Supporting Information

Rhodium-Catalyzed Highly Enantioselective Direct Intermolecular Hydroacylation of 1,1-Disubstituted Alkenes with Unfunctionalized Aldehydes

Yu Shibata and Ken Tanaka*
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

I. General

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (No. 27,099-7) and $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(\mathrm{No} .28,450-5)$ were obtained from Aldrich and used as received. Solvents for the synthesis of substrates were dried over Molecular Sieves 4A (Wako) prior to use. Aldehydes were purified by distillation prior to use for catalysis. Aldehyde $\mathbf{1 h}^{1}$, amides $\mathbf{2 a},{ }^{2} \mathbf{2 b},{ }^{2}$ $\mathbf{2 c},{ }^{3}$ and $\mathbf{2 d} \mathbf{d}^{4}$ were already reported. All other reagents were obtained from commercial sources and used as received. All reactions were carried out under an atmosphere of argon or nitrogen in oven-dried glassware with magnetic stirring.

II. Synthesis of acrylamide

Cyclopent-1-enecarboxylic acid diphenylamide (2e)

To a stirred solution of 1-cyclopentenecarboxylic acid ($1.00 \mathrm{~g}, 8.92 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added thionyl chloride ($1.1 \mathrm{~mL}, 14 \mathrm{mmol}$) at room temperature, and the mixture was refluxed $\left(40^{\circ} \mathrm{C}\right)$ for 1 hour, which furnished the corresponding crude acid chloride. The resulting mixture was added to a mixture of diphenylamine ($1.51 \mathrm{~g}, 8.92 \mathrm{mmol}$), pyridine $(5 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was refluxed $\left(40{ }^{\circ} \mathrm{C}\right)$ for 2 hours. After cooling to room temperature, the reaction was quenched with aqueous 1 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by a silica gel column chromatography (hexane/EtOAc $=10: 1$) to give $(2 e, 1.52 \mathrm{~g}, 5.77 \mathrm{mmol}, 65 \%$ yield) as a pale yellow solid.
Mp 79.0-80.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1654, 1592, 1491, 1352, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.39-7.07 (m, 10H), 6.08-5.99 (m, 1H), 2.32-2.16 (m, 4H), 1.73 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 168.1,143.3,140.0,139.9,128.8,127.1,126.3,33.0,32.9,23.2$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$286.1202, found 286.1197.

III. Rhodium-Catalyzed Enantioselective Intermolecular Hydroacylations

Representative procedure for $\mathbf{R h}$-catalyzed enantioselective intermolecular hydroacylation (Table 2, entry 1): (R, R)-QuinoxP* ($8.4 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\left[\mathrm{Rh}(\mathrm{nbd})_{2}\right] \mathrm{BF}_{4}(9.3 \mathrm{mg}, 0.025 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and the mixture was stirred at room temperature for $5 \mathrm{~min} . \mathrm{H}_{2}$ was
introduced to the resulting solution in a Schlenk tube. After stirring at room temperature for 0.5 h , the resulting mixture was concentrated to dryness. To the residue was added a solution of 1a (73.8 mg , $0.550 \mathrm{mmol})$ and $\mathbf{2 a}(118.7 \mathrm{mg}, 0.500 \mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(1.0 \mathrm{~mL})$ at room temperature. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 16 h . The resulting solution was concentrated and purified by a preparative TLC (hexane/EtOAc $=3: 1$), which furnished (+)-3aa ($160.9 \mathrm{mg}, 0.433 \mathrm{mmol}, 87 \%$ yield, 98% ee) as a colorless solid.

(+)-2-Methyl-4-oxo-6-phenylhexanoic acid diphenylamide [(+)-3aa, Table 2, entry 1]

Mp 80.5-82.0 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+149.0^{\circ}$ (c 8.07, $\mathrm{CHCl}_{3}, 98 \%$ ee); IR (neat) $1703,1666,1492,1393,1293$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.79-6.91(\mathrm{~m}, 15 \mathrm{H}), 3.23-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.58(\mathrm{~m}, 4 \mathrm{H})$, $2.35-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.7,176.0,142.9,140.9$, $128.9,128.4,128.2,126.6,125.9,46.9,44.1,32.9,29.5,17.5$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$394.1778, found 394.1775; CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 11.0 min (minor isomer) and 15.9 min (major isomer).

(+)-2-Methyl-4-oxo-6-phenylhexanoic acid methylphenylamide [(+)-3ab, Table 2, entry 2]

Reaction time: 24 h ; Colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}+97.6^{\circ}\left(c 5.38, \mathrm{CHCl}_{3}, 96 \%\right.$ ee $)$; IR (neat) $1713,1654,1596$, $1496,1393 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.53-7.08(\mathrm{~m}, 10 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=17.6$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.55(\mathrm{~m}, 5 \mathrm{H}), 2.22(\mathrm{dd}, J=17.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.6,175.5,143.8,140.8,129.4,128.2,128.0,127.5,125.8,46.7,44.0,37.4,31.8$, 29.4, 17.5; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 332.1621$, found 332.1626; CHIRALPAK AS-H, hexane $/ i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 9.9 min (minor isomer) and 11.3 min (major isomer).

