SUPPORTING INFORMATION FOR

4H-Pyran-4-ylidenes: Strong Proaromatic Donors for Organic Nonlinear Optical Chromophores

Raquel Andreu,[†] Laura Carrasquer,[†] Santiago Franco,[†] Javier Garín^{*,†}, Jesús Orduna,[†] Natalia Martínez de Baroja, [†] Belén Villacampa, [‡] Raquel Alicante, [‡] and Magali Allain.[§]

[†]Departamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain. [‡]Departamento de Física de la Materia Condensada, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain. [§]Laboratoire de Chimie, Ingénierie Moleculaire et Matériaux d'Angers (UMR CNRS 6200), Université d'Angers, 2, Boulevard Lavoisier, 49045-Angers CEDEX, France.

TABLE OF CONTENTS

General experimental methods	page S3
Analytical data for compounds 8' and 9'	page S4
General Procedure and Analytical data for compounds 2d-4d	page S5-S6
Figure S-1 to S-3 (NMR spectra of compound 7c)	page S7-S9
Figures S-4 to S-5 (NMR spectra of compound 1b)	pages S10-S11
Figures S-6 to S-7 (NMR spectra of compound 1c)	pages S12-S13
Figures S-8 to S-9 (NMR spectra of compound 2b)	pages S14-S15
Figures S-10 to S-11 (NMR spectra of compound 2c)	pages S16-S17
Figures S-12 to S-14 (NMR spectra of compound 2d)	pages S18-S20
Figures S-15 to S-16 (NMR spectra of compound 3b)	pages S21-S22
Figures S-17 to S-18 (NMR spectra of compound 3c)	pages S23-S24
Figures S-19 to S-21 (NMR spectra of compound 3d)	pages S25-S27
Figures S-22 to S-25 (NMR spectra of compound 4b)	pages S28-S31
Figures S-26 to S-28 (NMR spectra of compound 4c)	pages S32-S34
Figures S-29 to S-31 (NMR spectra of compound 4d)	pages S35-S37
Figures S-32 to S-33 (NMR spectra of compound 5b)	pages S38-S39

Figures S-34 to S-36 (NMR spectra of compound 5c)	pages S40-S42
Figures S-37 to S-39 (NMR spectra of compound 5d)	pages S43-S45
Figures S-40 to S-41 (NMR spectra of compound 8')	pages S46-S47
Figures S-42 to S-43 (NMR spectra of compound 9')	pages S48-S49
Figures S-44 to S-46 (NMR spectra of compound 10')	pages S50-S52
Figures S-47 to S-49 (NMR spectra of compound 11')	pages S53-S55
Figures S-50 to S-52 (Normalized UV-Vis absorption of compounds 1a-c)	pages S56-S58
Figures S-53 to S-56 (Normalized UV-Vis absorption of compounds 2a-d)	pages S59-S62
Figures S-57 to S-60 (Normalized UV-Vis absorption of compounds 3a-d)	pages S63-S66
Figures S-61 to S-64 (Normalized UV-Vis absorption of compounds 4a-d)	pages S67-S70
Figures S-65 to S-68 (Normalized UV-Vis absorption of compounds 5a-d)	pages S71-S74
NLO measurements	page S75
X-ray Single-Crystal Diffraction for compound 2b	pages S76-S82
Figure S-69 (ORTEP view of 2b)	page S83
Figure S-70 (Molecular packing of 2b viewed along the [100] direction)	page S83
X-ray Single-Crystal Diffraction for compound 3c	pages S84-S90
Figure S-71 (ORTEP view of 3c)	page S91
Figure S-72 (Crystal packing of 3c viewed along the [001] direction)	page S91
Computational procedures Figure S-73: DFT Calculated Geometries of 3a and 3'a : Selected Bond Distances (Å) and Structural Parameters	pages S92-S117 page S103
Figure S-74: Contour plots and energies calculated for the frontier orbitals of compounds 3' using the B3P86/6-31G* model chemistry.	page S117
Figure S-75 (DSC curves of compound 3b)	page S118
Figure S-76 (DSC curves of compound 3 c)	page S119
Figure S-77 (DSC curve of compound 3d)	page S120

General Experimental Methods:

Infrared measurements were carried out in nujol mulls using a Fourier Transform Infrared spectrometer. — Melting points are uncorrected. — ¹H- and ¹³C-NMR spectra were recorded at 300 or 400 MHz and 75 or 100 MHz respectively; δ values are given in ppm (relative to TMS) and J values in Hz. — ¹H-¹H COSY experiments were recorded at 300 MHz or 400 MHz in order to establish peaks assignment and spatial relationships. — Selective ge-1D NOESY experiments (mixing time: 1-2 s; selective 180 pulse: 20-40 ms) were recorded at 300 MHz for compound 4b, in order to determine the stereochemistry of the HC=C(CN) and the (NH₂)C-C(CN) bonds. 2D-EXSY experiments (mixing time: 20 ms) were recorded at 300 MHz for compound 4b, in order to show the exchange between H3 and H5 protons of the pyranylidene unit. — EI Mass spectra were recorded at 70 eV. — MALDI-ToF Mass Spectra were recorded using dithranol as matrix. - Electrospray mass spectra were recorded on a Q-ToF spectrometer; accurate mass measurements were achieved using sodium formate as external reference. - Cyclic voltammetry measurements were performed using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. The experiments were carried out under argon, in CH₂Cl₂, with Bu₄NPF₆ as supporting electrolyte (0.1 mol L⁻¹). Scan rate was 100 mV s⁻¹. — Thermogravimetric analysis (TGA) were carried out at 10°C/min in nitrogen atmosphere from 40°C to 600°C; from 600°C to 750 °C heating was continued in synthetic air atmosphere. — Differential scanning calorimetry (DSC) measurements were carried out at 10°C/min; the apparatus was calibrated with indium (156°C; 28.4 J/g).

Analytical data for N-((1E, 3E)-5-(1,3-diethyl-4,6-dioxo-2-thioxo-tetrahydropyrimidin-5H-ylidene)penta-1,3-dienyl)-N-phenylacetamide (8').

Mp 206–208°C. IR (Nujol, cm⁻¹) 1691 (C=O), 1655 (C=C), 1184 (C=S). ¹H NMR (CDCl₃, 400 MHz): δ 8.20 (d, J = 13.7 Hz, 1H), 8.06 (d, J = 12.6 Hz, 1H), 7.74 (dd, J = 13.8 Hz, J' = 13.1 Hz, 1H), 7.60–7.54 (m, 3H), 7.28–7.19 (m, 3H), 5.38 (dd, J = 13.3 Hz, J' = 11.8 Hz, 1H), 4.54–4.45 (m, 4H), 1.98 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H), 1.24 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 184.4, 177.2, 169.0, 167.7, 159.0, 148.6, 144.3, 138.7, 137.0, 130.4, 129.4, 129.0, 128.5, 121.8, 113.4, 43.3, 43.0, 23.2, 12.3, 12.0. MS (EI⁺): m/z 397 (M⁺, 20), 354 (25), 143 (100), 77(30). Anal. Calcd. for C₂₁H₂₃N₃O₃S: C 63.45, H 5.83, N 10.57. Found: C 63.26, H 5.60, N 10.29.

Analytical data for *N*-((1*E*, 3*E*, 5*Z*)-5-(5-oxo-3-phenylisoxazol-4 (5*H*)-ylidene)penta-1,3dienyl)-*N*-phenylacetamide (9').

Mp 197–199°C (lit¹ mp: 198–200°C). IR (Nujol, cm⁻¹) 1725 (C=O), 1688 (C=C), 1542 (C=N). ¹H NMR (CDCl₃, 300 MHz): δ 8.12 (d, J = 13.8 Hz, 1H), 7.59-7.49 (m, 9H), 7.30 (d, J = 12.2 Hz, 1H), 7.20–7.17 (m, 2H), 7.05 (dd, J = 14.4 Hz, J' = 11.5 Hz, 1H), 5.37 (dd, J = 13.8 Hz, J' = 11.5 Hz, 1H), 1. 95 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 169.9, 169.3, 162.3, 152.6, 149.8, 140.6, 138.1, 130.7, 130.6, 129.8, 129.1, 128.2, 128.1, 124.5, 113.4, 113.2, 23.3. MS (EI⁺): m/z 358 (M⁺, 45), 316 (95), 271 (100), 224 (35), 156 (55), 77 (60). Anal. Calcd. for C₂₂H₁₈N₂O₃: C 73.73, H 5.06, N 7.82. Found: C 73.49, H 4.80, N 7.61.

¹ Brooker, L. G. S.; Keyes, G. H.; Sprague, R. H.; VanDyke, R. H.; VanLare, E.; VanZandt, G.; White, F. L.; Cressman, H. W. J.; Dent, S. G. Jr. *J. Am. Chem. Soc.* **1951**, *73*, 5332-5350.

Compounds 2d–4d: General Procedure. Equimolar quantities of 2,6-di-*tert*-butyl-4methylpyrylium triflate (6) and the corresponding acceptor (9'-11') were treated with triethylamine (2 eq.) and catalytic pyridine under argon atmosphere. The mixture was stirred at room temperature (for 9'-10') or at reflux (for 11') for 10-30 minutes (TLC monitoring). After cooling, ether (70 mL) was added, and the organic layer was washed with HCl 10% (2×50 mL) and water (2×50 mL), dried (MgSO₄) and the solvent evaporated. The crude product was purified by column chromatography on silica gel and/or recrystallization.

(Z)-4-[(2*E*,4*E*)-6-(2,6-di-*tert*-butyl-4*H*-pyran-4-ylidene)hexa-2,4-dienylidene]-3-phenyl-5-isoxazolone (2d).

Chromatography eluent: hexane/AcOEt (8:2). Yield: dark blue solid (36%).

Mp 166–168°C. IR (Nujol, cm⁻¹) 1709 (C=O), 1654 (C=C). ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (t, J = 13.2 Hz, 1H), 7.60–7.49 (m, 5H), 7.30 (d, J = 12.6 Hz, 1H), 7.18–7.07 (m, 2H), 6.42 (t, J = 12.8 Hz, 1H), 6.23 (d, J = 1.6 Hz, 1H), 5.88 (d, J = 1.6 Hz, 1H), 5.70 (d, J = 12.5 Hz, 1H), 1.25 (s, 9H), 1.22 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 178.0, 170.1, 164.6, 155.4, 149.3, 142.7, 141.3, 130.2, 129.0, 128.3, 126.5, 123.5, 122.2, 113.6, 106.4, 100.0, 42.6, 40.4, 27.9, 27.8. MS (EI⁺): m/z 429 (M⁺⁻, 35), 269 (60), 254 (45), 57 (100). Anal. Calcd. for C₂₈H₃₁NO₃: C 78.29, H 7.27, N 3.26. Found: C 78.44, H 7.16, N 3.43.

(3Z,5E,7E)-9-(2,6-di-*tert*-butyl-4*H*-pyran-4-ylidene)-2-phenylnona-1,3,5,7-tetraene-1,1,3-tricarbonitrile (3d).

Chromatography eluent: hexane/AcOEt (8:2). Yield after recrystallization from AcOEt/hexane: emerald green solid (28%).

Mp 193–195°C (dec.). IR (Nujol, cm⁻¹) 2205 (C=N). ¹H NMR (CDCl₃, 400 MHz): δ 7.56– 7.47 (m, 3H), 7.39–7.37 (m, 2H), 7.27–7.19 (m, 2H), 7.06 (t, *J* = 12.7 Hz, 1H), 6.72 (t, *J* = 12.9 Hz, 1H), 6.35 (t, *J* = 12.8 Hz, 1H), 6.34 (d, *J* = 1.8 Hz, 1H), 5.99 (d, *J* = 1.8 Hz, 1H), 5.78 (d, *J* = 12.8 Hz, 1H), 1.26 (s, 9H), 1.25 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 169.3, 169.1, 166.3, 156.0, 155.2, 145.3, 144.5, 135.0, 131.6, 129.6, 129.1, 126.2, 123.5, 115.6, 115.3, 114.6, 114.1, 107.3, 100.8, 100.3, 60.5, 36.4, 36.1, 27.9, 27.8. MS (EI⁺): *m/z* 461 (M⁺⁺, 50), 269 (60), 254 (40), 193 (50), 153 (40), 57 (73). Anal. Calcd. for C₃₁H₃₁N₃O: C 80.66, H 6.77, N 9.10. Found: C 80.92, H 6.52, N 9.28.

(*3Z*,*5E*,*7E*)-2-amino-9-(2,6-di-*tert*-butyl-4*H*-pyran-4-ylidene)nona-1,3,5,7-tetraene-1,1,3-tricarbonitrile (4d).

Chromatography eluent: hexane/AcOEt (65:35). Yield: dark blue solid (49%).

Mp 111–115°C. IR (Nujol, cm⁻¹) 2209 (C=N). ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, J = 12.0 Hz, 1H), 7.26–7.16 (m, 2H), 6.56 (dd, J = 13.3 Hz, J' = 12.3 Hz, 1H), 6.31 (d, J = 1.8 Hz, 1H), 6.30 (dd, J = 13.5 Hz, J' = 12.0 Hz, 1H), 5.91 (d, J = 1.8 Hz, 1H), 5.81 (br s, 2H), 5.70 (d, J = 12.7 Hz, 1H), 1.27 (s, 9H), 1.23 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 163.5, 155.1, 154.7, 154.2, 144.4, 142.7, 125.0, 122.0, 115.9, 115.6, 115.4, 113.4, 106.6, 100.2, 36.2, 29.7, 27.9, 27.8. MS (EI⁺): m/z 400 (M⁺⁺, 60), 57 (100). Anal. Calcd. for C₂₅H₂₈N₄O: C 74.97, H 7.05, N 13.99. Found: C 75.18, H 6.89, N 14.26.

Figure S-1: ¹H-NMR spectrum of compound 7c (100 MHz, CDCl₃).

Figure S-2: ¹H-¹H COSY spectrum of compound **7c** (400 MHz, CDCl₃).

Figure S-3: ¹³C-NMR spectrum of compound 7c (75 MHz, CDCl₃).

Figure S-4: ¹H-NMR spectrum of compound 1b (400 MHz, CD₂Cl₂).

Figure S-5: ¹³C-NMR spectrum of compound 1b (75 MHz, CDCl₃).

Figure S-6: ¹H-NMR spectrum of compound **1c** (300 MHz, C₂D₆CO).

