹HNMR (300 MHz, CDCl₃, RT) δ 6.56 (s, 1H), 6.49–6.47 (d, 1H), 6.29–6.26 (d, 1H), 6.18–6.16 (d, 1H), 6.03–6.00 (d, 1H), 5.83 (s, 1H), 3.15 (s, 3H), 3.49 (br, 2H), 3.39–3.31 (m, 1H), 3.11–2.96 (m, 3H), 2.94–2.80 (m, 2H), 2.69–2.49 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 157.4, 144.6, 142.1, 142.0, 135.3, 134.9, 126.9, 124.3, 123.7, 123.3, 117.7, 111.4, 54.3, 33.6, 33.2, 31.9, 31.5. HRMS (ESI) Mass calculated for C₁₇H₂₀NO (M⁺ + H) 254.1545, found: 254.1539.

Sp-4-Amino-12-*i*-propoxy[2.2]paracyclophane 4f:

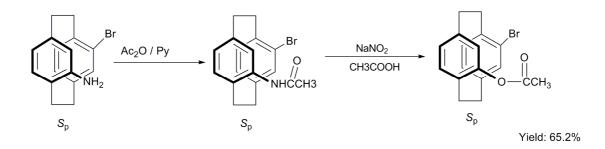
Following the general procedure C, starting from S_p -4-benzhydrylideneamino-12*i*-propoxy[2.2]paracyclophane **3f**, a white solid was obtained; Yield: 91%; Mp: 105–106 °C; $[\alpha]_D^{20} = -4.1$ (c 1.0, CH₂Cl₂).¹HNMR (300 MHz, CDCl₃, RT) δ 6.54–6.53 (d, 1H), 6.48–6.46 (d, 1H), 6.30–6.27 (d, 1H), 6.15–6.12 (dd, 1H), 6.03–6.00 (dd, 1H), 5.85–5.84 (d, 1H), 4.44–4.35 (sept, 1H), 3.39 (br, 2H), 3.38–3.30 (m, 1H), 3.09–2.97 (m, 3H), 2.92–2.84 (m, 2H), 2.66–2.58 (m, 1H), 2.55–2.45 (m, 1H), 1.45–1.42 (d, 3H), 1.22–1.20 (d, 3H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 156.1, 144.5, 142.0, 141.5, 135.2, 134.9, 128.0, 124.3, 123.7, 123.2, 118.1, 114.5, 69.5, 33.6, 33.0, 32.0, 31.8, 23.4, 21.8. HRMS (ESI) Mass calculated for C₁₉H₂₄NO (M⁺ + H) 282.1858, found: 282.1846.

*R*_p-4-Amino-12-dimethylamino[2.2]paracyclophane 4i:

Following the general procedure C, starting from R_p -4-benzhydrylideneamino-12dimethylamino[2.2]paracyclophane **3i**, a white solid was obtained; Yield: 91%, Mp: 118–120 °C. [α]_D²⁰ = -27.0 (c 0.99, CH₂Cl₂), ¹H NMR (300 MHz, CDCl₃, RT) δ 6.49–6.46 (d, 1H), 6.42 (s, 1H), 6.31–6.29 (d, 1H), 6.15–6.13 (d, 1H), 6.09–6.07 (d, 1H), 5.75 (s, 1H), 3.36–3.32 (m, 3H), 3.12–2.98 (m, 3H), 2.93–2.88 (m, 2H), 2.73 (s, 6H), 2.68–2.61 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 151.4, 144.3, 141.8, 140.6, 136.0, 134.9, 130.6, 125.8, 123.9, 123.1, 117.8, 116.2, 43.8, 35.4, 33.4, 32.9, 31.9. Anal. Calcd. For C₁₈H₂₂N₂ (266.38): C, 81.16; H, 8.32; N, 10.52. Found: C, 81.24; H, 8.37; N, 10.39.

