Supporting Information for:

A Ring-Opening Metathesis Polymerization Route to Alkaline Anion Exchange Membranes: Development of Hydroxide-Conducting Thin Films from an Ammonium-Functionalized Monomer

Timothy J. Clark, Nicholas J. Robertson, Henry A. Kostalik IV, Emil B. Lobkovsky, Paul F. Mutolo, Héctor D. Abruña, and Geoffrey W. Coates*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853-1301

General Methods and Materials.

All reactions and manipulations of compounds were carried out in air unless otherwise specified. All solvents were used as received. Methacrolein, boron trichloride (1.0 M solution in dichloromethane), dimethylamine (2.0 M solution in tetrahydrofuran), sodium triacetoxyborohydride, potassium hydroxide flakes, and Grubbs $2^{\text {nd }}$ Generation catalyst were purchased from Sigma-Aldrich and used as received. Dicyclopentadiene was also purchased from Sigma-Aldrich and was run through a plug of alumina prior to use. Methyl iodide and triethylamine were purchased from Acros Organics and Fisher Scientific, respectively, and used as received. Standardized hydrochloric acid (0.1014 N) and potassium hydroxide $(0.1000 \pm 0.0001 \mathrm{M})$ solutions were purchased from SigmaAldrich and Riedel-de Haën, respectively. Nafion 112 was purchased from SigmaAldrich and pretreated using a literature procedure. ${ }^{1}$

Small Molecule Characterization.

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian INOVA $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz}\right)$ or Varian INOVA $600\left({ }^{1} \mathrm{H}, 600 \mathrm{MHz}\right)$ spectrometers and referenced to $\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}$ or $\mathrm{H}_{2} \mathrm{O}$, $4.80 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian INOVA $600\left({ }^{13} \mathrm{C}, 150 \mathrm{MHz}\right)$
spectrometer and referenced to $\mathrm{CHCl}_{3}, 77.23 \mathrm{ppm}$.
The gradient selected HSQCAD, HMBCAD and ROESY spectra were recorded on a Varian Unity Inova (600 MHz) spectrometer operating at 599.757 MHz for ${ }^{1} \mathrm{H}$ observation using a Varian inverse ${ }^{1} \mathrm{H}-\left\{{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right\}$ triple-resonance probehead with tripleaxis gradients. NMR data were acquired with the pulse sequences supplied in Vnmrj 2.1B/Chempack 4.1 and were processed and analyzed using the MestReNova 5.3 software package (2008, Mestrelab Research S. L.). ROESY spectra were acquired using the ROESY sequence with a spectral width of 4.3 kHz . A total of 200 complex points were collected in the indirectly detected dimension with 4 scans and 0.15 s acquisition time per increment. The resulting matrices were zero filled to $1 \mathrm{k} \times 1 \mathrm{k}$ complex data points and squared cosine window functions were applied in both dimensions prior to Fourier transformation. The multiplicity-edited adiabatic HSQC spectrum was acquired with the gHSQCAD sequence. Spectral widths were 4.3 kHz and 30 kHz in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ dimensions, respectively. A total of 256 complex points were collected in the indirectly detected dimension with 2 scans and 0.15 s acquisition time per increment. The resulting matrices were zero filled to $2 \mathrm{k} \times 2 \mathrm{k}$ complex data points and squared cosine window functions were applied in both dimensions prior to Fourier transformation. Gradient selected adiabatic HMBC spectra were acquired in phase sensitive mode with the gHMBCAD sequence optimized for 8 Hz couplings. Spectral widths were 4.3 kHz and 36.2 kHz in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ dimensions, respectively. A total of 400 complex points were collected in the indirectly detected dimension with 4 scans and 1024 points per increment. The resulting matrices were zero filled to 2 kx 2 k complex data points and shifted sinebell window functions were applied in the ${ }^{1} \mathrm{H}$ dimension prior to Fourier
transformation.
Mass spectra were acquired using a JEOL GCMate II mass spectrometer operating at 3000 resolving power for high resolution measurements in positive ion mode and an electron ionization potential of 70 eV . Samples were introduced via a GC inlet using an Agilent HP 6890 N GC equipped with a $30 \mathrm{~m}(0.25 \mu \mathrm{~m}$ i.d.) HP-5ms capillary GC column. The carrier gas was helium with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Samples were introduced into the GC using a split/splitless injector at $230^{\circ} \mathrm{C}$ with a split ratio of $10: 1$.