Figure S-7: ¹³C-NMR spectrum of compound **1c** (75 MHz, C₂D₆CO).

Figure S-8: ¹H-NMR spectrum of compound **2b** (400 MHz, CDCl₃).

Figure S-9: ¹³C-NMR spectrum of compound **2b** (75 MHz, CDCl₃).

Figure S-10: ¹H-NMR spectrum of compound **2c** (300 MHz, CDCl₃).

Figure S-11: ¹³C-NMR spectrum of compound **2c** (100 MHz, CDCl₃).

Figure S-12: ¹H-NMR spectrum of compound 2d (400 MHz, CDCl₃).

Figure S-13: ¹H-¹H COSY spectrum of compound 2d (400 MHz, CDCl₃).

Figure S-14: ¹³C-NMR (APT) spectrum of compound 2d (100 MHz, CDCl₃).

Figure S-15: ¹H-NMR spectrum of compound 3b (400 MHz, CDCl₃).

Figure S-16: ¹³C-NMR spectrum of compound **3b** (100 MHz, CDCl₃).

Figure S-17: ¹H-NMR spectrum of compound 3c (400 MHz, CDCl₃).

Figure S-18: ¹³C-NMR spectrum of compound 3c (75 MHz, CDCl₃).

Figure S-19: ¹H-NMR spectrum of compound 3d (400 MHz, CDCl₃).

Figure S-20: ¹H-¹H COSY spectrum of compound 3d (400 MHz, CDCl₃).

Figure S-21: ¹³C-NMR spectrum of compound **3d** (100 MHz, CDCl₃).

Figure S-22: ¹H-NMR spectrum of compound 4b (400 MHz, CDCl₃).

Figure S-23: ¹³C spectrum of compound 4b (75 MHz, CDCl₃).

Figure S-24: 2D ¹H-EXSY experiment for compound **4b** (300 MHz, 30°C, CDCl₃). (mixing time: 20 ms).

Figure S-25: Selective NOE experiments for compound 4b (300 MHz, 0°C, CDCl₃).

- A) ¹H spectrum.
- B) Spectrum after saturation of NH₂ (δ = 5.82 ppm) (mixing time: 1 s).
- C) Spectrum after saturation of Hb ($\delta = 8.74$ ppm) (mixing time: 1 s).
- D) Spectrum after saturation of Ha ($\delta = 6.01$ ppm) (mixing time: 1.87 s).

Figure S-26: ¹H-NMR spectrum of compound 4c (400 MHz, CDCl₃).

Figure S-27: ¹H-¹H COSY spectrum of compound **4c** (400 MHz, CDCl₃).

Figure S-28: ¹³C spectrum of compound 4c (100 MHz, CDCl₃).

Figure S-29: ¹H-NMR spectrum of compound 4d (400 MHz, CDCl₃).

Figure S-30: ¹H-¹H COSY spectrum of compound **4d** (400 MHz, CDCl₃).

Figure S-31: ¹³C spectrum (APT) of compound 4d (100 MHz, CDCl₃).

Figure S-32: ¹H spectrum of compound **5b** (300 MHz, C₂D₆CO).

Figure S-33: ¹³C spectrum of compound **5b** (75 MHz, CDCl₃).

Figure S-34: ¹H spectrum of compound 5c (400 MHz, CDCl₃).

Figure S-35: ¹H-¹H COSY spectrum of compound **5c** (400 MHz, CDCl₃).

Figure S-36: ¹³C spectrum of compound 5c (100 MHz, CDCl₃).

Figure S-37: ¹H spectrum of compound 5d (400 MHz, CDCl₃).

Figure S-38: ¹H-¹H COSY spectrum of compound 5d (400 MHz, CDCl₃).

Figure S-39: ¹³C spectrum of compound 5d (75 MHz, CDCl₃).

Figure S-40: ¹H spectrum of compound 8' (400 MHz, CDCl₃).

Figure S-41: ¹³C spectrum (APT) of compound 8' (100 MHz, CDCl₃).

Figure S-42: ¹H spectrum of compound 9' (300 MHz, CDCl₃).

Figure S-43: ¹³C spectrum (APT) of compound 9' (75 MHz, CDCl₃).

Figure S-44: ¹H spectrum of compound 10' (400 MHz, CDCl₃).

Figure S-45: ¹H-¹H COSY spectrum of compound 10' (400 MHz, CDCl₃).

Figure S-46: ¹³C spectrum (APT) of compound 10' (100 MHz, CDCl₃).

Figure S-47: ¹H spectrum of compound 11' (300 MHz, DMSO-*d*₆).

Figure S-48: ¹H-¹H COSY spectrum of compound **11**' (400 MHz, DMSO-*d*₆).

Figure S-49: ¹³C spectrum (APT) of compound 11' (75 MHz, DMSO- d_6).

Figure S-50: Normalized UV-vis absorption of compound **1a**. (10^{-5} M)

Figure S-51: Normalized UV-vis absorption of compound **1b**. $(5 \times 10^{-6} \text{ M})$

Figure S-52: Normalized UV-vis absorption of compound **1c**. $(5 \times 10^{-6} \text{ M})$

Figure S-53: Normalized UV-vis absorption of compound **2a**. $(2.5 \times 10^{-5} \text{ M})$

Figure S-54: Normalized UV-vis absorption of compound **2b**. (10^{-5} M)

Figure S-55: Normalized UV-vis absorption of compound 2c. (10⁻⁵ M)

Figure S-56: Normalized UV-vis absorption of compound **2d**. (10^{-5} M)

Figure S-57: Normalized UV-vis absorption of compound **3a**. $(2.5 \times 10^{-5} \text{ M})$

Figure S-58: Normalized UV-vis absorption of compound **3b**. (10^{-5} M)

3b

Figure S-59: Normalized UV-vis absorption of compound **3c**. $(5 \times 10^{-6} \text{ M})$

Figure S-60: Normalized UV-vis absorption of compound **3d**. $(5 \times 10^{-6} \text{ M})$

Figure S-61: Normalized UV-vis absorption of compound **4a**. $(2.5 \times 10^{-5} \text{ M})$

Figure S-62: Normalized UV-vis absorption of compound **4b**. (10^{-5} M)

Figure S-63: Normalized UV-vis absorption of compound **4c**. (10^{-5} M)

Figure S-64: Normalized UV-vis absorption of compound **4d**. (10^{-5} M)

Figure S-65: Normalized UV-vis absorption of compound **5a**. $(2.5 \times 10^{-5} \text{ M})$

Figure S-66: Normalized UV-vis absorption of compound **5b**. (10^{-5} M)

Figure S-67: Normalized UV-vis absorption of compound **5c**. $(5 \times 10^{-6} \text{ M})$

Figure S-68: Normalized UV-vis absorption of compound **5d**. (10^{-5} M)

NLO measurements

Electric field induced second harmonic (EFISH) generation measurements have been performed using as the fundamental excitation the 1.9 μ m output of a H₂ Raman shifter pumped by a Q-switched Nd:YAG laser. This laser operates at 1.06 μ m, with a repetition rate of 10 Hz and pulse width of 8 ns. A computer controlled NLO spectrometer completes the SHG experimental set-up. The 1.9 μ m fundamental light is split in two beams. The less intense one is directed to a N-(4-nitrophenyl)-(L)-prolinol (NPP) powder sample whose SH signal is used as a reference in order to reduce the effects of laser fluctuations. The other beam is passed through a linear polarizer and focused into the EFISH wedge shaped liquid cell. Voltage pulses of 5 kV and 3 μ s are applied across the cell (electrode gap = 2 mm) synchronously with the laser pulses. The harmonic signals from both the EFISH cell and the NPP reference are measured with two photomultipliers. Interference filters are used to remove the residual excitation light beyond the sample and the reference.

The molecular $\mu\beta_{1907}$ values have been determined in dichloromethane for all compounds, apart from **4a**, in DMSO. As a rule, at least three solutions of concentration in the range (4 × 10⁻³ M- 4 × 10⁻⁴ M) were measured. $\mu\beta_0$ values have been extrapolated using a two-level dispersion model.² Under the same experimental conditions $\mu\beta_0$ deduced for azo dye DR1 was 480 x 10⁻⁴⁸ esu, quite close to the value reported in the same solvent by Dirk et al.³

² Oudar, J.L.; Chemla, D.S. J. Chem. Phys. 1977, 66, 2664-2668.

³ Dirk, C. W.; Katz, H. E.; Schilling, M. L.; King, L. A. Chem. Mater. 1990, 2, 700-705.

X-ray Single-Crystal Diffraction

X-ray single-crystal diffraction data were collected at 293K on a diffractometer equipped with a graphite monochromator utilizing MoK α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods using SIR92⁴ and refined on F² by full matrix least-squares techniques using SHELX-97⁵ package with anisotropic thermal parameters for all non-hydrogen atoms. The hydrogens atoms were treated with a riding model.

Crystal data for 2b:

Black prism (0.65 x 0.46 x 0.29 mm³), $C_{24}H_{27}N_1O_3$, Mr = 377.47, monoclinic, space group P2₁/n, a = 10.340(1) Å, b = 12.560(1) Å, c = 16.843(2) Å, β = 91.12(1)°, V = 2187.0(4) Å³, Z = 4, ρ calc = 1.146 gcm⁻³, μ (MoK α) = 0.075 mm⁻¹, F(000) = 808, 16867 reflections collected in the 2.02 - 25.86° θ range, 4188 unique (R_{int} = 0.095), restraints / parameters = 0 / 253, R1 = 0.0440 and wR2 = 0.0973 using 2208 reflections with I>2 σ (I), R1 = 0.0994 and wR2 = 0.1139 using all data, GOF = 0.881, -0.110 < $\Delta \rho$ < 0.115 e.Å⁻³.

⁴ Altomare, A.; Cascarano, G.; Giacovazzo. C.; Guagliardi, A. J. Appl. Cryst. **1993**, 26, 343-350.

⁵ SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB (and SHELXA)] - Programs for Crystal Structure Analysis (Release 97-2). Sheldrick, G.M., Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.

Crystal data and structure refinement for 2b.

```
Identification code
                                        2b
    Empirical formula
                                        C24 H27 N O3
                                        377.47
    Formula weight
    Temperature
                                        293(2) K
    Wavelength
                                        0.71073 A
    Crystal system, space group
                                       Monoclinic, P 1 21/n 1
    Unit cell dimensions
                                        a = 10.3400(10) A alpha = 90 deg.
                                       b = 12.5600(10) A
                                                           beta =
91.120(10) deg.
                                        c = 16.843(2) A gamma = 90 deg.
    Volume
                                        2187.0(4) A^3
    Z, Calculated density
                                        4, 1.146 Mg/m^3
                                        0.075 mm^-1
    Absorption coefficient
    F(000)
                                        808
    Crystal size
                                        0.65 x 0.46 x 0.29 mm
    Theta range for data collection
                                      2.02 to 25.86 deg.
    Limiting indices
                                        -12<=h<=12, -15<=k<=15, -20<=l<=20
    Reflections collected / unique
                                       16867 / 4188 [R(int) = 0.0952]
                                        99.0 %
    Completeness to theta = 25.86
    Absorption correction
                                        None
    Refinement method
                                        Full-matrix least-squares on F<sup>2</sup>
                                       4188 / 0 / 253
    Data / restraints / parameters
    Goodness-of-fit on F<sup>2</sup>
                                        0.881
    Final R indices [I>2sigma(I)]
                                       R1 = 0.0440, wR2 = 0.0973 [ 2208
Fo]
    R indices (all data)
                                       R1 = 0.0994, wR2 = 0.1139
    Largest diff. peak and hole 0.115 and -0.110 e.A^-3
```


Atomic coordinates and equivalent isotropic displacement parameters for 2b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(01)	1 05025(17)	0 06960(14)	0 88273(9)	0 0537(4)
C(02)	0.97061(18)	0.11741(13)	0.93796(9)	0.0524(4)
C(03)	1,00968(17)	0.16100(14)	1.00976(9)	0.0530(4)
C(04)	1,1412(2)	0.16718(16)	1.03956(11)	0.0653(5)
C(05)	0.9343(2)	0.21119(13)	1.06937(9)	0.0567(5)
C(06)	0.7926(2)	0.21926(14)	1.07571(9)	0.0592(5)
C(07)	0.7365(2)	0.30670(17)	1.11172(11)	0.0781(6)
C(08)	0.6047(3)	0.3101(2)	1.12300(13)	0.0898(7)
C(09)	0.5268(2)	0.2285(2)	1.09897(12)	0.0852(7)
C(10)	0.5807(2)	0.14184(19)	1.06293(11)	0.0783(6)
C(11)	0.7125(2)	0.13683(16)	1.05132(10)	0.0653(5)
C(12)	1.00599(16)	0.01812(13)	0.81415(9)	0.0485(4)
C(13)	1.09400(16)	-0.03788(13)	0.76528(9)	0.0507(4)
C(14)	1.05348(16)	-0.09550(14)	0.70281(9)	0.0507(4)
C(15)	0.87375(16)	0.01236(13)	0.78875(9)	0.0509(4)
C(16)	0.83676(16)	-0.04530(14)	0.72529(9)	0.0510(4)
C(17)	1.13186(17)	-0.16320(15)	0.64756(10)	0.0595(5)
C(18)	1.27457(19)	-0.1587(2)	0.66978(13)	0.0913(7)
C(19)	1.1122(2)	-0.12094(19)	0.56267(10)	0.0863(7)
C(20)	1.0842(2)	-0.27827(17)	0.65228(14)	0.0865(7)
C(21)	0.70243(18)	-0.06325(17)	0.69213(11)	0.0673(5)
C(22)	0.6953(2)	-0.0253(2)	0.60541(13)	0.1129(10)
C(23)	0.6734(2)	-0.1830(2)	0.69664(16)	0.0988(8)
C(24)	0.60321(19)	-0.0017(2)	0.74000(15)	0.0973(8)
N(01)	1.00641(18)	0.24945(14)	1.12714(9)	0.0744(5)
0(01)	0.92563(11)	-0.09927(10)	0.68244(6)	0.0575(3)
0(02)	1.13841(14)	0.22508(11)	1.10913(7)	0.0790(4)
0(03)	1.24348(15)	0.13257(13)	1.01648(8)	0.0842(5)
H(01)	1.1391	0.0722	0.8922	0.064
H(02)	0.8827	0.1203	0.9253	0.063
H(07)	0.7880	0.3634	1.1284	0.094
H(08)	0.5686	0.3691	1.1474	0.108
H(09)	0.4381	0.2315	1.1069	0.102

0.5281	0.0858	1.0461	0.094
0.7478	0.0774	1.0269	0.078
1.1821	-0.0343	0.7772	0.061
0.8117	0.0495	0.8169	0.061
1.3223	-0.2023	0.6339	0.137
1.2873	-0.1844	0.7230	0.137
1.3044	-0.0865	0.6665	0.137
1.1610	-0.1636	0.5267	0.130
1.1412	-0.0484	0.5602	0.130
1.0221	-0.1243	0.5481	0.130
1.1331	-0.3219	0.6170	0.130
0.9943	-0.2812	0.6371	0.130
1.0952	-0.3039	0.7057	0.130
0.6096	-0.0368	0.5842	0.169
0.7563	-0.0645	0.5747	0.169
0.7155	0.0493	0.6032	0.169
0.5878	-0.1964	0.6759	0.148
0.6792	-0.2060	0.7509	0.148
0.7351	-0.2215	0.6659	0.148
0.5182	-0.0145	0.7182	0.146
0.6221	0.0730	0.7376	0.146
0.6070	-0.0251	0.7943	0.146
	0.5281 0.7478 1.1821 0.8117 1.3223 1.2873 1.3044 1.1610 1.1412 1.0221 1.1331 0.9943 1.0952 0.6096 0.7563 0.7155 0.5878 0.6792 0.7351 0.5182 0.6221 0.6070	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Bond lengths [A] for 2b.