(+)-2-Methyl-4-oxo-6-phenylhexanoic acid dibenzylamide [(+)-3ac, Table 2, entry 3]

Reaction time: 16 h ; Colorless oil; $[\alpha]_{\mathrm{D}}^{25}+5.6^{\circ}\left(c 7.80, \mathrm{CHCl}_{3}, 97 \%\right.$ ee); IR (neat) 1713, 1640, 1454, $752,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.46-7.05(\mathrm{~m}, 15 \mathrm{H}), 4.69(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J$ $=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=$ $17.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.62(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{dd}, J=17.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.6,176.0,140.8,137.2,136.5,128.7$, 128.4, 128.3, 128.1, 127.7, 127.4, $127.0,126.8,125.9,49.7,47.8,46.9,44.2,31.3,29.5,17.7$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 422.2091$, found 422.2082; CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 8.1 min (minor isomer) and 9.5 min (major isomer).
A small amount of starting material 2c ($3 \mathrm{wt} \%$) could not be separated by a preparative TLC. The yield of 3ac (73%) was calculated by removal of the contaminated $\mathbf{2 c}$.

(+)-4-Oxo-2,6-diphenylhexanoic acid diphenylamide [(+)-3ad, Table 2, entry 4]

Reaction time: 72 h ; Pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}+172.1^{\circ}$ (c $8.99, \mathrm{CHCl}_{3}, 99 \%$ ee); IR (neat) 1713,1668 , $1595,1492,1371 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.42-7.04(\mathrm{~m}, 18 \mathrm{H}), 7.00-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.24$ (dd, $J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (dd, $J=17.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00-2.56$ (m, 4H), 2.43 (dd, $J=17.8,3.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.3,172.4,142.8,142.0,140.8,138.5,129.4,129.1,128.7$, $128.5,128.3,128.1,127.7,127.0$, 126.3, 125.9, 48.0, 45.4, 44.0, 29.4; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$456.1934, found 456.1934; CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0$ $\mathrm{mL} / \mathrm{min}$, retention times: 12.4 min (major isomer) and 14.0 min (minor isomer).

(+)-2-Methyl-4-oxoheptanoic acid diphenylamide [(+)-3ba, Table 2, entry 5]

Reaction time: 24 h ; Pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}+158.2^{\circ}$ (c 6.19, $\mathrm{CHCl}_{3}, 98 \%$ ee); IR (neat) 1710, 1669 , 1492, 1396, $1270 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.84-6.84(\mathrm{~m}, 10 \mathrm{H}), 3.23-2.98(\mathrm{~m}, 2 \mathrm{H})$, $2.49-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.60$ (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 209.9,176.1,142.9,129.5,129.0,127.7,126.6,126.0,46.8,44.6,32.9,17.5$, 17.1, 13.7; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 332.1621$, found 332.1627; CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 5.0 min (minor isomer) and 6.0 min (major isomer).

(+)-2-Methyl-4-oxoundecanoic acid diphenylamide [(+)-3ca, Table 2, entry 6]

Reaction time: 24 h; Pale yellow oil; $[\alpha]^{25}+141.3^{\circ}$ (c 7.12, $\mathrm{CHCl}_{3}, 98 \%$ ee); IR (neat) 1712, 1668, 1492, 1395, $1267 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.87-6.84(\mathrm{~m}, 10 \mathrm{H}), 3.23-2.98(\mathrm{~m}, 2 \mathrm{H})$, $2.50-2.21(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 8 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 209.9, 176.0, 142.8, 128.9, 127.5, 126.5, 125.8, 121.3, 46.7, 42.6, $32.8,31.5,29.0,28.9,23.5,22.4,17.4,13.9$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 388.2247$, found 388.2245; CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 5.9 min (minor isomer) and 7.1 min (major isomer).
(R)-(+)-2,6-Dimethyl-4-oxoheptanoic acid diphenylamide [(R)-(+)-3da, Table 2, entry 7]

Reaction time: 24 h ; Pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}+150.5^{\circ}\left(c 5.05, \mathrm{CHCl}_{3}, 98 \%\right.$ ee); IR (neat) 1708, 1668,

1490, 1387, $1276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.83-6.91(\mathrm{~m}, 10 \mathrm{H}), 3.22-2.98(\mathrm{~m}, 2 \mathrm{H})$, $2.38-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.904(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.897(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 209.6, 176.0, 142.9, 129.4, 129.0, 127.6, 127.0, 126.5, 125.9, 51.7, 47.3, $32.8,24.5,22.52$, 22.47, 17.5; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 346.1778$, found 346.1781; CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 5.0 min (major isomer) and 5.7 min (minor isomer).
The absolute configuration of (+)-3da was determined as R configuration by converting to $(R)-(+)$-2,6-dimethyl-4-oxoheptanoic acid ${ }^{5}$ as shown below.