Elemental analysis was performed by Robertson Microlit Laboratories, Inc. Madison, New Jersey.

AAEM Characterization.

Ion exchange capacities (IECs) were determined using standard back titration methods. The thin film as synthesized (in iodide form) was dried under full vacuum overnight at $50^{\circ} \mathrm{C}$ in order to completely dehydrate it and then weighed. Conversion to the hydroxide form was achieved by immersing the film in $3-60 \mathrm{~mL}$ portions of 1 M potassium hydroxide for 20 minutes each. Residual potassium hydroxide was washed away by immersing the membrane in 3-500 mL portions of deionized water for 20 minutes each. The AAEM was then stirred in 20 mL standardized $0.1 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ solution for 24 hours followed by titration with standardized $0.1 \mathrm{M} \mathrm{KOH}_{(\mathrm{aq})}$ to determine the equivalence point. Control acid samples (with no AAEM present) were also titrated with standardized $0.1 \mathrm{M} \mathrm{KOH}_{(\mathrm{aq})}$, and the difference between the volume required to titrate the control and the sample was used to calculate the amount of hydroxide ions in the
membrane. This was divided by the dried mass of the membrane (vide supra) to give an IEC value with the units $\mathrm{mmol} \mathrm{OH}^{-} / \mathrm{g} \mathrm{I}^{-}$.

The in-plane hydroxide conductivity of the AAEM sample was measured by four probe electrochemical impedance spectroscopy (EIS) using a Solartron 1280B electrochemical workstation along with ZPlot and ZView software. The conductivity cell was purchased from BekkTech LLC (Loveland, CO), and a helpful schematic and description of a similar experimental setup has been reported. ${ }^{2}$ A strip of the thin film in iodide form (ca. 4 cm long $\times 0.5 \mathrm{~mm}$ wide) was converted to the hydroxide form by immersing it in $3-30 \mathrm{~mL}$ portions of 1 M potassium hydroxide for 20 minutes each. Residual potassium hydroxide was washed away by immersing the membrane in 3-60 mL portions of deionized water for 20 minutes each. Aliquots of each of these water washings were removed and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES) for potassium ions. ICP-AES was performed by the Cornell Nutrient Analysis Laboratories, Department of Crop and Soil Sciences, Cornell University using a CIROS model from Spectro Analytical Instruments, Inc. and the EPA 6010B method. Negligible potassium ions were detected in the aqueous sample (0.047 mg / L) by the third water washing; approximately equal to that detected in deionized water $(0.055 \mathrm{mg} / \mathrm{L})$ verifying complete removal of base and preventing falsely high hydroxide conductivities. The AAEM was then clamped into the cell using a Proto 6104 torque screwdriver set to 1 inch ounce and completely immersed in Millipore water (>18 $\mathrm{M} \Omega \cdot \mathrm{cm}$), at either $20^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$, during the measurement time. In the case of the $50^{\circ} \mathrm{C}$ measurement, the sample was allowed to equilibrate at that temperature for 1 hour. EIS was performed by imposing a small sinusoidal (AC signal) voltage, 10 mV , across the
membrane sample at frequencies between $20,000 \mathrm{~Hz}$ and 0.1 Hz (scanning from high to low frequencies) and measuring the resultant current response. Using a Bode plot, the frequency region over which the impedance had a constant value was checked, and the highest frequency measurement in the Nyquist plot was taken as the effective resistance of the membrane. This was then used to calculate the hydroxide conductivity by employing the following formula: $\sigma=\mathrm{L} / \mathrm{Z}^{\prime} \cdot \mathrm{A}$ where L is the length between sense electrodes $(0.425 \mathrm{~cm}), \mathrm{Z}^{\prime}$ is the real impedance response at high frequency, and A is the membrane area available for hydroxide conduction (width•thickness). The dimensional measurements were performed using a digital micrometer ($\pm 0.001 \mathrm{~mm}$) purchased from Marathon Watch Company Ltd. (Richmond Hill, ON).