C(01) - C(02)	1.391(2)
C(01) - C(12)	1.393(2)
C(02) - C(03)	1.301(2)
C(03) - C(05)	1.430(2)
C(03) - C(04)	1.442(3)
C(04) - O(03)	1.215(2)
C(04) - O(02)	1.380(2)
C(05) - N(01)	1.306(2)
C(05) - C(06)	1.474(3)
C(06) - C(11)	1.383(3)
C(06) - C(07)	1.387(3)
C(07)-C(08)	1.380(3)
C(08)-C(09)	1.360(3)
C(09) - C(10)	1.370(3)
C(10) - C(11)	1.382(3)
C(12) - C(13)	1.425(2)
C(12)-C(15)	1.427(2)
C(13)-C(14)	1.338(2)
C(14)-O(01)	1.3601(19)
C(14)-C(17)	1.508(2)
C(15)-C(16)	1.341(2)
C(16)-O(01)	1.3605(19)
C(16)-C(21)	1.504(2)
C(17)-C(18)	1.516(3)
C(17)-C(20)	1.530(3)
C(17)-C(19)	1.535(2)
C(21)-C(24)	1.527(3)
C(21)-C(23)	1.536(3)
C(21)-C(22)	1.537(3)
N(01)-O(02)	1.437(2)

Bond angles [deg] for 2b.

C(02) - C(01) - C(12)	124.45(17)
C(03) - C(02) - C(01)	126.17(17)
C(02) - C(03) - C(05)	129.47(17)
C(02) - C(03) - C(04)	125.73(17)
C(05)-C(03)-C(04)	104.78(15)
O(03)-C(04)-O(02)	119.53(19)
O(03)-C(04)-C(03)	133.65(18)
O(02)-C(04)-C(03)	106.81(18)
N(01) - C(05) - C(03)	111.96(18)
N(01) - C(05) - C(06)	118.34(16)
C(03)-C(05)-C(06)	129.60(15)
C(11) - C(06) - C(07)	118.0(2)
C(11) - C(06) - C(05)	121.12(17)
C(07) - C(06) - C(05)	120.71(18)
C(08)-C(07)-C(06)	120.5(2)
C(09) - C(08) - C(07)	121.1(2)

C(08) - C(09) - C(10)	119.1(2)
C(09) - C(10) - C(11)	120.7(2)
C(10) - C(11) - C(06)	120.67(19)
C(01) - C(12) - C(13)	120.32(16)
C(01) - C(12) - C(15)	124.72(16)
C(13) - C(12) - C(15)	114.90(14)
C(14) - C(13) - C(12)	121.86(16)
C(13) - C(14) - O(01)	120.35(15)
C(13) - C(14) - C(17)	128.79(16)
O(01) - C(14) - C(17)	110.86(14)
C(16)-C(15)-C(12)	121.56(15)
C(15)-C(16)-O(01)	120.47(15)
C(15)-C(16)-C(21)	128.62(16)
O(01) - C(16) - C(21)	110.90(14)
C(14) - C(17) - C(18)	111.02(15)
C(14) - C(17) - C(20)	108.84(14)
C(18) - C(17) - C(20)	109.61(18)
C(14) - C(17) - C(19)	108.47(15)
C(18) - C(17) - C(19)	109.12(16)
C(20) - C(17) - C(19)	109.77(17)
C(16)-C(21)-C(24)	110.68(16)
C(16)-C(21)-C(23)	107.97(16)
C(24)-C(21)-C(23)	109.59(18)
C(16) - C(21) - C(22)	109.46(17)
C(24)-C(21)-C(22)	108.94(19)
C(23)-C(21)-C(22)	110.19(18)
C(05) - N(01) - O(02)	107.19(15)
C(14) - O(01) - C(16)	120.80(12)
C(04)-O(02)-N(01)	109.08(14)

Anisotropic displacement parameters for 2b. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(01) 0.0044(9)	0.0649(11)	0.0516(11)	0.0448(9)	0.0000(8)	0.0039(8) -	
C(02)	0.0715(12)	0.0420(10)	0.0437(9)	0.0038(8)	0.0014(8) -	
C(03) C(03)	0.0733(12)	0.0453(11)	0.0405(9)	0.0008(8)	0.0008(8) -	
C(04) 0.0220(11)	0.0878(16)	0.0596(13)	0.0485(11)	0.0023(9)	0.0043(10)-	
C(05)	0.0904(14)	0.0406(11)	0.0392(9)	-0.0014(8)	0.0017(9) -	
C(06)	0.0902(15)	0.0498(12)	0.0378(9)	-0.0028(8)	0.0029(9)	
C(07) 0.0009(12)	0.1118(19)	0.0594(14)	0.0633(12)	-0.0121(10)	0.0048(12)	

C(08)	0.114(2)	0.0809(18)	0.0748(15)-0.0166(13)	0.0119(13)
C(09)	0.0904(16)	0.097(2)	0.0680(13)-0.0056(13)	0.0038(12)
C(10)	0.0877(17)	0.0802(16)	0.0668(13)-0.0102(12)-	-0.0010(11)-
0.0003(12) C(11)	0.0823(15)	0.0590(13)	0.0548(11)-0.0107(9)	0.0051(9)
0.0010(11) C(12)	0.0625(11)	0.0432(10)	0.0401(9) 0.0058(8)	0.0055(8) -
0.0046(8) C(13)	0.0538(10)	0.0543(11)	0.0442(9) 0.0022(8)	0.0068(8)
0.0004(8) C(14)	0.0553(11)	0.0515(11)	0.0455(9) 0.0021(8)	0.0061(8) -
0.0013(8) C(15)	0.0599(11)	0.0462(11)	0.0469(9) -0.0035(8)	0.0107(8)
0.0023(8) C(16)	0.0554(11)	0.0491(11)	0.0488(9) -0.0046(8)	0.0086(8)
0.0004(8) C(17)	0.0624(12)	0.0615(13)	0.0549(10)-0.0069(9)	0.0151(8)
0.0049(9) C(18)	0.0704(15)	0.110(2)	0.0937(15)-0.0237(14)	0.0146(12)
0.0182(13) C(19)	0.1115(18)	0.0958(18)	0.0525(11)-0.0079(11)	0.0232(11)
0.0144(13) C(20)	0.1041(17)	0.0634(15)	0.0932(15)-0.0143(12)	0.0326(13)
0.0053(12)	0.0585(12)	0 0734(15)	0.0700(12)-0.0166(11)	0 0007(9)
0.0026(10)	0 1007(19)	0 162(2)	0.0749(15)-0.0038(16)-	-0 0221(12)
0.0189(17)	0.1007(10)	0.102(5)	0.125(2) 0.0276(16)	-0.0221(13)
0.0176(13)	0.0740(15)	0.08/1(18)	0.135(2) -0.0376(16)-	-0.0005(13)-
0.0087(12)	0.0576(13)	0.118(2)	0.1167(18)-0.0383(16)	0.0034(12)
N(01) 0.0174(10)	0.0982(13)	0.0722(12)	0.0528(9) -0.0123(8)	0.0035(9) -
O(01) 0.0001(6)	0.0574(8)	0.0632(8)	0.0521(6) -0.0154(6)	0.0067(5)
O(02) 0.0267(8)	0.0930(11)	0.0865(11)	0.0572(8) -0.0102(7) -	-0.0049(7) -
O(03) 0.0195(9)	0.0766(10)	0.1027(12)	0.0735(9) -0.0071(8)	0.0033(8) -

Figure S-69: ORTEP view of 2b.

Figure S-70: Molecular packing of 2b viewed along the [100] direction.

Crystal data for 3c:

Blue needle (0.80 x 0.13 x 0.10 mm³), $C_{29}H_{29}N_3O_1$, Mr = 435.55, triclinic, space group P-1, a = 20.485(3) Å, b = 9.563(1) Å, c = 7.049(1) Å, α = 78.92(1)°, β = 81.79(1)°, γ = 76.67(2)°, V = 1311.6(3) Å³, Z = 2, pcalc = 1.103 gcm⁻³, μ (MoK α) = 0.068 mm⁻¹, F(000) = 464, 13030 reflections collected in the 2.05 - 25.96° θ range, 4772 unique (R_{int} = 0.063), restraints / parameters = 0 / 298, R1 = 0.0542 and wR2 = 0.01293 using 2305 reflections with I>2 σ (I), R1 = 0.1138 and wR2 = 0.1521 using all data, GOF = 0.854, -0.158 < $\Delta \rho$ < 0.325 e.Å⁻³.

Crystal data and structure refinement for 3c.

```
Identification code
                                        3c
    Empirical formula
                                        C29 H29 N3 O
                                        435.55
    Formula weight
    Temperature
                                        293(2) K
    Wavelength
                                        0.71073 A
                                        Triclinic, P -1
    Crystal system, space group
    Unit cell dimensions
                                        a = 20.485(3) A alpha = 78.92(1)
deg.
                                        b = 9.563(1) A
                                                         beta = 81.79(1)
deg.
                                        c = 7.049(1) A gamma = 76.67(2)
deg.
                                        1311.6(3) A^3
    Volume
    Z, Calculated density
                                        2, 1.103 Mg/m^3
    Absorption coefficient
                                        0.068 mm^-1
    F(000)
                                        464
    Crystal size
                                        0.80 x 0.13 x 0.1 mm
    Theta range for data collection
                                        2.05 to 25.96 deg.
    Limiting indices
                                        -25<=h<=25, -11<=k<=11, -8<=1<=8
                                        13030 / 4772 [R(int) = 0.0628]
    Reflections collected / unique
    Completeness to theta = 25.96
                                        92.8 %
    Absorption correction
                                        none
    Refinement method
                                        Full-matrix least-squares on F<sup>2</sup>
    Data / restraints / parameters
                                       4772 / 0 / 298
    Goodness-of-fit on F<sup>2</sup>
                                        0.854
    Final R indices [I>2sigma(I)]
                                        R1 = 0.0542, wR2 = 0.1293 [ 2305
Fo]
    R indices (all data)
                                        R1 = 0.1138, wR2 = 0.1521
    Largest diff. peak and hole
                                0.325 and -0.158 e.A^-3
```


Atomic coordinates and equivalent isotropic displacement parameters for 3c. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(01)	-0.16632(11)	-0.0089(2)	-0.0733(3)	0.0491(6)
C(02)	-0.10786(11)	-0.1015(2)	-0.0140(3)	0.0457(5)
C(03)	-0.04390(11)	-0.1048(2)	-0.1094(3)	0.0452(5)
C(04)	0.01249(11)	-0.2018(2)	-0.0416(3)	0.0436(5)
C(05)	0.07910(10)	-0.2129(2)	-0.1246(3)	0.0418(5)
C(06)	0.08998(11)	-0.1065(2)	-0.2931(3)	0.0486(5)
C(07)	0.13337(10)	-0.3229(2)	-0.0515(3)	0.0413(5)
C(08)	0.11897(10)	-0.4155(2)	0.1402(3)	0.0413(5)
C(09)	0.10495(13)	-0.3562(3)	0.3080(3)	0.0595(7)
C(10)	0.09057(15)	-0.4402(3)	0.4841(4)	0.0695(7)
C(11)	0.08963(13)	-0.5840(3)	0.4927(4)	0.0637(7)
C(12)	0.10394(15)	-0.6441(3)	0.3290(4)	0.0718(8)
C(13)	0.11906(14)	-0.5610(2)	0.1526(4)	0.0642(7)
C(14)	0.19798(12)	-0.3528(2)	-0.1430(3)	0.0521(6)
C(15)	0.22121(13)	-0.2836(3)	-0.3298(4)	0.0724(8)
C(16)	0.24996(14)	-0.4644(3)	-0.0596(4)	0.0665(7)
C(17)	-0.23021(11)	-0.0011(2)	0.0276(3)	0.0475(5)
C(18)	-0.24651(12)	-0.0985(3)	0.1977(3)	0.0586(6)
C(19)	-0.30898(13)	-0.0841(3)	0.2894(4)	0.0620(7)
C(20)	-0.33423(16)	-0.1817(4)	0.4671(5)	0.0883(10)
C(21)	-0.3491(4)	-0.0965(6)	0.6298(7)	0.210(3)
C(22)	-0.3974(2)	-0.2256(5)	0.4258(8)	0.167(2)
C(23)	-0.28373(19)	-0.3241(4)	0.5065(5)	0.1153(13)
C(24)	-0.28548(11)	0.1102(2)	-0.0371(3)	0.0548(6)
C(25)	-0.34697(12)	0.1244(3)	0.0607(4)	0.0604(6)
C(26)	-0.40967(13)	0.2379(3)	0.0190(5)	0.0821(9)
C(27)	-0.42756(19)	0.3271(4)	0.1863(6)	0.1212(14)
C(28)	-0.46715(16)	0.1635(4)	0.0089(6)	0.1200(14)
C(29)	-0.39690(17)	0.3379(4)	-0.1737(6)	0.1176(14)
N(01)	0.09459(11)	-0.0150(2)	-0.4221(3)	0.0759(7)
N(02)	0.24352(14)	-0.2345(4)	-0.4777(4)	0.1225(12)