4*R*_p,13*S*_p-4-Amino-13-methoxy[2.2]paracyclophane 4k:

Following the general procedure C, starting from $4R_{\rm p}, 13S_{\rm p}$ -4-benzhydrylideneamino-13-methoxy[2.2]paracyclophane **3k**, a white solid was obtained; Yield: 68%; Mp: 157–160 °C; $[\alpha]_{\rm D}^{20} = +28.2$ (c 0.74, CH₂Cl₂), ¹HNMR (300 MHz, CDCl₃, RT) δ 6.43–6.41 (d, 1H), 6.29–6.26 (d, 1H), 6.24–6.23 (d, 1H), 6.07–6.04 (dd, 1H), 5.97–5.96 (d, 1H), 5.69–5.68 (d, 1H), 3.71 (s, 3H),


3.62–3.58 (m, 1H), 3.41 (br, 2H), 3.26–3.22 (m, 1H), 3.00–2.87 (m, 4H), 2.82–2.75 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 158.6, 145.2, 141.3, 140.4, 135.2, 134.8, 126.9, 126.0, 124.6, 124.5, 121.7, 115.8, 55.2, 35.5, 35.2, 30.3, 28.6. HRMS (ESI) Mass calculated for C₁₇H₂₀NO (M⁺ + H) 254.1545, found: 254.1535.

Substrate preparation:

Sp-4-Bromo-12-*i*-propoxy[2.2]paracyclophane 1f:

Following a modified version of Bolm's procedure ^[5], a white solid was obtained; Yield: 95%; Mp: 67–68 °C; $[\alpha]_D^{20}$ = +56.4 (c 0.40, CH₂Cl₂). ¹HNMR (300 MHz, CDCl₃, RT) δ 6.90–6.89 (d, 1H), 6.50–6.44 (m, 2H), 6.41–6.40 (d, 1H), 6.38 (s, 1H), 6.22–6.19 (dd, 1H), 4.67–4.59 (sept, 1H), 3.44–3.36 (m, 2H), 3.10–2.89 (m, 4H), 2.82–2.72 (m, 1H), 2.58–2.48 (m, 1H), 1.52–1.50 (d, 3H), 1.18–1.16 (d, 3H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 156.0, 142.4, 141.7, 137.9, 135.1, 134.8, 132.7, 131.9, 128.0, 125.9, 123.6, 114.9, 68.8, 35.7, 33.2, 33.1, 32.1, 23.5, 21.4. HRMS (ESI) Mass calculated for C₁₉H₂₂BrO (M⁺ + H) 345.0854, found: 345.0842.

Sp-4-Bromo-12-acetoxy[2.2]paracyclophane 1g:^[4]

An oven-dried flask was charged with S_p -4-bromo-12-amino[2.2]paracyclophane (400 mg, 1.32 mmol), acetic anhydride (3.30 mL, 31.0 mmol), and one drop of pyridine. The mixture was stirred at room temperature and followed by TLC. After the start material was consumed (24 h), acetic anhydride (1.70 mL, 16.0 mmol) and acetic acid (2.50 mL, 54.0 mmol) were added in one portion. After the reaction mixture was cooled to 0 °C, NaNO₂ powder (140 mg, 2.00 mmol) was added in equal portions over 2 h, and followed by TLC, stirred at room temperature for 12 h. The white precipitate formed was filtered and washed with water (3 × 2.0 mL), another crop of white precipitate was obtained by addition of ice-water (20.0 mL) to the filtered solution. The aqueous layer was extracted with CH₂Cl₂ (3 × 10.0 mL), the organic layers were combined, washed with brine (3 × 10.0 mL), dried over anhydrous magnesium sulphate. The solvent was removed to afford red residue, which was

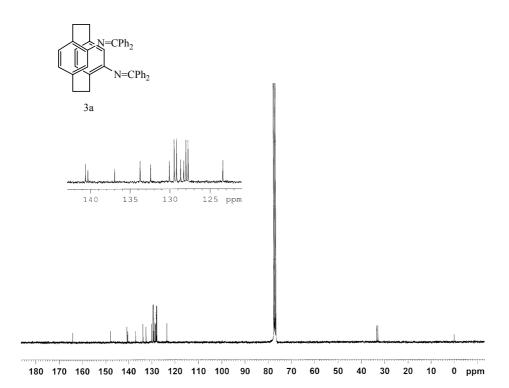
combined with above white precipitate, and purified by chromatography on silica gel (petroleum ether/chloroform = 10:1) to give