The hydroxide conductivity was measured for four separate AAEMs (per composition) and the precision of these measurements was evaluated. All errors are determined from sample standard deviations. Confidence intervals are at the 95% confidence level based on the sample deviations and using the relevant student- t distribution ($N-1$ degrees of freedom, N is the number of samples tested for each membrane).

Dimensional swelling measurements were carried out in either deionized water $(10 \mathrm{~mL})$ or 2 M aqueous methanol solution (0.81 mL methanol in 10 mL deionized water) pre-heated to $60^{\circ} \mathrm{C}$. Two stamp-sized pieces were cut out of an AAEM sample and their length, width and thickness measurements were recorded followed by placement of the samples in either one of the above solutions for 2 hours. At this time, the measurements were repeated and the dimensional swelling expressed as the percent difference between the two volumes.

The mechanical properties of the thin films in the iodide form were characterized using an Instron system (model 5566) (Instron Co.,Canton, MA) using a 100 N static Lodge cell and Blue Hill software. The tensile strength of two strips from each of two wet samples were measured in the iodide form (ie four measurements total).

Preparation of 2-methylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde: This compound was prepared using a modified literature procedure. ${ }^{3}$ To a solution of freshly cracked cyclopentadiene ($14.0 \mathrm{~mL}, 172 \mathrm{mmol}$) in 125 mL dichloromethane at $-50^{\circ} \mathrm{C}$, methacrolein $(18.5 \mathrm{~mL}, 224 \mathrm{mmol})$ and boron trichloride
 solution ($17.0 \mathrm{~mL}, 17.0 \mathrm{mmol}$) were added sequentially under nitrogen. After these additions, stirring was commenced and the reaction allowed to proceed at $-50^{\circ} \mathrm{C}$ for 90 minutes. Triethylamine ($10.0 \mathrm{~mL}, 71.7 \mathrm{mmol}$) was then added via syringe and the reaction allowed to warm to room temperature. 125 mL of water were then added resulting in a biphasic yellow mixture, which was separated. The aqueous fraction was then extracted with $2 \times 100 \mathrm{~mL}$ portions of dichloromethane, combined with the separated organic fraction and dried with magnesium sulfate. The clear, yellow solution was then dried by rotary evaporation affording 2-methylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde ($21.7 \mathrm{~g}, 159 \mathrm{mmol}$), as 85% exo aldehyde diastereomer, in 92% yield as an orange liquid which partially solidified upon standing at room temperature. The compound was generally used as is, but further purification could be carried out by distilling under full vacuum at $65^{\circ} \mathrm{C}$ resulting in the isolation of the pure aldehyde as a colorless liquid/solid. The NMR shifts closely match those in the aforementioned literature procedure for the exo isomer. ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.65(1 \mathrm{H}, \mathrm{CHO}), 6.25\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=5.6 \mathrm{~Hz}\right.$,
$3.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 6.06\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 2.85(1 \mathrm{H}, \mathrm{b}$, Bridgehead CH), $2.77\left(1 \mathrm{H}, \mathrm{b}\right.$, Bridgehead CH), $2.20\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=12 \mathrm{~Hz},{ }^{3} J=4.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.35$ $(1 \mathrm{H}, \mathrm{m}$, Bridge CH$), 1.25(1 \mathrm{H}, \mathrm{m}$, Bridge CH$), 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.72\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=12\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.9,139.7,133.2,54.0,50.9,48.6,43.4$, 34.8, 20.2.