N(03)	0.29389(13)	-0.5526(3)	-0.0035(4)	0.1042(10)
0(01)	-0.35894(8)	0.02794(19)	0.2249(3)	0.0684(5)
H(01)	-0.1627	0.0538	-0.1910	0.059
H(02)	-0.1119	-0.1676	0.1003	0.055
H(03)	-0.0385	-0.0393	-0.2235	0.054
H(04)	0.0052	-0.2668	0.0717	0.052
н(09)	0.1052	-0.2584	0.3025	0.071
H(10)	0.0815	-0.3994	0.5970	0.083
H(11)	0.0791	-0.6403	0.6114	0.076
H(12)	0.1036	-0.7420	0.3356	0.086
H(13)	0.1294	-0.6035	0.0409	0.077
H(18)	-0.2128	-0.1745	0.2468	0.070
H(21A)	-0.3085	-0.0716	0.6532	0.315
H(21B)	-0.3663	-0.1539	0.7450	0.315
H(21C)	-0.3821	-0.0090	0.5962	0.315
H(22A)	-0.3862	-0.2803	0.3205	0.250
H(22B)	-0.4311	-0.1397	0.3911	0.250
H(22C)	-0.4145	-0.2844	0.5398	0.250
H(23A)	-0.2765	-0.3729	0.3959	0.173
H(23B)	-0.3008	-0.3849	0.6184	0.173
H(23C)	-0.2419	-0.3051	0.5301	0.173
H(24)	-0.2786	0.1750	-0.1509	0.066
H(27A)	-0.4676	0.4006	0.1634	0.182
H(27B)	-0.3910	0.3725	0.1931	0.182
H(27C)	-0.4353	0.2636	0.3067	0.182
H(28A)	-0.5073	0.2360	-0.0166	0.180
H(28B)	-0.4751	0.1015	0.1304	0.180
H(28C)	-0.4552	0.1061	-0.0935	0.180
H(29A)	-0.4370	0.4106	-0.1989	0.176
H(29B)	-0.3849	0.2813	-0.2770	0.176
H(29C)	-0.3608	0.3845	-0.1663	0.176

Bond lengths [A] for 3c.

C(01) - C(02) C(01) - C(17) C(02) - C(03) C(03) - C(04) C(04) - C(05) C(05) - C(07) C(05) - C(06) C(06) - N(01) C(07) - C(14) C(07) - C(14) C(07) - C(08) C(08) - C(13) C(09) - C(10) C(10) - C(11) C(11) - C(12) C(12) - C(13) C(14) - C(15) C(14) - C(16) C(15) - N(02) C(16) - N(03) C(17) - C(18) C(17) - C(24) C(18) - C(19) C(19) - O(01) C(19) - C(20) C(20) - C(23)	1.381(3) 1.391(3) 1.381(3) 1.384(3) 1.394(3) 1.423(3) 1.423(3) 1.443(3) 1.435(3) 1.144(3) 1.379(3) 1.376(3) 1.376(3) 1.376(3) 1.368(3) 1.425(3) 1.425(4) 1.136(3) 1.425(4) 1.136(3) 1.421(3) 1.420(3) 1.424(3) 1.357(3) 1.515(3) 1.490(6) 1.513(5)
C(19) - O(01)	1.357(3)
C(19) - C(20)	1.515(3)
C(20)-C(21)	1.490(6)
C(20)-C(23)	1.513(5)
C(20)-C(22)	1.529(5)
C(24)-C(25)	1.338(3)
C(25)-O(01)	1.365(3)
C(25)-C(26)	1.502(4)
C(26)-C(28)	1.526(4)
C(26)-C(29)	1.531(4)
C(26)-C(27)	1.540(5)

Bond angles [deg] for 3c.

C(02)-C(01)-C(17)	125.7(2)
C(01) - C(02) - C(03)	125.78(19)
C(02)-C(03)-C(04)	122.56(19)
C(03) - C(04) - C(05)	127.17(19)
C(04) - C(05) - C(07)	123.12(18)
C(04)-C(05)-C(06)	115.64(19)
C(07)-C(05)-C(06)	121.24(19)
N(01)-C(06)-C(05)	175.0(3)
C(14) - C(07) - C(05)	125.63(18)
C(14) - C(07) - C(08)	117.10(19)
C(05)-C(07)-C(08)	117.26(18)
C(09) - C(08) - C(13)	118.55(19)
C(09) - C(08) - C(07)	120.41(18)
C(13)-C(08)-C(07)	121.0(2)

C(08) - C(09) - C(10)	120.6(2)
C(11) - C(10) - C(09)	119.9(2)
C(12)-C(11)-C(10)	120.1(2)
C(11) - C(12) - C(13)	120.3(2)
C(08) - C(13) - C(12)	120.5(2)
C(07) - C(14) - C(15)	126.1(2)
C(07) - C(14) - C(16)	122.4(2)
C(15) - C(14) - C(16)	111.5(2)
N(02) - C(15) - C(14)	175.7(3)
N(03) - C(16) - C(14)	175.8(3)
C(01) - C(17) - C(18)	124.8(2)
C(01) - C(17) - C(24)	120.51(19)
C(18) - C(17) - C(24)	114.7(2)
C(19) - C(18) - C(17)	121.9(2)
C(18) - C(19) - O(01)	120.6(2)
C(18) - C(19) - C(20)	127.8(2)
O(01) - C(19) - C(20)	111.6(2)
C(21) - C(20) - C(23)	114.0(4)
C(21) - C(20) - C(19)	106.8(3)
C(23) - C(20) - C(19)	110.7(3)
C(21) - C(20) - C(22)	111.4(4)
C(23) - C(20) - C(22)	104.6(3)
C(19) - C(20) - C(22)	109.3(3)
C(25) - C(24) - C(17)	122.1(2)
C(24) - C(25) - O(01)	120.1(2)
C(24) - C(25) - C(26)	129.2(2)
O(01) - C(25) - C(26)	110.7(2)
C(25) - C(26) - C(28)	109.5(2)
C(25) - C(26) - C(29)	110.0(2)
C(28) - C(26) - C(29)	109.9(3)
C(25) - C(26) - C(27)	107.7(3)
C(28) - C(26) - C(27)	109.9(3)
C(29) - C(26) - C(27)	109.9(3)
C(19) - O(01) - C(25)	120.51(18)

Anisotropic displacement parameters for 3c. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ul1 + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
C(01) 0.0101(10)	0.0502(14)	0.0472(12)	0.0449(14)-	0.0005(10)	0.0014(11)-	
C(02) 0.0109(10)	0.0500(13)	0.0438(12)	0.0406(13)-	0.0021(9) -	0.0007(10)-	
C(03) 0.0103(10)	0.0480(13)	0.0438(11)	0.0416(13)-	0.0019(9) -	0.0033(10)-	
C(04) 0.0124(10)	0.0506(13)	0.0410(11)	0.0385(13)-	0.0020(9) -	0.0041(10)-	
C(05) 0.0122(10)	0.0484(12)	0.0410(11)	0.0348(13)-	0.0037(9)	0.0004(10)-	

C(06)	0.0475(13)	0.0514(13)	0.0418(14)-	0.0025(11)-	-0.0001(11)-
C(07)	0.0484(13)	0.0424(11)	0.0338(12) -	0.0054(9) -	-0.0030(10) -
0.0121(10)	0.0101(10)	0.0121(11)	0.0000(12)	0.0001())	0.0030(10)
C(08)	0.0446(12)	0.0403(11)	0.0370(13)-	0.0015(9) -	-0.0031(10)-
0.0094(9)					
C(09)	0.0897(18)	0.0517(13)	0.0393(15)-	0.0049(11)-	-0.0013(13)-
0.0246(13)	0.000/0)	0 0040/10)	0.0200/15)	0 0000(10)	0.0000(14)
C(10)	0.099(2)	0.0740(17)	0.0382(15)-	0.0068(12)-	-0.0006(14)-
C(11)	0 0719(16)	0 0677(16)	0 0455(16)	0 0133(13)-	-0 0041(13)-
0.0227(13)	0.0/19(10)	0.0077(107	0.0100(10)	0.0100(10)	0.0011(10)
C(12)	0.104(2)	0.0492(14)	0.0619(19)	0.0024(13)-	-0.0004(16)-
0.0292(14)					
C(13)	0.096(2)	0.0472(14)	0.0506(16)-	0.0087(11)	0.0007(14)-
0.0225(13)	0.0500/14)	0 0560(10)	0 0005(14)	0 0010/10)	0 0014(11)
C(14)	0.0523(14)	0.0563(13)	0.0395(14)	0.0013(10)	0.0014(11)-
C(15)	0 0531(15)	0 0859(19)	0 0573(19)	0 0093(14)	0 0085(13)
0.0012(13)	0.0001(10)	0.0000(10)	0.00/0(1)/	0.00000(11)	0.0003(13)
C(16)	0.0567(16)	0.0790(18)	0.0465(16)	0.0063(13)	0.0070(13)-
0.0002(14)					
C(17)	0.0479(13)	0.0478(12)	0.0427(14)-	0.0036(10)	0.0002(11)-
0.0083(10)	0 0500/15)	0 0 0 1 0 (1 4)	0 0501/16)	0 0000(11)	0.0000(10)
C(18)	0.0529(15)	0.0610(14)	0.0501(16)	0.00/2(11)	0.0026(12)-
C(19)	0.0536(15)	0.0677(16)	0.0531(17)	0.0035(12)	0.0036(12) -
0.0063(13)	,				,
C(20)	0.076(2)	0.101(2)	0.063(2)	0.0179(17)	0.0157(16)-
0.0089(17)					
C(21)	0.381(10)	0.172(5)	0.065(3) -	0.020(3)	0.081(4) -
0.097(6)	0 106(3)	0 179(4)	0 190(5)	0 076(4)	-0 003(3) -
0.072(3)	0.100(3)	0.1/2(4)	0.100(3)	0.0/0(4)	0.003(3)
C(23)	0.116(3)	0.108(3)	0.087(3)	0.039(2)	0.015(2) -
0.015(2)					
C(24)	0.0508(14)	0.0549(13)	0.0499(15)	0.0045(10)	0.0016(12)-
0.0081(11)	0.0506(15)	0 0500(14)	0.000(17)	0 0000(10)	0 0000(10)
C(25)	0.0526(15)	0.0590(14)	0.0608(17)	0.0009(12)	0.0009(12)-
C(26)	0.0496(16)	0.0800(19)	0.095(2)	0.0043(16)	0.0042(15)
0.0065(14)	,	,			
C(27)	0.092(3)	0.097(3)	0.144(4) -	0.020(2)	0.023(2)
0.0214(19)					
C(28)	0.060(2)	0.137(3)	0.149(4)	0.007(3) -	-0.018(2) -
0.013(2)	0 075(2)	0 107(2)	0 104(2)	0 0 2 0 (2)	0.004(2)
0 0224(18)	0.075(2)	0.107(3)	0.124(3)	0.030(2) -	-0.004(2)
N(01)	0.0779(15)	0.0784(15)	0.0532(14)	0.0185(12)	0.0027(12) -
0.0096(12)					
N(02)	0.0895(19)	0.143(3)	0.083(2)	0.0400(19)	0.0326(16)
0.0064(17)					
N(03)	0.0708(17)	0.124(2)	0.0762(19)	0.0224(16)	0.0053(14)
0.0231(16)	0 0534(10)	0 0736/11)	0 0623(12)	0 0042(9)	0 0130(8) -
0.0054(9)	0.0001(10)	0.0/30(11)	0.0023(IZ)	0.0012(2)	0.0100(0) -

Figure S-71: ORTEP view of 3c.

Figure S-72: Crystal packing of 3c viewed along the [001] direction.

Computational procedures:

All theoretical calculations were performed by using the Gaussian 03⁶ program. The molecular geometries were optimized using the B3P86⁷ functional and the 6-31G^{*8} basis set. The same model chemistry (B3P86/6-31G^{*}) was used for TD-DFT calculations and the excited state dipole moments were calculated by using the one particle RhoCI density. Molecular hyperpolarizabilities at zero frequency were calculated by the Coupled Perturbed Hartree Fock method (CPHF) using the HF/6-31G^{*} model. The default Gaussian 03 parameters were used in every case.

Cartesian coordinates and energies of optimized geometries used in theoretical calculations (B3P86/6-31G*)

	Standard	orientation:			
cer Atomic Atomic Coordinates			dinates (Ang	(Angstroms)	
Number	Туре	Х	Y	Z	
6	0	-3.683246	-1.148723	0.000122	
8	0	-4.384882	-0.000086	0.000030	
б	0	-2.334582	-1.204476	0.000114	
1	0	-4.336564	-2.012052	0.000214	
б	0	-3.683624	1.148438	-0.000083	
6	0	-1.544950	0.000169	0.000005	
	Atomic Number 6 8 6 1 6 1 6	Standard Atomic Atomic Number Type 6 0 8 0 6 0 1 0 6 0 1 0 6 0 6 0	Standard orientation: Atomic Atomic Coord Number Type X 6 0 -3.683246 8 0 -4.384882 6 0 -2.334582 1 0 -4.336564 6 0 -3.683624 6 0 -1.544950	$\begin{array}{c ccccc} Standard \ orientation: \\ \hline \\ Atomic \ Atomic \\ Number \ Type \\ & X \\ & Y \\ \hline \\ 6 \\ 6 \\ 0 \\ -3.683246 \\ -1.148723 \\ 8 \\ 0 \\ -4.384882 \\ -0.000086 \\ 6 \\ 0 \\ -2.334582 \\ -1.204476 \\ 1 \\ 0 \\ -4.336564 \\ -2.012052 \\ 6 \\ 0 \\ -3.683624 \\ 1.148438 \\ 6 \\ 0 \\ -1.544950 \\ 0.000169 \\ \end{array}$	

⁶ Gaussian 03, Revision B.05, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, V. G.; Montgomery, J. A., Vreven, Jr. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 2003.

⁷ The B3P86 Functional consists of Becke's three parameter hybrid functional (Becke, A. D. *J. Chem. Phys.* **1993**, 98, 5648–5652) with the nonlocal correlation provided by the Perdew 86 expression: Perdew, J. P. *Phys. Rev. B* **1986**, *33*, 8822–8824.

⁸ Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.