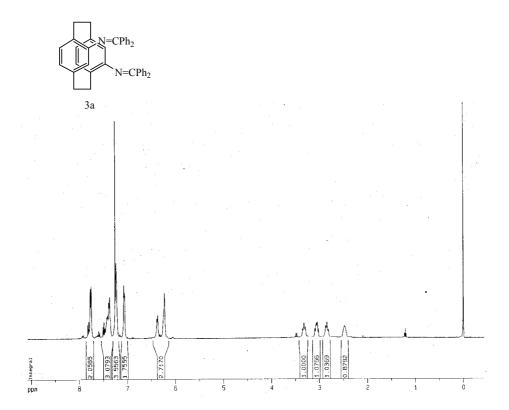
*S*_p-4-bromo-12-acetoxy[2.2]paracyclophane **1g** (296 mg) as a white solid, yield: 65%. Mp: 196–198 °C. [α]_D²⁰ = + 47.0 (c 1.6, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃, RT) δ 6.97–6.96 (d, 1H), 6.72–6.71 (d, 1H), 6.60–6.57 (m, 1H), 6.53–6.45 (m, 3H), 3.46–3.38 (m, 1H), 3.18–3.01 (m, 3H), 2.94–2.85 (m, 1H), 2.83–2.71 (m, 1H), 2.70–2.66 (m, 1H), 2.34 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 168.9, 148.9, 141.7, 141.5, 138.7, 135.3, 134.9, 133.7, 131.7, 130.7, 130.3, 126.4, 123.5, 35.5, 33.3, 32.6, 31.7, 21.1. Anal. Calcd. For C18H17BrO₂ (345.23): C, 62.62; H, 4.96. Found: C, 62.81; H, 5.07.

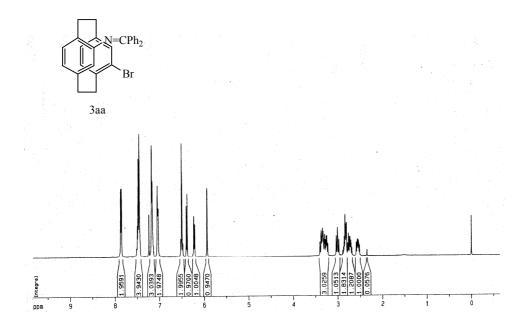
*R*_p-4-Bromo-12-dimethylamino[2.2]paracyclophane 1i

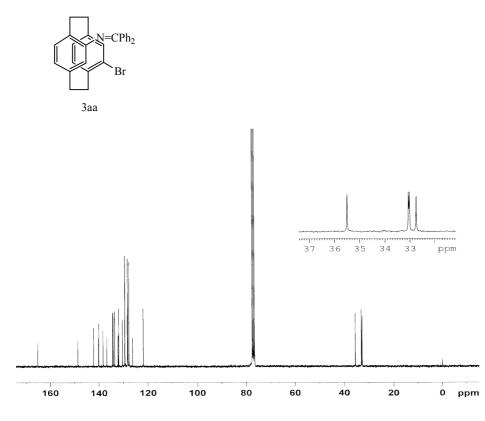
To a solution of R_p -4-bromo-12-amino[2.2]paracyclophane (302 mg, 1.0 mmol) in acetone (3.0 mL) was added anhydrous K2CO3 powder (552 mg, 4.0 mmol), and dimethyl sulfate (0.76 mL, 8.0 mmol) was added dropwise over a 30 minute period. The mixture was stirred at room temperature and followed by TLC. After the start material was consumed (36 h), concentrated NH₃ (25%, 1.48 mL, 20.0 mmol) was added dropwise over 10 minutes, and the mixture was stirred at room temperature for 1 h. The mixture was filtered, washed with CH_2Cl_2 (3 × 5.0 mL), and the organic layers were combined. The solvent was removed and purified by chromatography on 10:1) silica gel (petroleum ether/ethyl acetate to furnish = $R_{\rm p}$ -4-bromo-12-dimethylamino [2.2]paracyclophane 1i (313 mg) as a white solid, yield: 95%. Mp: 99–102 °C. $[\alpha]_D^{20} = -52.0$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃, RT) & 6.78 (s, 1H), 6.52–6.45 (m, 3H), 6.27–6.19 (m, 2H), 3.46–3.41 (m, 2H), 3.02–2.96 (m, 4H), 2.79 (s, 6H), 2.74–2.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, RT) δ 140.1, 139.5, 138.4, 135.6, 134.7, 134.4, 131.2, 125.2, 118.3, 43.5, 34.6, 34.3, 34.1, 33.1. Anal. Calcd. For C18H20NBr (330.26): C, 65.46; H, 6.10; N, 4.24. Found: C, 65.36; H, 6.12; N, 4.16.