Preparation of N, N-dimethyl-1-(2-methylbicyclo[2.2.1]hept-5-en-2-yl)methanamine:

To a solution of 2-methylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (14.3 g, 105 mmol) in 150 mL of tetrahydrofuran, dimethylamine solution (68.0 mL , 136 mmol) was added and stirred at $20^{\circ} \mathrm{C}$ for 2 hours. At this
 time, $\mathrm{Na}\left[\mathrm{BH}(\mathrm{OAc})_{3}\right](28.9 \mathrm{~g}, 136 \mathrm{mmol})$ was slowly added, diluted with a further 100 mL of tetrahydrofuran to loosen the slurry and stirred overnight. The reductant was quenched with 1 M aqueous potassium hydroxide (150 mL , 150 mmol) causing the reaction mixture to turn clear yellow. After 15 minutes, the solution was extracted with $3 \times 100 \mathrm{~mL}$ portions of diethyl ether and dried with magnesium sulfate. The clear, yellow solution was then dried by rotary evaporation affording N, N-dimethyl-1-(2-methylbicyclo[2.2.1]hept-5-en-2-yl)methanamine ($14.4 \mathrm{~g}, 87.1 \mathrm{mmol}$) in 83% yield as a yellow-orange liquid. The compound was generally used as is, but further purification could be carried out by distilling under full vacuum at $50^{\circ} \mathrm{C}$ resulting in the isolation of the pure amine as a colorless liquid. The resonances for the exo and endo isomers (ca. $4: 1$, respectively) were assigned with the aid of $g H M B C, g H S Q C$, and ROESY experiments.

For the exo-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.07\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=5.7 \mathrm{~Hz}, 2.9\right.$
$\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}), 6.04\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=5.7 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 2.71(1 \mathrm{H}, \mathrm{m}$, Bridgehead CH$)$, $2.47(1 \mathrm{H}, \mathrm{m}$, Bridgehead CH$), 2.39\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=13.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=\right.$ $\left.13.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 2.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.55\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} J=8.4 \mathrm{~Hz},{ }^{3} J=1.5 \mathrm{~Hz},{ }^{3} J=\right.$ 1.5 Hz , Bridge CH), $1.49\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=11.5 \mathrm{~Hz},{ }^{3} J=3.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.30\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} J=\right.$ $8.4 \mathrm{~Hz},{ }^{3} J=2.7 \mathrm{~Hz},{ }^{3} J=1.8 \mathrm{~Hz}$, Bridge CH$), 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.78\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=11.5\right.$ $\left.\mathrm{Hz},{ }^{3} J=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,136.0,71.6,50.6,48.4$, 47.7, 43.5, 42.8, 39.7, 24.6.

For the endo-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.09\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=5.6 \mathrm{~Hz}, 2.9\right.$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}), 6.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 2.69(1 \mathrm{H}, \mathrm{m}$, Bridgehead CH$), 2.43(1 \mathrm{H}, \mathrm{m}$, Bridgehead CH), $2.18\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=12.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.91$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=12.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 1.58\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} J=8.4 \mathrm{~Hz},{ }^{3} J=1.5 \mathrm{~Hz},{ }^{3} J=1.5 \mathrm{~Hz}\right.$, Bridge CH), $1.41\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=11.5 \mathrm{~Hz},{ }^{3} J=3.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.32(1 \mathrm{H}, \mathrm{m}$, Bridge CH$)$, $1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.86\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=11.5 \mathrm{~Hz},{ }^{3} J=2.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.3,135.5,69.7,52.4,47.8,47.5,42.9,42.1,40.6,26.3$.

HRMS EI (m / z): calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}, 165.1517$; found, 165.1522.