7	1	0	-1.841426	-2.166658	0.000209
8	б	0	-2.334846	1.204510	-0.000101
9	1	0	-4.336772	2.011929	-0.000158
10	1	0	-1.841732	2.166742	-0.000199
11	б	0	-0.141289	0.000180	-0.000027
12	б	0	0.608464	-1.257518	0.000054
13	б	0	0.608578	1.257872	-0.000221
14	8	0	0.149964	-2.395379	-0.000226
15	8	0	0.150636	2.395876	0.000119
16	7	0	2.001913	-1.138119	0.000036
17	7	0	2.001988	1.137834	0.000023
18	б	0	2.750746	-0.000196	0.000209
19	1	0	2.505336	-2.017131	-0.000077
20	1	0	2.505658	2.016720	0.00002
21	16	0	4.407559	-0.000149	-0.000014

E(RB+HF-VWN+P86) = -1082.00911488 A.U.

1'b

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	X	Y	Z	
1	6	0	-4.776627	1.255628	0.000257	
2	8	0	-5.675364	0.244494	0.00003	
3	6	0	-3.443064	1.070425	0.000244	
4	1	0	-5.269677	2.219364	0.000471	
5	6	0	-5.189202	-1.018312	-0.000279	
6	6	0	-2.879869	-0.258259	-0.000050	
7	1	0	-2.810910	1.950278	0.000466	
8	6	0	-3.873313	-1.302977	-0.000317	
9	6	0	-1.530100	-0.568825	-0.000100	
10	1	0	-5.987675	-1.749155	-0.000467	
11	1	0	-3.563562	-2.342505	-0.000555	
12	1	0	-1.240051	-1.613806	-0.000338	
13	6	0	-0.506533	0.392785	0.000119	
14	6	0	0.856327	0.181423	0.000113	
15	1	0	-0.771935	1.449011	0.000347	
16	6	0	1.702856	1.377844	0.000404	
17	6	0	1.466252	-1.143867	-0.000212	
18	8	0	1.298739	2.530938	-0.000551	
19	8	0	0.879222	-2.217346	0.000397	
20	7	0	3.079530	1.136102	0.000108	
21	7	0	2.867186	-1.147483	0.000132	
22	6	0	3.711215	-0.074366	0.000331	
23	1	0	3.673462	1.956655	-0.000220	
24	1	0	3.301751	-2.062574	0.000096	
25	16	0	5.362072	-0.228830	-0.000208	

Standard orientation:

E(RB+HF-VWN+P86) = -1159.66495729

Standard	orientation:
Deanaara	OT TCHCUCTOH!

Center Atomic Atomic Coordinates (And			dinates (Ang	stroms)	
Number	Number	Туре	X	Y	Z
1	6	0	6.020720	1.335092	-0.000099
2	8	0	7.006945	0.406500	-0.000100
3	б	0	4.709311	1.034272	-0.000055
4	1	0	6.426807	2.338588	-0.000137
5	б	0	6.629346	-0.895838	-0.000053
б	б	0	4.260799	-0.339350	-0.000005
7	1	0	4.003604	1.856309	-0.000059
8	6	0	5.344244	-1.293244	-0.000007
9	б	0	2.943754	-0.752111	0.000042
10	1	0	7.487737	-1.555161	-0.000058
11	б	0	1.811038	0.089081	0.000054
12	1	0	5.130065	-2.356795	0.000028
13	1	0	2.759677	-1.824818	0.000074
14	6	0	0.512635	-0.363150	0.000092
15	1	0	1.962816	1.168761	0.000017
16	1	0	0.297777	-1.426612	0.000119
17	6	0	-0.564590	0.546039	0.000082
18	6	0	-1.914977	0.274235	0.000135
19	1	0	-0.325316	1.609892	0.000053
20	6	0	-2.819321	1.428802	0.000201
21	6	0	-2.461155	-1.080068	0.000288
22	8	0	-2.473271	2.599880	0.000133
23	8	0	-1.823434	-2.123535	0.000094
24	7	0	-4.183121	1.119414	-0.000079
25	7	0	-3.860482	-1.150842	-0.000045
26	б	0	-4.755223	-0.119825	-0.000453
27	1	0	-4.815915	1.910359	0.00000
28	1	0	-4.250285	-2.085883	0.000032
29	16	0	-6.397072	-0.353814	-0.000097

E(RB+HF-VWN+P86) = -1237.32247070

1'd.

 Standard orientation:

 Center
 Atomic
 Coordinates (Angstroms)

 Number
 Number
 Type
 X
 Y
 Z

 1
 6
 0
 -7.291596
 1.413973
 0.000122

 2
 8
 0
 -8.328436
 0.540754
 0.000061

 3
 6
 0
 -5.999003
 1.042492
 0.000098

 4
 1
 0
 -7.642152
 2.438227
 0.000222

 5
 6
 0
 -8.020419
 -0.781250
 -0.000053

6	6	0	-5.623975	-0.354218	-0.000023
7	1	0	-5.250116	1.825528	0.000145
8	б	0	-6.759193	-1.247467	-0.000104
9	б	0	-4.332408	-0.836113	-0.000044
10	1	0	-8.913055	-1.393383	-0.000108
11	б	0	-3.151601	-0.059697	0.000032
12	1	0	-6.603940	-2.321331	-0.000198
13	1	0	-4.209300	-1.917935	-0.000174
14	6	0	-1.881836	-0.579049	0.00003
15	1	0	-3.243179	1.026402	0.000140
16	6	0	-0.719354	0.225320	-0.000014
17	1	0	-1.752330	-1.660645	-0.000045
18	6	0	0.567095	-0.257190	0.00006
19	1	0	-0.863074	1.307560	-0.000090
20	6	0	1.666591	0.626043	-0.000092
21	1	0	0.756709	-1.325421	0.000133
22	6	0	3.009836	0.321065	-0.000044
23	1	0	1.452626	1.695187	-0.000234
24	6	0	3.942408	1.453282	-0.000322
25	6	0	3.523269	-1.046280	0.000087
26	8	0	3.625368	2.632424	-0.000118
27	8	0	2.860970	-2.074195	-0.000328
28	7	0	5.298211	1.110545	0.000046
29	7	0	4.920652	-1.150806	0.000457
30	6	0	5.840045	-0.142003	0.000839
31	1	0	5.949941	1.885948	-0.000279
32	1	0	5.287467	-2.095141	0.000148
33	16	0	7.476000	-0.415529	-0.000190

E(RB+HF-VWN+P86) = -1314.98106228

2'a.

Atomic	Atomic	Coord	linates (Ang	stroms)	
Number	Туре	Х	Y	Z	
6	0	3.635502	-1.409100	-0.031015	
8	0	3.071398	-2.621296	-0.241528	
б	0	2.930767	-0.267024	0.076086	
1	0	4.713133	-1.484469	0.038631	
б	0	1.729339	-2.665270	-0.363313	
6	0	1.490875	-0.277400	-0.021485	
1	0	3.442362	0.675159	0.235741	
6	0	0.932173	-1.582373	-0.265613	
1	0	1.382025	-3.673111	-0.553107	
1	0	-0.134383	-1.718425	-0.389424	
б	0	0.756984	0.892441	0.083051	
б	0	1.362947	2.224372	0.121178	
6	0	-0.659284	1.167469	0.021638	
8	0	2.515206	2.600016	0.191923	
7	0	-0.900830	2.447442	-0.011893	
	Atomic Number 6 8 6 1 6 1 6 1 1 6 1 1 6 6 1 1 6 8 7	Atomic Atomic Number Type 6 0 8 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 1 0 6 0 6 0 1 0 6 0 1 0 6 0 8 0 7 0	Atomic Atomic Coord Number Type X 6 0 3.635502 8 0 3.071398 6 0 2.930767 1 0 4.713133 6 0 1.729339 6 0 1.490875 1 0 3.442362 6 0 0.932173 1 0 1.382025 1 0 -0.134383 6 0 0.756984 6 0 1.362947 6 0 2.515206 7 0 -0.900830	AtomicAtomicCoordinatesNumberTypeXY60 3.635502 -1.409100 80 3.071398 -2.621296 60 2.930767 -0.267024 10 4.713133 -1.484469 60 1.729339 -2.665270 60 1.490875 -0.277400 10 3.442362 0.675159 60 0.932173 -1.582373 10 1.382025 -3.673111 10 -0.134383 -1.718425 60 0.756984 0.892441 60 -0.659284 1.167469 80 2.515206 2.600016 70 -0.900830 2.447442	

Standard orientation:

16	8	0	0.325954	3.121319	0.026908
17	б	0	-1.822577	0.259804	0.037153
18	б	0	-2.852432	0.438218	-0.892266
19	б	0	-1.948507	-0.736771	1.012952
20	б	0	-3.979347	-0.376631	-0.857034
21	б	0	-3.076831	-1.550011	1.045588
22	1	0	-2.758730	1.223034	-1.636071
23	1	0	-1.167956	-0.856959	1.759710
24	б	0	-4.092654	-1.374717	0.107853
25	1	0	-4.771587	-0.231058	-1.585794
26	1	0	-3.168250	-2.314027	1.812519
27	1	0	-4.973001	-2.010595	0.133995

E(RB+HF-VWN+P86) = -821.480667386

2'b. Z-isomer.

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	б	0	3.987902	-2.160663	-0.210667
2	8	0	5.227761	-1.617981	-0.176471
3	б	0	2.853101	-1.440882	-0.141577
4	1	0	4.034123	-3.238525	-0.301396
5	б	0	5.309021	-0.268401	-0.069302
6	б	0	2.891137	-0.001261	-0.023235
7	1	0	1.912972	-1.978206	-0.182266
8	б	0	4.231799	0.533576	0.005377
9	б	0	1.795672	0.834997	0.056198
10	1	0	6.338980	0.063987	-0.053208
11	1	0	1.969049	1.904601	0.133163
12	1	0	4.383142	1.604483	0.088803
13	б	0	0.451161	0.409181	0.042366
14	б	0	-0.633901	1.246891	0.096309
15	1	0	0.239236	-0.656531	-0.028501
16	б	0	-0.595366	2.711500	0.087283
17	6	0	-2.041887	0.939601	0.049196
18	8	0	0.321717	3.502088	0.120973
19	7	0	-2.770664	2.018198	-0.005839
20	8	0	-1.906500	3.124965	0.006355
21	б	0	-2.695308	-0.377127	0.039763
22	б	0	-3.824393	-0.587387	-0.761098
23	б	0	-2.223030	-1.424569	0.840136
24	6	0	-4.460264	-1.822957	-0.767491
25	б	0	-2.860987	-2.661300	0.828989
26	1	0	-4.190208	0.230064	-1.374205
27	1	0	-1.377556	-1.257314	1.501375
28	б	0	-3.977740	-2.865003	0.022621
29	1	0	-5.334303	-1.974977	-1.394390
30	1	0	-2.491604	-3.463643	1.461609
31	1	0	-4.474488	-3.831081	0.013827

Standard orientation:

E(RB+HF-VWN+P86) = -899.137938877

2'b. E-isomer.

Standard orientation:						
Center Atomic Atomic Coordinate					stroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	4.814992	0.532035	0.035430	
2	8	0	5.306163	-0.718324	-0.139059	
3	6	0	3.501862	0.822332	0.073914	
4	1	0	5.613135	1.256028	0.138809	
5	6	0	4.406143	-1.721030	-0.280930	
б	6	0	2.506557	-0.214847	-0.074291	
7	1	0	3.218375	1.857487	0.221226	
8	6	0	3.074834	-1.529426	-0.255734	
9	6	0	1.138239	-0.028297	-0.052763	
10	1	0	4.897638	-2.676120	-0.414888	
11	1	0	0.517056	-0.910764	-0.171953	
12	1	0	2.423633	-2.388375	-0.378907	
13	6	0	0.506221	1.225355	0.078876	
14	6	0	-0.829312	1.528846	0.096450	
15	1	0	1.134820	2.114473	0.141925	
16	6	0	-1.256796	2.932054	0.069788	
17	6	0	-2.067152	0.791255	0.003136	
18	8	0	-0.623411	3.959543	0.131828	
19	7	0	-3.090706	1.591516	-0.100834	
20	8	0	-2.626463	2.914420	-0.078735	
21	6	0	-2.319071	-0.659529	0.033812	
22	6	0	-3.240635	-1.224365	-0.854599	
23	6	0	-1.694300	-1.478079	0.982265	
24	6	0	-3.519562	-2.585787	-0.804766	
25	6	0	-1.977144	-2.839477	1.030453	
26	1	0	-3.732162	-0.582813	-1.578967	
27	1	0	-1.004512	-1.038918	1.697614	
28	6	0	-2.886461	-3.397287	0.134222	
29	1	0	-4.233547	-3.014749	-1.502085	
30	1	0	-1.494932	-3.463767	1.777592	
31	1	0	-3.105364	-4.460732	0.171618	

E(RB+HF-VWN+P86) = -899.134386648

2'c. Z-isomer.

Standard orientation:						
Center	Atomic	Atomic	Coordi	nates (Angst	croms)	
Number	Number	Туре	Х	Y	Z	

1	6	0	5.581206	-1.996106	-0.168542
2	8	0	6.777877	-1.359642	-0.145236
3	6	0	4.395060	-1.364755	-0.113484
4	1	0	5.709669	-3.068892	-0.237216
5	6	0	6.752818	-0.004636	-0.062408
б	6	0	4.320181	0.077055	-0.023456
7	1	0	3.498754	-1.972960	-0.140323
8	6	0	5.617414	0.712863	-0.003118
9	6	0	3.158718	0.816136	0.037292
10	1	0	7.753717	0.407186	-0.051277
11	1	0	3.261446	1.898035	0.098835
12	1	0	5.689704	1.793550	0.061310
13	6	0	1.841577	0.302594	0.025478
14	6	0	0.712212	1.078839	0.081540
15	1	0	1.705048	-0.777852	-0.032597
16	6	0	-0.583441	0.512019	0.062315
17	1	0	0.791412	2.161412	0.138207
18	6	0	-1.757844	1.217578	0.092730
19	1	0	-0.650981	-0.574593	0.002912
20	6	0	-1.887093	2.678083	0.070757
21	6	0	-3.121392	0.750989	0.031089
22	8	0	-1.067731	3.568424	0.108448
23	7	0	-3.967121	1.739406	-0.042061
24	8	0	-3.236221	2.937881	-0.028991
25	6	0	-3.621865	-0.631112	0.023102
26	6	0	-4.714689	-0.969734	-0.784189
27	6	0	-3.040441	-1.615877	0.830835
28	6	0	-5.208166	-2.268694	-0.788832
29	6	0	-3.535859	-2.916188	0.821429
30	1	0	-5.165286	-0.200985	-1.403826
31	1	0	-2.221987	-1.353674	1.494958
32	6	0	-4.617366	-3.246981	0.009237
33	1	0	-6.055028	-2.520144	-1.421070
34	1	0	-3.081920	-3.669824	1.458857
35	1	0	-5.002285	-4.262834	0.001239

E(RB+HF-VWN+P86) = -976.796034975

2'c. E-isomer.