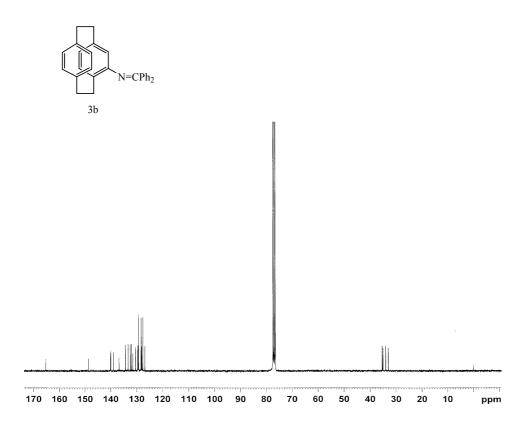
4*R*_p,13*S*_p-4-Bromo-13-methoxy[2.2]paracyclophane 1k:


Following a modified version of Bolm's procedure ^[5], a white solid was obtained; Yield: 92%; Mp: 171–172 °C; $[\alpha]_D^{20} = -25.4$ (c 1.0, CH₂Cl₂). ¹H NMR (600 MHz, DMSO/CDCl₃, RT) δ 6.70–69 (d, 1H), 6.50–6.49 (d, 1H), 6.48–6.46 (dd, 1H), 6.42–6.41 (d, 1H), 6.30–6.28 (dd, 1H), 5.81–5.80 (d, 1H), 3.74 (s, 3H), 3.62–3.58 (m, 2H), 3.06–3.01 (m, 4H), 2.99–2.95 (m, 1H), 2.75–2.73 (m, 1H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 158.7, 141.4, 140.5, 138.8, 135.4, 135.3, 134.7, 132.3, 126.7, 124.5, 122.9, 114.8, 54.8, 35.2, 34.7, 34.0, 30.1. HRMS (ESI) Mass calculated for C₁₇H₁₈BrO (M⁺ + H) 317.0541, found: 317.0531.


4*R*_p,13*S*_p-4-Bromo-13-*i*-propoxy[2.2]paracyclophane 11:


Following a modified version of Bolm's procedure ^[5], a white solid was obtained; Yield: 82%; Mp: 110–112 °C; $[\alpha]_D^{20} = -32.9$ (c 0.15, CH₂Cl₂). ¹HNMR (300 MHz, CDCl₃, RT) δ 6.70–6.69 (d, 1H), 6.50–6.42 (m, 3H), 6.24–6.21 (dd, 1H), 5.87–5.86 (d, 1H), 4.45–4.37 (sept, 1H), 3.65–3.53 (m, 2H), 3.03–2.87 (m, 5H), 2.74–2.63 (m, 1H), 1.45–1.43 (d, 3H), 1.15–1.13 (d, 3H). ¹³C NMR (75 MHz, CDCl₃, RT) δ 156.9, 140.7, 140.5, 138.9, 135.5, 135.1, 134.9, 132.2, 127.9, 124.6, 123.3, 118.7, 69.9, 35.2, 34.7, 34.3, 30.2, 22.9, 21.2. HRMS (ESI) Mass calculated for C₁₉H₂₂BrO (M⁺ + H) 345.0854, found: 345.0845.


References:


- 1. Reich, H. J.; Cram, D. J. J. Am. Chem. Soc., 1969, 91, 3534-3543.
- 2. Reich, H. J.; Cram, D. J. J. Am. Chem. Soc., 1969, 91, 3527-3533.
- Ball, P. J.; Shtoyko, T. R.; Bauer, J. A. K.; Oldham, W. J.; Connick, W. B. *Inorg. Chem.*, 2004, 43, 622–632.
- 4. Glatzhofer, D. T.; Roy, R. R.; Cossey, K. N. Org. Lett., 2002, 4, 2349-2352.
- 5. Focken, T.; Rudolph, J.; Bolm, C. Synthesis, 2005, 429–436.
- 6. (a). Cram, D. J.; Allinger, N. L. J. Am. Chem. Soc., 1955, 77, 6289–6295.
 (b). Cipiciani, A.; Fringuelli, F.; Mancini, V.; Piermatti, O.; Pizzo, F. J. Org. Chem., 1997, 62, 3744–3747.
- 7. (a). Rossen, K.; Pye, P. J.; Maliakal, A.; Volante, R. P. J. Org. Chem., 1997, 62, 6462–6463
 - (b). Ma, Y. D.; Song, C.; Ma, C. Q.; Sun, Z. J.; Chai, Q.; Andrus, M. B. *Angew. Chem. Int. Ed.*, **2003**, *42*, 5871–5874