(R)-(+)-2,6-Dimethyl-4-oxoheptanoic acid ${ }^{5}$

Aqueous $\mathrm{NaOH}(1 \mathrm{~N}, 2.0 \mathrm{~mL}, 2.0 \mathrm{mmol})$ was added to a solution of (+)-3da ($64.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h . The resulting mixture was washed with ether, acidified with 1 N aqueous HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 2,6-dimethyl-4-oxoheptanoic acid ($15.7 \mathrm{mg}, 0.0912$ $\mathrm{mmol}, 46 \%$) as a yellow oil.
$[\alpha]^{25}{ }_{\mathrm{D}}+5.7^{\circ}\left(c 0.785, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit.}^{5}[\alpha]^{18}{ }_{\mathrm{D}}-10.5^{\circ}\left(\mathrm{CHCl}_{3}\right)\right.$ for S enantiomer]; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 3.09-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=17.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.03$ $(\mathrm{m}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 208.7,181.4$, 51.8, 46.0, 34.4, 24.7, 22.5, 16.9.

(+)-6-Methyl-4-oxo-2-phenylheptanoic acid diphenylamide [(+)-3dd, Table 2, entry 8]

Reaction time: 72 h ; Pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}+216.8^{\circ}\left(c 7.68, \mathrm{CHCl}_{3}, 97 \%\right.$ ee); IR (neat) 1711, 1670, $1492,1368,1274 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.49-6.84(\mathrm{~m}, 15 \mathrm{H}), 4.22(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{dd}, J=18.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.05(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 209.2,172.4,142.9,142.1,138.7,129.4,129.1,128.7,128.5,127.7$, $127.0,126.3,125.9,51.6,48.5,45.3,24.4,22.52,22.47$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 408.1934, found 408.1939; CHIRALCEL OD-H, hexane $/ i-\operatorname{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 5.1 min (minor isomer) and 6.3 min (major isomer).
(+)-4-Cyclopentyl-2-methyl-4-oxo- N, N-diphenylbutyramide [(+)-3ea, Table 2, entry 9]

Reaction time: 48 h ; Pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}+157.3^{\circ}$ (c 7.13, $\mathrm{CHCl}_{3}, 98 \%$ ee); IR (neat) 1705,1668 , $1491,1395,1266 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.81-6.90(\mathrm{~m}, 10 \mathrm{H}), 3.20(\mathrm{dd}, J=17.4,10.4 \mathrm{~Hz}$, 1 H), 3.18-3.00 (m, 1H), 2.84 (quint, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{dd}, J=17.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.44$ (m, $8 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 211.8,176.0,142.9,129.4,128.9,128.7$, $127.5,126.5,125.8,51.0,45.8,32.8,28.7,28.5,25.9,25.8,17.5$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Na}$
$[\mathrm{M}+\mathrm{Na}]^{+} 358.1778$, found 358.1777; CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 4.7 min (minor isomer) and 5.9 min (major isomer).

(+)-4-Cyclohexyl-2-methyl-4-oxo- N, N-diphenylbutyramide [(+)-3fa, Table 2, entry 10]

Reaction time: 48 h ; Pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}+161.7^{\circ}$ (c 3.01, $\mathrm{CHCl}_{3}, 98 \%$ ee); IR (neat) 1704, 1670, $1492,756,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.76-6.95(\mathrm{~m}, 10 \mathrm{H}), 3.20(\mathrm{dd}, J=17.4,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=17.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.52(\mathrm{~m}, 5 \mathrm{H})$, $1.45-1.09(\mathrm{~m}, 5 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 212.9,176.1,143.0,129.4$, 129.0, 128.8, 128.6, 127.7, 126.6, 125.9, 50.5, 44.8, 32.9, 28.42, 28.36, 25.8, 25.6, 25.5, 17.6; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 372.1934$, found 372.1931; CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 7.6 min (major isomer) and 11.2 min (minor isomer).
(+)-4-Cyclohexyl-4-oxo-2,N,N-triphenylbutyramide [(+)-3fd, Table 2, entry 11]

Reaction time: 72 h ; Pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}+211.3^{\circ}$ (c 7.47, $\mathrm{CHCl}_{3}, 97 \%$ ee); IR (neat) 1704,1669 , 1492, 1371, $1276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.39-7.03(\mathrm{~m}, 13 \mathrm{H}), 7.01-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.23$ (dd, $J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{dd}, J=18.0,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=18.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.02(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 212.4,172.3,142.9$, 142.2, 138.8, 129.4, 129.1, 128.6, 128.4, 127.7, 127.6, 126.9, 126.3, 125.8, 50.4, 46.1, 45.3, 28.3, 25.7, 25.5, 25.4; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 434.2091$, found 434.2080; CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 5.0 min (minor isomer) and 6.5 min (major isomer).