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-5.942185	-1.075180	0.043686	
2	8	0	-6.744703	0.011557	-0.070343	
3	6	0	-4.598586	-1.018096	0.041707	
4	1	0	-6.523735	-1.983688	0.135267	
5	6	0	-6.134350	1.217246	-0.193700	
6	6	0	-3.905255	0.244862	-0.086080	
7	1	0	-4.055128	-1.950355	0.138648	
8	6	0	-4.798969	1.373620	-0.206148	

9	6	0	-2.536933	0.408933	-0.097220
10	1	0	-6.857919	2.017728	-0.278969
11	1	0	-2.160666	1.425184	-0.202008
12	1	0	-4.395637	2.375588	-0.309390
13	б	0	-1.575235	-0.621345	0.014592
14	б	0	-0.217672	-0.424085	-0.000390
15	1	0	-1.923886	-1.648588	0.120706
16	б	0	0.683424	-1.509655	0.099289
17	1	0	0.169881	0.585053	-0.110400
18	б	0	2.051957	-1.521982	0.089637
19	1	0	0.241469	-2.506379	0.163569
20	б	0	2.771406	-2.801287	0.043796
21	б	0	3.101766	-0.535049	-0.013376
22	8	0	2.376997	-3.941405	0.104830
23	7	0	4.271408	-1.096683	-0.138469
24	8	0	4.103193	-2.487857	-0.123194
25	6	0	3.039507	0.935780	0.025195
26	6	0	3.822115	1.686361	-0.859298
27	6	0	2.256572	1.600541	0.976219
28	6	0	3.808705	3.075571	-0.803105
29	б	0	2.246007	2.990807	1.030015
30	1	0	4.437796	1.166085	-1.586040
31	1	0	1.675516	1.024172	1.690667
32	6	0	3.018137	3.731709	0.137960
33	1	0	4.416745	3.647967	-1.497905
34	1	0	1.641612	3.495895	1.778348
35	1	0	3.007741	4.817238	0.179761

E(RB+HF-VWN+P86) = -976.792395014

2'd. Z-isomer.

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-7.031218	1.974585	-0.144547	
2	8	0	-8.215544	1.313291	-0.123771	
3	б	0	-5.832265	1.367792	-0.100311	
4	1	0	-7.182095	3.045158	-0.201206	
5	б	0	-8.160535	-0.042473	-0.054612	
б	б	0	-5.725685	-0.073639	-0.025665	
7	1	0	-4.949110	1.995217	-0.123196	
8	6	0	-7.010221	-0.736078	-0.006799	
9	6	0	-4.548749	-0.786792	0.023235	
10	1	0	-9.152279	-0.475908	-0.043813	
11	б	0	-3.240676	-0.246419	0.011404	
12	1	0	-4.630419	-1.871405	0.075476	
13	1	0	-7.060473	-1.818694	0.047121	
14	6	0	-2.093552	-0.994340	0.058352	
15	1	0	-3.126704	0.836513	-0.038720	
16	6	0	-0.795295	-0.428987	0.043488	

1	7 1	0	-2.172149	-2.079850	0.107933
1	8 6	0	0.370628	-1.148729	0.085671
1	9 1	0	-0.728535	0.659854	-0.006442
2	0 6	0	1.636721	-0.517428	0.062724
2	1 1	0	0.345631	-2.234249	0.134794
2	2 6	0	2.845305	-1.162859	0.083852
2	3 1	0	1.648218	0.571326	0.008470
2	4 б	0	3.048568	-2.615118	0.055276
2	5 6	0	4.183310	-0.627569	0.018624
2	6 8	0	2.275885	-3.546061	0.092474
2	7 7	0	5.077682	-1.571715	-0.061635
2	8 8	0	4.408862	-2.805724	-0.050534
2	9 6	0	4.613959	0.777866	0.013138
3	0 6	0	5.686039	1.172147	-0.796765
3	1 6	0	3.987148	1.730695	0.825157
3	2 6	0	6.114656	2.493888	-0.799689
3	3 6	0	4.417553	3.053956	0.817319
3	4 1	0	6.172029	0.428235	-1.419967
3	5 1	0	3.184649	1.427127	1.491074
3	6 6	0	5.478760	3.439831	0.002650
3	7 1	0	6.945907	2.788432	-1.434054
3	8 1	0	3.928525	3.782664	1.457744
3	9 1	0	5.812719	4.473572	-0.004126

E(RB+HF-VWN+P86) = -1054.45480653

2'c. E-isomer.

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-7.203776	-1.228812	0.084073	
2	8	0	-8.122899	-0.239129	-0.041344	
3	б	0	-5.874989	-1.024481	0.070248	
4	1	0	-7.681068	-2.194150	0.195238	
5	б	0	-7.648265	1.024918	-0.187853	
6	б	0	-5.324318	0.305002	-0.083488	
7	1	0	-5.231599	-1.889618	0.178421	
8	б	0	-6.338558	1.326638	-0.212497	
9	б	0	-3.983043	0.616260	-0.111027	
10	1	0	-8.455776	1.739782	-0.279857	
11	б	0	-2.909743	-0.299571	-0.000168	
12	1	0	-3.721925	1.666434	-0.232883	
13	1	0	-6.049010	2.365336	-0.333854	
14	б	0	-1.584874	0.048209	-0.035191	
15	1	0	-3.141466	-1.357827	0.119341	
16	б	0	-0.533630	-0.895044	0.070197	
17	1	0	-1.317549	1.097954	-0.153668	
18	б	0	0.803138	-0.592293	0.035695	
19	1	0	-0.816902	-1.942863	0.184215	
20	6	0	1.790128	-1.602796	0.118216	
21	1	0	1.108189	0.444224	-0.080024	

	22	б	0	3.154523	-1.500795	0.081483
	23	1	0	1.431396	-2.631946	0.186790
	24	6	0	3.980324	-2.713205	0.010985
	25	6	0	4.112922	-0.426731	-0.038402
	26	8	0	3.687671	-3.883345	0.073740
	27	7	0	5.323337	-0.884329	-0.194821
	28	8	0	5.275877	-2.284992	-0.186032
	29	6	0	3.923113	1.032522	0.017234
	30	б	0	4.603115	1.857769	-0.885032
	31	б	0	3.117418	1.615323	1.002506
	32	б	0	4.466245	3.239625	-0.812177
	33	б	0	2.984223	2.998324	1.073629
	34	1	0	5.236864	1.401280	-1.638634
	35	1	0	2.614439	0.981776	1.727680
	36	б	0	3.654347	3.813385	0.163943
	37	1	0	4.994736	3.870755	-1.521026
	38	1	0	2.363377	3.440248	1.847979
	39	1	0	3.547962	4.893160	0.218876
-						

E(RB+HF-VWN+P86) = -1054.45112774

3'a.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-4.145002	-0.053374	-0.039184
2	8	0	-4.079150	-1.144581	-0.833665
3	б	0	-3.062847	0.639923	0.361811
4	6	0	-1.735062	0.241418	-0.035747
5	6	0	-1.711967	-0.912118	-0.899698
б	б	0	-2.855233	-1.533626	-1.249026
7	б	0	-0.609536	0.960264	0.356959
8	б	0	-0.828250	2.133281	1.134901
9	7	0	-1.058494	3.050786	1.815362
10	б	0	0.771339	0.579344	0.055009
11	б	0	1.700324	1.534207	-0.298342
12	б	0	3.100347	1.266359	-0.382175
13	7	0	4.248866	1.096110	-0.460601
14	б	0	1.331096	2.872115	-0.631017
15	7	0	1.059909	3.955941	-0.955719
16	б	0	1.164943	-0.836332	0.207957
17	б	0	0.694438	-1.571215	1.306933
18	б	0	1.062541	-2.899909	1.475463
19	б	0	1.888206	-3.521166	0.540025
20	б	0	2.349998	-2.804890	-0.561892
21	б	0	1.996829	-1.470475	-0.726688
22	1	0	-5.167338	0.183105	0.226126
23	1	0	-3.204140	1.508844	0.994719
24	1	0	0.055624	-1.084283	2.037419
25	1	0	-2.914164	-2.397785	-1.898239
26	1	0	-0.781950	-1.296425	-1.297022

27	1	0	0.706385	-3.451471	2.340519
28	1	0	2.171241	-4.561700	0.669823
29	1	0	2.989534	-3.284712	-1.296578
30	1	0	2.353055	-0.921617	-1.592462

E(RB+HF-VWN+P86) = -895.089945002

3a

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z
1	б	0	3.680522	-0.507275	0.161629
2	8	0	3.740045	0.669089	-0.517094
3	б	0	2.500233	-1.098640	0.449433
4	б	0	1.247623	-0.510890	0.058639
5	б	0	1.376644	0.718955	-0.673293
6	б	0	2.589540	1.257684	-0.933147
7	б	0	0.032911	-1.141212	0.338591
8	б	0	0.098158	-2.410164	0.981715
9	7	0	0.207861	-3.417043	1.558511
10	б	0	-1.285539	-0.586707	0.044835
11	б	0	-2.306262	-1.394777	-0.412830
12	6	0	-3.665377	-0.964213	-0.487352
13	7	0	-4.785834	-0.658378	-0.563358
14	6	0	-2.080969	-2.726859	-0.871787
15	7	0	-1.927671	-3.798001	-1.299813
16	6	0	-1.535379	0.844167	0.319692
17	6	0	-1.044182	1.419034	1.501473
18	б	0	-1.281221	2.758098	1.785063
19	б	0	-1.993942	3.548559	0.885158
20	6	0	-2.474861	2.991109	-0.297444
21	6	0	-2.253199	1.647510	-0.577989
22	1	0	2.507494	-2.038999	0.988553
23	1	0	-0.492868	0.800473	2.203124
24	1	0	0.502612	1.235242	-1.046415
25	1	0	-0.911877	3.185370	2.712767
26	1	0	-2.175357	4.596511	1.105885
27	1	0	-3.028332	3.602137	-1.004197
28	1	0	-2.624102	1.221265	-1.504613
29	б	0	5.031385	-1.012933	0.518878
30	1	0	5.632115	-1.173700	-0.383123
31	1	0	5.563122	-0.284626	1.141099
32	1	0	4.955192	-1.954856	1.064269
33	б	0	2.849927	2.512618	-1.686217
34	1	0	1.911753	2.973340	-1.999472
35	1	0	3.403802	3.225144	-1.065136
36	1	0	3.459520	2.309549	-2.573638

E(RB+HF-VWN+P86) = -974.034501152 A.U.

Figure S-73: DFT Calculated Geometries of **3a** and **3'a**: Selected Bond Distances (Å) and Structural Parameters (δr and I_6 are defined in the manuscript)

3'b.

		Standard	orientation:		
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	4.598837	1.391130	-0.667927
2	8	0	5.741448	0.696474	-0.465666
3	6	0	3.368433	0.879088	-0.476901
4	б	0	3.193433	-0.482463	-0.030790
5	б	0	4.436740	-1.184578	0.171362
б	б	0	5.622365	-0.586218	-0.047307
7	б	0	1.981954	-1.108545	0.198438
8	б	0	0.719777	-0.512371	0.027516
9	б	0	-0.499459	-1.138378	0.233212
10	6	0	-0.472932	-2.492743	0.684146
11	6	0	-1.756147	-0.440640	0.035795
12	б	0	-2.945622	-1.088496	-0.234381
13	б	0	-1.747139	1.038207	0.137933
14	б	0	-1.197339	1.664166	1.266330
15	б	0	-1.207347	3.049586	1.377394
16	б	0	-1.748412	3.828881	0.356521
17	б	0	-2.284821	3.216617	-0.773440

18	б	0	-2.290378	1.830260	-0.881233
19	б	0	-4.194666	-0.397115	-0.248710
20	7	0	-5.236607	0.121729	-0.262298
21	б	0	-3.044500	-2.473527	-0.560257
22	7	0	-3.183965	-3.583288	-0.881767
23	7	0	-0.351443	-3.570645	1.106616
24	1	0	4.805880	2.400491	-0.999986
25	1	0	2.519339	1.524215	-0.668745
26	1	0	4.428074	-2.216674	0.505167
27	1	0	6.591150	-1.050991	0.082585
28	1	0	2.009603	-2.142702	0.533392
29	1	0	0.670370	0.519291	-0.308163
30	1	0	-0.783315	1.055740	2.065069
31	1	0	-0.797424	3.521124	2.265829
32	1	0	-1.754279	4.911614	0.443291
33	1	0	-2.705338	3.818442	-1.573472
34	1	0	-2.708195	1.355927	-1.763705

E(RB+HF-VWN+P86) = -972.750143755

3'c.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-6.106355	1.505053	-0.647979
2	8	0	-7.256383	0.824868	-0.427904
3	6	0	-4.880355	0.980523	-0.468279
4	б	0	-4.712490	-0.381482	-0.015899
5	б	0	-5.963096	-1.068121	0.203386
6	б	0	-7.144160	-0.458404	-0.004015
7	б	0	-3.503542	-1.011689	0.200149
8	6	0	-2.225346	-0.442037	0.021730
9	6	0	-1.045785	-1.109264	0.249197
10	6	0	0.210242	-0.499857	0.053854
11	6	0	1.442791	-1.106330	0.229814
12	6	0	2.685183	-0.390467	0.005627
13	6	0	3.874251	-1.022334	-0.302852
14	6	0	5.115502	-0.318098	-0.342072
15	7	0	6.152260	0.210207	-0.376075
16	6	0	3.979244	-2.402462	-0.647054
17	7	0	4.122499	-3.506599	-0.985907
18	6	0	2.661032	1.086467	0.123495
19	6	0	2.126398	1.693730	1.269115
20	6	0	2.123869	3.077715	1.395693
21	6	0	2.636636	3.874185	0.373580
22	6	0	3.157220	3.280556	-0.773556
23	6	0	3.175603	1.895771	-0.897098
24	6	0	1.448981	-2.462113	0.678282
25	7	0	1.361866	-3.543182	1.101063
26	1	0	-6.305835	2.514635	-0.984000
27	1	0	-4.026276	1.614239	-0.675412