Preparation of $\quad \mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethyl-1-(2-methylbicyclo[2.2.1]hept-5-en-2-

 $\mathbf{y l}$)methanaminium iodide (1): To a solution of N, N-dimethyl-1-(2-methylbicyclo[2.2.1]hept-5-en-2-yl)methanamine (12.5 g, 75.6 mmol) in 125 mL acetone, methyl iodide ($7.1 \mathrm{~mL}, 114 \mathrm{mmol}$) was added dropwise and stirred at $20^{\circ} \mathrm{C}$ with the formation of a white precipitate occurring after 2 minutes. After stirring for 16 hours to ensure complete reaction, $100 \mathrm{~mL} n$-pentane was added to the reaction mixture and filtered. The white
powder was washed with $3-100 \mathrm{~mL}$ portions of n-pentane, isolated and dried under vacuum affording $\mathbf{1}(18.5 \mathrm{~g}, 60.2 \mathrm{mmol})$ in 80% yield. Compound $\mathbf{1}$ can be recrystallized from hot dichloromethane, chloroform, or acetonitrile, at $4{ }^{\circ} \mathrm{C}$ yielding single crystals as the exo isomer exclusively. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.19\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J=6.0 \mathrm{~Hz}, 3.0\right.$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}), 6.05\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.55\left(9 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.90(1 \mathrm{H}, \mathrm{b}$, Bridgehead CH$), 2.67(1 \mathrm{H}, \mathrm{b}$, Bridgehead CH$), 2.09$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=12.0 \mathrm{~Hz},{ }^{3} J=4.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.85\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=9.0 \mathrm{~Hz}\right.$, Bridge CH$), 1.43(1 \mathrm{H}$, d, ${ }^{2} J=9.0 \mathrm{~Hz}$, Bridge CH), $1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.96\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J=12.0 \mathrm{~Hz},{ }^{3} J=3.0 \mathrm{~Hz}\right.$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2,134.8,77.6,56.2,52.4,48.4,44.4,43.3$, 40.4, 25.8. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NI}$: C, $46.92 ; \mathrm{H}, 7.22 ; \mathrm{N}, 4.56$. Anal. found: C, 47.18; H , 7.33; N, 4.55.

Control Measurements of Nafion 112: The average proton conductivity values measured for four samples at $20^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ were $75 \pm 2 \mathrm{mS} / \mathrm{cm}$ and $112 \pm 3 \mathrm{mS} / \mathrm{cm}$, respectively. The average tensile stress and strain at maximum loads measured for two samples were 31.5 MPa at 194%. The percent dimensional swelling measurements of two stamp-sized samples in $60^{\circ} \mathrm{C}$ deionized water and 2 M aqueous methanol were 1.0% and 2.2%, respectively.

Preparation of AAEM with 2:1 Molar Ratio of Dicyclopentadiene:Compound 1: To a solution of $\mathbf{1}(0.053 \mathrm{~g}, 0.17 \mathrm{mmol})$ and dicyclopentadiene $(0.046 \mathrm{~g}, 0.35 \mathrm{mmol})$ in 2.0 mL chloroform, a solution of Grubbs' $2^{\text {nd }}$ Generation catalyst $(0.0030 \mathrm{~g}, 0.0035 \mathrm{mmol})$ in 0.6 mL chloroform was added and stirred for 1 minute at $20^{\circ} \mathrm{C}$. At this time, the orange
reaction mixture was deposited onto a flat glass Petri dish sitting on a hot plate pre-heated to a surface temperature of ca. $30^{\circ} \mathrm{C}$ with a thin metal plate separating the two in order to ensure uniform heating. Within a fumehood, a round glass cover with a volume of 550 mL and a diameter of 7 cm and a Kontes valve affixed at the top to control the rate of solvent evaporation was placed over the Petri dish to prevent drafts yielding even films (Figure S1). The reaction mixture solidified after 120-150 minutes, at which time the cover was removed and the surface temperature increased to ca. $75^{\circ} \mathrm{C}$ for 1 hour to ensure all volatiles were removed. The sample was then cooled, and deionized water added to the Petri dish in order to ease removal of the film.

