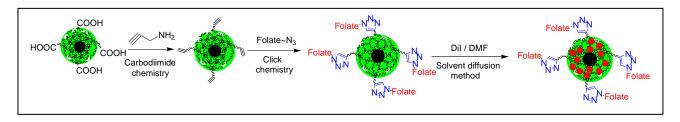
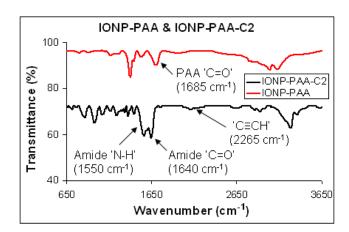
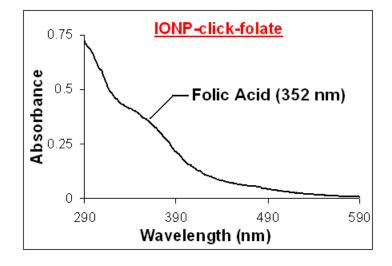
Supporting Information

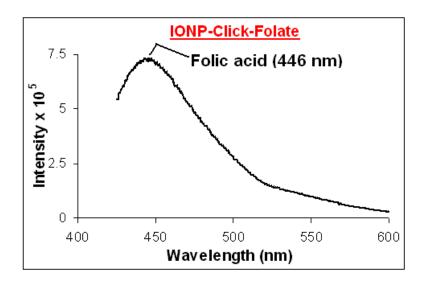

The role of nanoparticle valency in the nondestructive magneticrelaxation-mediated detection and magnetic isolation of cells in complex media

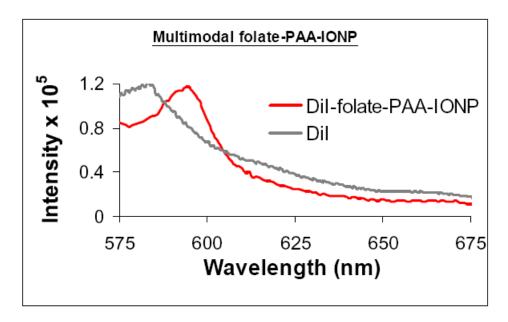
Charalambos Kaittanis, ‡, #,† Santimukul Santra, ‡,† J. Manuel Perez ‡, #, *

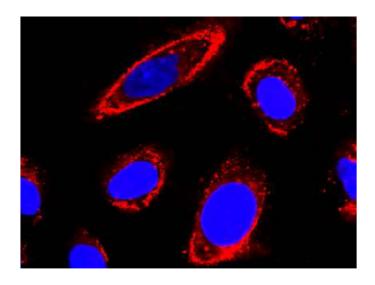

[‡]Nanoscience Technology Center, [#]Burnett School of Biomedical Sciences – College of Medicine, ^{*}Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400,

Orlando, FL 32826

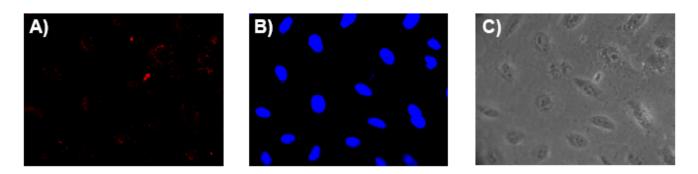

jmperez@mail.ucf.edu


SI Scheme 1. Schematic representation of the surface modification and folate conjugation to polyacrylic-acid-coated iron oxide nanoparticles.


SI Figure 1. FT-IR spectra of the unmodified and alkyne-modfiied polyacrylic-acid-coated iron oxide nanoparticles (PAA-IONP).

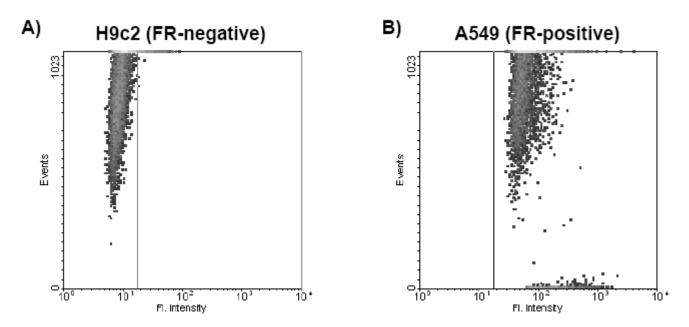

SI Figure 2. UV/Vis spectrum of the folate-decorated iron oxide nanosensors.

SI Figure 3. Fluorescence emission spectrum of the folate-conjugated iron oxide nanoparticles.


SI Figure 4. Fluorescence emission spectrum of the multimodal DiI-encapsulating folate iron oxide nanoparticles.

SI Figure 5. Confocal laser-scanning microscopy indicating the association of DiI-encapsulating folate iron oxide nanoparticles with folate-receptor-expressing cells (A549). (Red: DiI, Blue: DAPI)

SI Table 1. Correlation coefficients of quantification curves from time-dependent magnetic relaxation studies.


	Time (mins)			
Nanoparticle	15	30	45	60
•	0.79	0.84	0.87	0.99
	0.94	0.95	0.96	0.99
	0.76	0.89	0.94	0.99
	0.55	0.86	0.92	0.99

SI Figure 6. Saturation of the culture media with excess folate prevents the association of the dyedoped folate nanoparticles with A549 cells. The cells were incubated with the nanosensors for 2 h at 37 °C, 5% CO₂. (A. Red channel – DiI, B. Blue channel – DAPI, C. Phase contrast).

SI Table 2. Size distribution of the anti-MAP nanoparticle in the presence of various MAP concentrations. (Means \pm SE)

		MAP concentration		
Nanoparticle	Diameter (nm)	Low	High	
0	> 100	29.9 ± 0.5%	18.4 ± 0.7%	
	< 100	70.1 ± 0.4%	81.6 ± 0.3 %	
10	>100	17.8 ± 0.2%	22.7 ± 0.9%	
	< 100	82.2 ± 0.5 %	77.3 ± 0.6 %	

SI Figure 7. Determination of the expression of the folate receptor on A) H9c2 and B) A549 cells using flow cytometry.