28 29 30	1 1 1	0 0 0	-5.963849 -8.116042 -3.538062	-2.098587 -0.912307 -2.045314	0.542811 0.140404 0.539487
32	1	0	-1.075102	-2.143532	0.586564
33	1	0	0.217047	0.534727	-0.281488
34	1	0	1.733501	1.072065	2.068263
35	1	0	1.725145	3.534814	2.296665
36	1	0	2.631923	4.955919	0.472216
37	1	0	3.554697	3.895860	-1.575118
38	1	0	3.580118	1.436093	-1.793409

E(RB+HF-VWN+P86) = -1050.40852234

3'd.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-7.567053	1.611664	-0.627683
2	8	0	-8.723619	0.940285	-0.408434
3	6	0	-6.345414	1.075616	-0.455713
4	б	0	-6.186282	-0.291464	-0.012682
5	б	0	-7.443241	-0.968293	0.206043
6	б	0	-8.619535	-0.347613	0.006909
7	6	0	-1.248147	-0.467622	0.051985
8	6	0	-0.056381	-1.118409	0.259822
9	6	0	1.188177	-0.488339	0.056116
10	6	0	2.431680	-1.078569	0.211444
11	6	0	3.660743	-0.342844	-0.019824
12	6	0	4.855914	-0.954146	-0.346828
13	6	0	6.085876	-0.230880	-0.393069
14	7	0	7.114269	0.313126	-0.434179
15	6	0	4.978554	-2.329176	-0.705047
16	7	0	5.136239	-3.427850	-1.055168
17	6	0	3.616724	1.132535	0.111225
18	6	0	3.086983	1.722078	1.268272
19	6	0	3.065694	3.104728	1.406820
20	6	0	3.554626	3.917270	0.385695
21	6	0	4.070321	3.341151	-0.772486
22	6	0	4.107513	1.957888	-0.908191
23	6	0	2.463411	-2.438681	0.645625
24	7	0	2.398218	-3.524978	1.058856
25	1	0	-7.758678	2.625257	-0.956183
26	1	0	-5.486670	1.703545	-0.661459
27	1	0	-7.452329	-2.000961	0.538903
28	1	0	-9.594573	-0.794526	0.151914
29	1	0	-1.216628	0.571826	-0.279192
30	1	0	-0.066217	-2.156159	0.587504
31	1	0	1.175210	0.549313	-0.269091
32	1	0	2.712254	1.087922	2.066318
33	1	0	2.670447	3.548264	2.316054

Standard orientation:

34 35 36 37 38 39 40	1 1 6 1 6 1	0 0 0 0 0 0	3.534826 4.448955 4.507995 -2.522972 -2.565999 -3.697244 -3.621153	4.997955 3.969040 1.511822 -1.048388 -2.085809 -0.372039 0.663523	0.493559 -1.573417 -1.813170 0.235392 0.565273 0.017701 -0.313793
38	l	0	-2.565999	-2.085809	0.565273
39	6	0	-3.697244	-0.372039	0.017701
40	1	0	-3.621153	0.663523	-0.313793
41	6	0	-4.982335	-0.931212	0.195059
42	1	0	-5.025237	-1.966888	0.528182

E(RB+HF-VWN+P86) = -1128.06746638

4'a.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
1	6	0	-2.977653	-1.577400	0.624870	
2	8	0	-3.995481	-0.698006	0.509248	
3	б	0	-1.696899	-1.286356	0.326550	
4	1	0	-3.323157	-2.535643	0.991417	
5	б	0	-3.689932	0.551221	0.090503	
6	б	0	-1.330863	0.029414	-0.140232	
7	1	0	-0.947086	-2.056460	0.457687	
8	б	0	-2.443112	0.945780	-0.225029	
9	1	0	-4.569950	1.179673	0.044784	
10	1	0	-2.281954	1.968966	-0.545412	
11	б	0	-0.036875	0.428730	-0.438735	
12	б	0	1.125690	-0.468768	-0.423821	
13	б	0	2.318506	-0.132120	0.193919	
14	б	0	3.425678	-1.010981	0.050438	
15	7	0	4.274228	-1.792142	-0.118002	
16	б	0	2.450778	1.006877	1.030889	
17	7	0	2.579956	1.921647	1.738905	
18	б	0	0.187948	1.784076	-0.802849	
19	7	0	0.309974	2.892849	-1.139638	
20	7	0	0.975299	-1.677159	-1.030197	
21	1	0	0.317470	-1.738698	-1.794153	
22	1	0	1.792729	-2.272982	-1.104816	

E(RB+HF-VWN+P86) = -718.827734827

4'b.

Standard orientation:						
Center Number	Atomic Number	Atomic Type	Coord X	linates (Angs Y	stroms) Z	
1	б	0	-4.369256	-1.512414	0.520516	

0	0	0	F 402672	0 651010	0 204516
2	8	U	-5.403673	-0.651913	0.384516
3	6	0	-3.081938	-1.172075	0.323254
4	1	0	-4.712835	-2.497777	0.808698
5	6	0	-5.107626	0.623466	0.035446
6	6	0	-2.719365	0.173569	-0.056201
7	1	0	-2.331149	-1.939573	0.469275
8	6	0	-3.852962	1.057599	-0.182206
9	6	0	-1.437073	0.631191	-0.285035
10	1	0	-6.001162	1.229403	-0.041029
11	1	0	-3.701860	2.096068	-0.456861
12	1	0	-1.318771	1.680482	-0.544877
13	б	0	-0.267017	-0.150125	-0.200221
14	б	0	1.020944	0.318889	-0.360279
15	1	0	-0.357793	-1.207554	0.037766
16	б	0	2.164131	-0.587837	-0.306194
17	б	0	3.411509	-0.230277	0.187032
18	6	0	4.471233	-1.169846	0.077259
19	7	0	5.282283	-1.997681	-0.050449
20	6	0	3.657213	0.976422	0.892390
21	7	0	3.894485	1.942409	1.497359
22	6	0	1.228098	1.701629	-0.629751
23	7	0	1.311900	2.831342	-0.898190
24	7	0	1.932643	-1.863617	-0.725505
25	1	0	1.276953	-1.991174	-1.483063
26	1	0	2.719484	-2.502890	-0.724611

E(RB+HF-VWN+P86) = -796.486607933

4'c.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-5.665549	-1.543400	0.475046
2	8	0	-6.733280	-0.718178	0.361808
3	6	0	-4.391357	-1.146866	0.303683
4	1	0	-5.973532	-2.551960	0.719905
5	б	0	-6.481573	0.579956	0.059842
б	б	0	-4.075613	0.225771	-0.021120
7	1	0	-3.612566	-1.891073	0.420195
8	б	0	-5.242898	1.068677	-0.129370
9	б	0	-2.807288	0.731983	-0.215897
10	1	0	-7.396815	1.153964	-0.005714
11	6	0	-1.599904	0.004100	-0.133958
12	1	0	-5.131544	2.121278	-0.367432
13	1	0	-2.727469	1.791583	-0.451606
14	1	0	-1.649014	-1.059312	0.100930
15	6	0	-0.355232	0.548258	-0.328158
16	6	0	0.826292	-0.219716	-0.229723
17	1	0	-0.264454	1.608285	-0.557174
18	6	0	2.114758	0.256268	-0.352877

Standard orientation:

19	1	0	0.716714	-1.279130	-0.002161
20	б	0	3.261811	-0.644687	-0.280263
21	б	0	4.498560	-0.282082	0.237273
22	б	0	5.563770	-1.217079	0.144994
23	7	0	6.380435	-2.041354	0.029907
24	6	0	4.727007	0.922562	0.951519
25	7	0	4.952323	1.885885	1.565355
26	б	0	2.321194	1.642452	-0.606066
27	7	0	2.408230	2.774603	-0.862826
28	7	0	3.046908	-1.918523	-0.709357
29	1	0	2.390916	-2.053812	-1.464872
30	1	0	3.834860	-2.555846	-0.697638

E(RB+HF-VWN+P86) = -874.145305599

4'd.

Center	Atomic Number	Atomic Type	Coordinates (Angstroms)		
Number			X	Y	Z
1	6	0	-6.948265	-1.595659	0.455923
2	8	0	-8.042419	-0.803340	0.347033
3	6	0	-5.686361	-1.155492	0.304360
4	1	0	-7.225620	-2.618024	0.679238
5	6	0	-7.828411	0.508044	0.069613
6	6	0	-5.410730	0.232545	0.006358
7	1	0	-4.885107	-1.876589	0.414071
8	6	0	-6.604536	1.038915	-0.098918
9	б	0	-4.157504	0.779742	-0.168237
10	1	0	-8.760777	1.053873	0.004618
11	б	0	-2.926685	0.089338	-0.087787
12	1	0	-6.525577	2.098559	-0.318410
13	1	0	-4.109866	1.844999	-0.388205
14	б	0	-1.697949	0.672185	-0.265505
15	1	0	-2.943127	-0.978215	0.131692
16	б	0	-0.481523	-0.043940	-0.175924
17	1	0	-1.645882	1.738282	-0.483443
18	6	0	0.764834	0.504335	-0.341568
19	1	0	-0.549379	-1.110970	0.044226
20	б	0	1.945732	-0.263923	-0.235513
21	1	0	0.857968	1.567507	-0.554480
22	6	0	3.235574	0.214566	-0.334172
23	1	0	1.832868	-1.326122	-0.023491
24	6	0	4.382237	-0.686403	-0.259444
25	6	0	5.613924	-0.328804	0.274200
26	6	0	6.680561	-1.262000	0.181345
27	7	0	7.498966	-2.084360	0.064514
28	6	0	5.835351	0.867591	1.004213
29	7	0	6.055148	1.823350	1.631771
30	6	0	3.444944	1.604034	-0.566161
31	7	0	3.536175	2.739456	-0.806522
32	7	0	4.173100	-1.955479	-0.704387
33	1	0	3.522178	-2.084784	-1.465248
----	---	---	----------	-----------	-----------
34	1	0	4.960779	-2.592995	-0.691156

E(RB+HF-VWN+P86) = -951.804328903

5'a. s-cis.

Standard orientation:						
Center Number	Atomic Number	Atomic Type	Coorc X	dinates (Ang: Y	stroms) Z	
1	 6	0	-3.796435	-1.545327	0.775532	
2	6	0	-2.627811	-0.905190	0.572938	
3	6	0	-2.594335	0.382227	-0.073252	
4	6	0	-3.903133	0.892177	-0.401870	
5	6	0	-5.016294	0.171508	-0.168113	
6	1	0	-3.895494	-2.512176	1.251593	
7	1	0	-1.726996	-1.388507	0.921820	
8	1	0	-4.006127	1.865771	-0.869227	
9	1	0	-6.024242	0.481369	-0.412328	
10	6	0	-1.473819	1.157789	-0.316993	
11	1	0	-1.681845	2.182587	-0.619447	
12	8	0	-4.997995	-1.051325	0.404308	
13	6	0	-0.099329	0.853669	-0.179383	
14	6	0	0.902706	1.978814	0.012692	
15	6	0	0.619560	-0.328777	-0.227107	
16	8	0	2.175916	1.296863	0.120759	
17	б	0	2.015606	-0.023438	-0.013144	
18	6	0	0.117287	-1.595143	-0.604557	
19	7	0	-0.357523	-2.602652	-0.944531	
20	б	0	0.682910	2.736246	1.316753	
21	1	0	1.484366	3.465822	1.462295	
22	1	0	-0.274791	3.264183	1.289875	
23	1	0	0.676860	2.047151	2.165527	
24	6	0	0.994397	2.909848	-1.191948	
25	1	0	0.074641	3.490974	-1.306061	
26	1	0	1.825629	3.605866	-1.048716	
27	1	0	1.167702	2.340088	-2.108731	
28	б	0	3.119129	-0.841894	0.068065	
29	б	0	4.403787	-0.264247	0.264327	
30	7	0	5.457386	0.203708	0.424710	
31	б	0	3.030436	-2.257023	-0.002882	
32	7	0	3.001416	-3.420324	-0.039248	

E(RB+HF-VWN+P86) = -933.488652484

5'a. s-trans.

	Standard orientation:							
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)			
Number	Number	Туре	Х	Y	Z			
1	6	0	-4.595650	-1.065832	-0.000324			
2	6	0	-3.259605	-0.887233	-0.000069			
3	б	0	-2.679542	0.435742	0.000096			
4	б	0	-3.683329	1.478741	-0.000041			
5	б	0	-4.999307	1.203274	-0.000317			
б	1	0	-5.085101	-2.031642	-0.000441			
7	1	0	-2.649935	-1.778179	0.000031			
8	1	0	-3.375285	2.518979	0.000051			
9	1	0	-5.792603	1.939272	-0.000472			
10	б	0	-1.351064	0.818299	0.000423			
11	1	0	-1.211611	1.897842	0.000604			
12	8	0	-5.493187	-0.059548	-0.000459			
13	6	0	-0.115029	0.125756	0.000275			
14	6	0	0.203911	-1.359040	0.000260			
15	6	0	1.099292	0.796357	0.000218			
16	8	0	1.658716	-1.397803	0.000335			
17	б	0	2.169779	-0.161954	0.000146			
18	6	0	1.217444	2.206217	0.000213			
19	7	0	1.202266	3.370124	0.000312			
20	6	0	-0.211751	-2.073060	-1.283539			
21	1	0	0.158913	-3.101573	-1.260899			
22	1	0	-1.294944	-2.092844	-1.416116			
23	1	0	0.225056	-1.565193	-2.147376			
24	6	0	-0.211886	-2.073035	1.284040			
25	1	0	-1.295100	-2.092850	1.416448			
26	1	0	0.158801	-3.101545	1.261504			
27	1	0	0.224780	-1.565120	2.147917			
28	6	0	3.536608	0.000154	-0.000133			
29	6	0	4.376464	-1.146948	-0.000348			
30	7	0	5.065883	-2.084828	-0.000464			
31	6	0	4.151336	1.279672	-0.000292			
32	7	0	4.692820	2.310275	-0.000408			

E(RB+HF-VWN+P86) = -933.484890956

5'b. *s-cis*.