Figure S1. Photograph depicting the experimental setup for AAEM preparation.

The measured IEC for two separate AAEMs was 0.96 and $1.04 \mathrm{mmol} \mathrm{OH}^{-} / \mathrm{g}$ giving an average value of $1.0 \mathrm{mmol} \mathrm{OH}^{-} / \mathrm{g}$. The average hydroxide conductivity values measured for four separate AAEMs at $20^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ were $14 \pm 2 \mathrm{mS} / \mathrm{cm}$ and $21 \pm 4 \mathrm{mS} / \mathrm{cm}$, respectively.

The percent dimensional swelling measurements were:
Sample 1 (2 M methanol): 2.2%
Sample 1 (deionized water): 0%
Sample 2 (2 M methanol): 1.1 \%
Sample 2 (deionized water): 1.1 \%
Average: 1.7% (methanol), 0.55% (deionized water)

A single dimensional swelling experiment employing four stamp-sized pieces from the same AAEM sample was also performed as a means of determining the maximum concentration of aqueous methanol the membrane could tolerate (e.g. percent swelling less than 10%) at $60^{\circ} \mathrm{C}$. The four pieces, in the hydroxide form, were measured as above and immersed in pre-heated solutions of $4 \mathrm{M}, 6 \mathrm{M}, 8 \mathrm{M}$ and 10 M aqueous methanol. After two hours, the samples' dimensions were re-measured giving percent swelling values of 3.7%, 3.7%, 5.4% and 20.7%, respectively.

The average tensile stress and strain at break measurements for four thin films were $16 \pm$ 6 MPa and $7.2 \pm 3 \%$, respectively.

Preparation of AAEM with 1:1 Molar Ratio of Dicyclopentadiene:Compound 1: To a solution of $1(0.070 \mathrm{~g}, 0.23 \mathrm{mmol})$ and dicyclopentadiene $(0.030 \mathrm{~g}, 0.23 \mathrm{mmol})$ in 2.0 mL chloroform, a solution of Grubbs' $2^{\text {nd }}$ Generation catalyst ($0.0019 \mathrm{~g}, 0.0022 \mathrm{mmol}$) in 0.3 mL chloroform was added and stirred for 1 minute at $20^{\circ} \mathrm{C}$. At this time, the orange reaction mixture was deposited onto a flat glass dish, and the AAEM generated as above.

The measured IEC for two separate AAEMs was 1.39 and $1.31 \mathrm{mmol} \mathrm{OH}^{-} / \mathrm{g}$ giving an average value of $1.35 \mathrm{mmol} \mathrm{OH}^{-} / \mathrm{g}$. The average hydroxide conductivity values measured for four separate AAEMs at $20^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ were $18.2 \pm 2.1 \mathrm{mS} / \mathrm{cm}$ and 27.9 ± 3.4 $\mathrm{mS} / \mathrm{cm}$, respectively.

The average tensile stress and strain at break measurements for four thin films were $2.3 \pm$ 0.5 MPa and $26 \pm 3 \%$, respectively.

Single-Crystal X-Ray Crystallography.

Crystals of $\mathbf{1}$ were transferred from a crystallization vessel onto a microscope slide in a drop of viscous organic oil. Using a nylon loop, a suitable single crystal was chosen and mounted on a Bruker X8 APEX II diffractometer (MoK_{α} radiation) and cooled to 0 ${ }^{\circ}$ C. Data collection and reduction were done using Bruker APEX2 ${ }^{4}$ and SAINT $+{ }^{5}$ software packages. An empirical absorption correction was applied with SADABS. ${ }^{6}$ Structure was solved by direct methods and refined on F^{2} by full matrix least-squares techniques using SHELXTL ${ }^{7}$ software package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added to the model in their geometrically ideal positions. Colorless plate like crystals belong to a monoclinic P2(1)/c space group. The sample size was $0.30 \times 0.20 \times 0.05 \mathrm{~mm}^{3}$. Overall 16041 reflections were collected, 4203 of which were unique ($\mathrm{R}_{\mathrm{int}}=0.0264$); with 3393 'strong' reflections $\left(F_{0}>4 \sigma F_{o}\right)$. Final $R_{1}=$ 3.22 \%. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Center. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax:
(+44)1223-336-033; email: deposit@.ccdc.cam.ac.uk).