(+)-7-Benzyloxy-2-methyl-4-oxoheptanoic acid diphenylamide [(+)-3ha, Table 2, entry 13]

Reaction time: 48 h ; Pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}+123.8^{\circ}$ (c 7.79, $\mathrm{CHCl}_{3}, 98 \%$ ee); IR (neat) 1712, 1666, $1492,756,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.68-6.91(\mathrm{~m}, 15 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.21-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{tt}, J=7.2,6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 209.3,175.9,142.8,138.3,129.4,128.9,128.1$, $127.4,127.3,126.5,125.9,72.6,69.1,46.7,39.1,32.8,23.6,17.4$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 438.2040$, found 438.2040; CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 8.7 min (minor isomer) and 11.2 min (major isomer).
(+)-2-Methyl-4-oxo-4,N,N-triphenylbutyramide [(+)-3ia]

Reaction time: 72 h ; Pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}+117.2^{\circ}$ (c 1.39, $\mathrm{CHCl}_{3}, 64 \%$ ee); IR (neat) 1668,1596 , 1492, 1268, $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.02-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.77-6.85(\mathrm{~m}, 13 \mathrm{H}), 3.74$ $(\mathrm{dd}, J=17.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 198.9,176.1,143.0,136.7,132.9,129.6,129.2,128.7,128.4,128.0$, 126.6, 43.2, 33.2, 17.8; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 366.1465$, found 366.1466; CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 6.3 min (minor isomer) and 8.7 min (major isomer).

2-(3-Phenylpropionyl)cyclopentanecarboxylic acid diphenylamide (3ae)

The relative stereochemistry of this compound was determined by NOE experiment. Reaction time: 72 h ; Pale yellow solid; Mp 81.0-81.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1705, 1657, 1492, 1402, $1364 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.63-6.94(\mathrm{~m}, 15 \mathrm{H}), 3.53(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.71(\mathrm{~m}$, $4 \mathrm{H}), 2.13-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 210.6$, 175.0, 142.7, 141.1, 128.9, 128.4, 128.2, 127.2, 126.4, 126.0, 55.7, 44.9, 43.6, 31.1, 29.5, 25.1; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 420.1934$, found 420.1931; CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=80: 20,1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 15.4 min (major isomer) and 17.3 min (minor isomer).

IV. References

(1) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035.
(2) Nishio, T.; Asai, H.; Miyazaki, T. Helv. Chim. Acta 2000, 83, 1475.
(3) Nishio, T.; Iseki, K.; Araki, N.; Miyazaki, T. Helv. Chim. Acta 2005, 88, 35.
(4) El Ali, B.; El-Ghanam, A.; Fettouhi, M.; Tijani, J. Tetrahedron Lett. 2000, 41, 5761.
(5) Sinha, A. K.; Joshi, B. P.; Sharma, A.; Kumar, V.; Acharya, R. Aust. J. Chem. 2007, 60, 124.

Cyclopent-1-enecarboxylic acid diphenylamide (2e)

2-Methyl-4-oxo-6-phenylhexanoic acid diphenylamide (3aa)

2-Methyl-4-oxo-6-phenylhexanoic acid methylphenylamide (3ab)

2-Methyl-4-oxo-6-phenylhexanoic acid dibenzylamide (3ac)

4-Oxo-2,6-diphenylhexanoic acid diphenylamide (3ad)

2-Methyl-4-oxoheptanoic acid diphenylamide (3ba)

2-Methyl-4-oxoundecanoic acid diphenylamide (3ca)

2,6-Dimethyl-4-oxoheptanoic acid diphenylamide (3da)

2,6-Dimethyl-4-oxoheptanoic acid

6-Methyl-4-oxo-2-phenylheptanoic acid diphenylamide (3dd)

4-Cyclopentyl-2-methyl-4-oxo- N, N-diphenylbutyramide (3ea)

4-Cyclohexyl-2-methyl-4-oxo- N, N-diphenylbutyramide (3fa)

4-Cyclohexyl-4-oxo-2,N,N-triphenylbutyramide (3fd)

7-Benzyloxy-2-methyl-4-oxoheptanoic acid diphenylamide (3ha)

2-Methyl-4-oxo-4,N,N-triphenylbutyramide (3ia)

2-(3-Phenylpropionyl)cyclopentanecarboxylic acid diphenylamide (3ae)