		Standard o	rientation:		
Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	5.138824	1.732476	-0.000208
2	6	0	3.985361	1.038035	-0.000159
3	6	0	3.993789	-0.405987	0.000034
4	6	0	5.317394	-0.975840	0.000142

5	6	0	6.414714	-0.195121	0.000081
б	1	0	5.211633	2.812398	-0.000350
7	1	0	3.059785	1.603165	-0.000281
8	1	0	5.446903	-2.052963	0.000278
9	1	0	7.436286	-0.553130	0.000158
10	8	0	6.364096	1.155846	-0.000087
11	6	0	-0.915034	-1.009714	0.000016
12	6	0	-2.093188	-1.961534	0.000133
13	б	0	-1.429946	0.278419	-0.000140
14	8	0	-3.249192	-1.086757	-0.000071
15	б	0	-2.868064	0.195462	-0.000152
16	б	0	-0.660959	1.464194	-0.000387
17	7	0	0.065751	2.375004	-0.000665
18	б	0	-2.166515	-2.805306	1.267774
19	1	0	-3.092143	-3.387679	1.268535
20	1	0	-1.319409	-3.495709	1.317983
21	1	0	-2.151245	-2.167449	2.155437
22	б	0	-2.166435	-2.805779	-1.267192
23	1	0	-1.319380	-3.496270	-1.317045
24	1	0	-3.092107	-3.388081	-1.267825
25	1	0	-2.151025	-2.168265	-2.155099
26	б	0	-3.833233	1.178812	-0.000183
27	б	0	-5.206634	0.812284	-0.000436
28	7	0	-6.332898	0.517703	-0.000677
29	б	0	-3.511074	2.560796	0.000069
30	7	0	-3.283623	3.702863	0.001544
31	б	0	2.864982	-1.208092	0.000106
32	б	0	1.547479	-0.717431	0.000039
33	1	0	3.014260	-2.286524	0.000225
34	1	0	1.416012	0.358973	-0.000051
35	б	0	0.412577	-1.496004	0.000080
36	1	0	0.532362	-2.578197	0.000170

E(RB+HF-VWN+P86) = -1011.15484319

5'b. s-trans.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	5.786083	-1.317600	0.001234
2	6	0	4.502899	-0.912294	0.000704
3	6	0	4.165901	0.493036	-0.000087
4	б	0	5.322718	1.356721	-0.000261
5	6	0	6.571605	0.856868	0.000310
6	1	0	6.110042	-2.350604	0.001814
7	1	0	3.735142	-1.676853	0.000865
8	1	0	5.195352	2.434106	-0.000914
9	1	0	7.480442	1.444577	0.000187
10	8	0	6.842486	-0.471851	0.001135
11	6	0	-0.806085	0.186283	-0.000567
12	6	0	-1.063323	-1.306700	0.000169

	13	6	0	-2.035852	0.818629	-0.001223
	14	8	0	-2.514804	-1.398700	-0.000059
	15	6	0	-3.070509	-0.181001	-0.000706
	16	б	0	-2.194895	2.224498	-0.002744
	17	7	0	-2.215823	3.388193	-0.004022
	18	б	0	-0.593335	-2.005488	1.272312
	19	1	0	-0.957243	-3.036706	1.274345
	20	1	0	0.497785	-2.018479	1.334934
	21	1	0	-0.983972	-1.494384	2.156065
	22	6	0	-0.592911	-2.006602	-1.271279
	23	1	0	0.498238	-2.020302	-1.333128
	24	1	0	-0.957460	-3.037593	-1.272851
	25	1	0	-0.982690	-1.495801	-2.155575
	26	б	0	-4.442446	-0.068304	-0.000659
	27	б	0	-5.241636	-1.243991	-0.001399
	28	7	0	-5.898626	-2.204923	-0.001993
	29	б	0	-5.101546	1.188922	0.000639
	30	7	0	-5.677189	2.200849	0.009009
	31	б	0	2.887800	1.013157	-0.000611
	32	б	0	1.686287	0.270651	-0.000482
	33	1	0	2.794696	2.097601	-0.001124
	34	1	0	1.759246	-0.814246	0.000032
	35	б	0	0.442575	0.850824	-0.000830
	36	1	0	0.390450	1.938600	-0.001328
-						

E(RB+HF-VWN+P86) = -1011.15097383

5'c. *s-cis*.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	б	0	6.687896	1.829079	-0.000043
2	б	0	5.512532	1.174005	-0.000033
3	б	0	5.465900	-0.270167	0.000006
4	6	0	6.771922	-0.883887	0.000029
5	6	0	7.895162	-0.143084	0.000016
6	1	0	6.797569	2.905996	-0.000071
7	1	0	4.606065	1.767443	-0.000055
8	1	0	6.864232	-1.964934	0.000058
9	1	0	8.903439	-0.536720	0.000033
10	8	0	7.893979	1.212064	-0.000019
11	6	0	-1.914163	-0.960922	0.00004
12	6	0	-3.109958	-1.890638	0.000091
13	6	0	-2.402950	0.335812	-0.000086
14	8	0	-4.248932	-0.994154	-0.000005
15	6	0	-3.842823	0.280433	-0.000071
16	6	0	-1.617423	1.510888	-0.000263
17	7	0	-0.896167	2.425494	-0.000424
18	6	0	-3.200249	-2.733294	1.267558
19	1	0	-4.137303	-3.297130	1.267891
20	1	0	-2.367140	-3.440506	1.318000

21	1	0	-3.172475	-2.096084	2.155385
22	б	0	-3.200244	-2.733558	-1.267199
23	1	0	-2.367165	-3.440816	-1.317467
24	1	0	-4.137321	-3.297356	-1.267429
25	1	0	-3.172426	-2.096543	-2.155164
26	б	0	-4.790407	1.280913	-0.000094
27	б	0	-6.169749	0.936899	-0.000241
28	7	0	-7.300873	0.661441	-0.000384
29	б	0	-4.449678	2.658555	0.000029
30	7	0	-4.214934	3.799094	0.000853
31	б	0	4.314333	-1.032664	0.000021
32	б	0	0.567698	-0.746866	-0.000002
33	1	0	4.437060	-2.114498	0.000051
34	1	0	0.508882	0.339018	-0.000036
35	6	0	-0.597406	-1.477695	0.000020
36	1	0	-0.510345	-2.563217	0.000060
37	б	0	2.995331	-0.533608	0.00002
38	6	0	1.861393	-1.310254	0.000020
39	1	0	2.848399	0.545878	-0.000030
40	1	0	1.959265	-2.395705	0.000051

E(RB+HF-VWN+P86) = -1088.81208315

5'c. s-trans.

Standard orientation:							
Center Atomic Atomic Coordinates (Angstron							
Number	Number	Туре	Х	Y	Z		
1	6	0	7.180003	-1.462715	0.001041		
2	б	0	5.916873	-0.999862	0.000587		
3	б	0	5.642920	0.419691	0.000045		
4	б	0	6.838282	1.229915	0.000120		
5	6	0	8.063234	0.674506	0.000602		
б	1	0	7.456884	-2.509308	0.001621		
7	1	0	5.114295	-1.727777	0.000667		
8	1	0	6.760250	2.312082	-0.000128		
9	1	0	8.997415	1.221071	0.000823		
10	8	0	8.275189	-0.665602	0.000990		
11	6	0	-1.785857	0.145543	-0.000790		
12	6	0	-2.059342	-1.344412	0.000205		
13	6	0	-3.008764	0.791757	-0.001179		
14	8	0	-3.512245	-1.420030	-0.000092		
15	6	0	-4.054110	-0.196455	-0.000645		
16	6	0	-3.152981	2.199161	-0.002751		
17	7	0	-3.163057	3.363025	-0.003427		
18	6	0	-1.596557	-2.048046	1.272133		
19	1	0	-1.972456	-3.074959	1.274485		
20	1	0	-0.505679	-2.073565	1.333040		
21	1	0	-1.980802	-1.532296	2.156033		
22	6	0	-1.596146	-2.049565	-1.270904		
23	1	0	-0.505233	-2.077344	-1.330169		
24	1	0	-1.973918	-3.075801	-1.273045		

2	5 1	0	-1.978165	-1.533688	-2.155662
2	5 6	0	-5.425077	-0.068628	-0.000480
2	7 6	0	-6.237245	-1.235306	-0.001053
2	3 7	0	-6.905419	-2.188540	-0.001462
2	9 6	0	-6.070925	1.195371	0.000492
3) 7	0	-6.636709	2.212891	0.008799
3	1 6	0	4.388632	0.993630	-0.000479
3	2 6	0	0.706511	0.199498	-0.000747
3	3 1	0	4.343619	2.081386	-0.000941
3	4 1	0	0.781735	-0.886775	-0.000291
3	5 6	0	-0.529381	0.795073	-0.001159
3	5 1	0	-0.568008	1.883390	-0.001737
3	7 6	0	3.155643	0.304375	-0.000444
3	3 6	0	1.926773	0.914734	-0.000901
3	9 1	0	3.170147	-0.785623	-0.000012
4) 1	0	1.877738	2.003034	-0.001376

E(RB+HF-VWN+P86) = -1088.81035655

5'd. s-cis.

Standard Orientation.							
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z		
1	6	0	8.124883	1.931624	-0.000185		
2	6	0	6.946482	1.282917	-0.000099		
3	6	0	6.890466	-0.161844	-0.000048		
4	6	0	8.194570	-0.781769	-0.000099		
5	6	0	9.321508	-0.047606	-0.000186		
6	1	0	8.240063	3.008021	-0.000227		
7	1	0	6.043026	1.881002	-0.000069		
8	1	0	8.281320	-1.863345	-0.000069		
9	1	0	10.327520	-0.446937	-0.000228		
10	8	0	9.328912	1.309039	-0.000231		
11	6	0	-2.944560	-0.925684	0.000088		
12	6	0	-4.165298	-1.822329	-0.000007		
13	6	0	-3.397611	0.384072	0.000015		
14	8	0	-5.279290	-0.894825	-0.000166		
15	б	0	-4.838222	0.368161	-0.000126		
16	6	0	-2.580867	1.537605	0.000005		
17	7	0	-1.837794	2.434523	-0.000018		
18	б	0	-4.279325	-2.662425	1.267306		
19	1	0	-5.231558	-3.200258	1.267092		
20	1	0	-3.466005	-3.392291	1.318127		
21	1	0	-4.234407	-2.026430	2.155301		
22	6	0	-4.279056	-2.662534	-1.267271		
23	1	0	-3.465762	-3.392446	-1.317827		
24	1	0	-5.231316	-3.200319	-1.267233		
25	1	0	-4.233895	-2.026626	-2.155316		
26	6	0	-5.758699	1.393868	-0.000192		
27	6	0	-7.146677	1.086588	-0.000485		
28	7	0	-8.284775	0.841392	-0.000744		

29	6	0	-5.382353	2.762185	0.000037
30	7	0	-5.119553	3.896593	0.000880
31	6	0	5.735967	-0.917091	0.000043
32	6	0	-0.455897	-0.782374	0.000379
33	1	0	5.854009	-1.999573	0.000074
34	1	0	-0.479326	0.304865	0.000235
35	6	0	-1.642588	-1.478045	0.000234
36	1	0	-1.585991	-2.565647	0.000213
37	6	0	4.415275	-0.416861	0.000103
38	6	0	3.285582	-1.196968	0.000193
39	1	0	4.269267	0.663023	0.000071
40	1	0	3.393362	-2.281408	0.000227
41	6	0	1.980065	-0.657306	0.000239
42	6	0	0.817968	-1.389959	0.000296
43	1	0	1.891989	0.430109	0.000273
44	1	0	0.875914	-2.478353	0.000278

E(RB+HF-VWN+P86) = -1166.47084124

5'd. s-trans.

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z	
1	6	0	-8.560749	-1.586823	-0.000225	
2	6	0	-7.311921	-1.087344	-0.000134	
3	6	0	-7.078663	0.339953	0.000058	
4	6	0	-8.297900	1.114598	0.000137	
5	6	0	-9.506029	0.524148	0.000035	
6	1	0	-8.806815	-2.641087	-0.000369	
7	1	0	-6.488229	-1.791340	-0.000209	
8	1	0	-8.251652	2.198648	0.000283	
9	1	0	-10.455557	1.043615	0.000086	
10	8	0	-9.679889	-0.822133	-0.000148	
11	6	0	2.805748	0.118302	-0.000106	
12	6	0	3.080989	-1.371377	-0.000018	
13	6	0	4.028295	0.766014	-0.000144	
14	8	0	4.534240	-1.445137	0.000031	
15	6	0	5.074464	-0.220935	-0.000037	
16	6	0	4.171401	2.173446	-0.000220	
17	7	0	4.181849	3.337341	-0.000204	
18	6	0	2.619017	-2.076521	-1.271468	
19	1	0	2.996633	-3.102819	-1.273278	
20	1	0	1.528189	-2.104068	-1.331930	
21	1	0	3.002088	-1.560624	-2.155778	
22	6	0	2.618896	-2.076328	1.271494	
23	1	0	1.528060	-2.103648	1.331959	
24	1	0	2.996319	-3.102697	1.273410	
25	1	0	3.002064	-1.560411	2.155751	
26	б	0	6.445547	-0.091625	0.000011	
27	б	0	7.258969	-1.257349	0.000102	
28	7	0	7.928622	-2.209599	0.000208	

29	6	0	7.090470	1.172791	-0.000034
30	7	0	7.657780	2.189530	0.000049
31	6	0	-5.841792	0.949049	0.000159
32	6	0	0.313514	0.168092	-0.000007
33	1	0	-5.828594	2.037867	0.000300
34	1	0	0.239472	-0.918146	0.000109
35	6	0	1.548697	0.765905	-0.000101
36	1	0	1.585443	1.854307	-0.000152
37	б	0	-4.587975	0.296668	0.000097
38	б	0	-3.378097	0.943348	0.000200
39	1	0	-4.568837	-0.793158	-0.000038
40	1	0	-3.364890	2.032968	0.000336
41	б	0	-2.135263	0.268402	0.000144
42	б	0	-0.907924	0.881108	0.000038
43	1	0	-2.163546	-0.822774	0.000192
44	1	0	-0.860892	1.969497	-0.000010

E(RB+HF-VWN+P86) = -1166.46963151

Figure S-74: Contour plots and energies calculated for the frontier orbitals of compounds **3'** using the B3P86/6-31G* model chemistry.

Figure S-75: DSC curves of compound 3b.

3b

Figure S-76: DSC curves of compound 3c.

5

Figure S-77: DSC curve of compound 3d.