References

(1) Lee, C. H.; Park, H. B.; Lee, Y. M.; Lee, R. D. Ind. Eng. Chem. Res. 2005, 44, 7617-7626.
(2) Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J.; Loy, D. A. Macromolecules 2005, 38, 5010-5016.
(3) Bloch, R.; Gilbert, L. Tetrahedron 1988, 44, 2523-2539.
(4) APEX2 v.1.0-22 User Manual, Bruker AXS Inc., Madison WI 53719, 2004.
(5) SAINT+ v.6.02 User Manual, Bruker AXS Inc., Madison WI 53719, 1999.
(6) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, 1996.
(7) Sheldrick, G. M. SHELXTL v. 5.10 Bruker AXS Inc., Madison WI 53719, 1999.

Table S1. Crystal data and structure refinement for $\mathbf{1}$.

Identification code	tjc2
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{IN}$
Formula weight	392.13
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=11.1922(6) \AA$ 这 $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=7.8529(4) \AA \quad \beta=103.138(3)^{\circ}$.
	$\mathrm{c}=19.6551(10) \AA$ 发 $\quad \gamma=90^{\circ}$.
Volume	1682.29(15) \AA^{3}
Z	4
Density (calculated)	$1.548 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.204 \mathrm{~mm}^{-1}$
$F(000)$	784
Crystal size	$0.30 \times 0.20 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.87 to 28.44°.
Index ranges	$-14<=\mathrm{h}<=15,-10<=\mathrm{k}<=6,-26<=\mathrm{l}<=25$
Reflections collected	15249
Independent reflections	$4203[\mathrm{R}(\mathrm{int})=0.0264]$
Completeness to theta $=28.44^{\circ}$	99.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8978 and 0.5577
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4203 / 0 / 166
Goodness-of-fit on F^{2}	0.999
Final R indices [$\mathrm{I}>2$ sigma(I] $]$	$\mathrm{R} 1=0.0322, \mathrm{wR} 2=0.0822$
R indices (all data)	$\mathrm{R} 1=0.0429, \mathrm{wR} 2=0.0893$
Largest diff. peak and hole	0.910 and -0.597 e. \AA^{-3}

Figure S2. ORTEP drawing of $\mathbf{1}$ with thermal ellipsoids drawn at the 40% probability level.

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{I}(1)$	$5719(1)$	$7211(1)$	$1226(1)$	$48(1)$
$\mathrm{Cl}(1)$	$8612(1)$	$4247(2)$	$183(1)$	$98(1)$
$\mathrm{Cl}(2)$	$7288(1)$	$1548(1)$	$717(1)$	$84(1)$
$\mathrm{N}(1)$	$3773(2)$	$12228(2)$	$1455(1)$	$37(1)$
$\mathrm{C}(1)$	$1813(2)$	$10307(3)$	$1464(1)$	$40(1)$
$\mathrm{C}(2)$	$1132(2)$	$11125(4)$	$1966(2)$	$54(1)$
$\mathrm{C}(3)$	$630(3)$	$9586(4)$	$2320(2)$	$65(1)$
$\mathrm{C}(4)$	$-265(3)$	$8677(5)$	$1778(2)$	$73(1)$
$\mathrm{C}(5)$	$317(4)$	$7926(5)$	$1358(2)$	$85(1)$
$\mathrm{C}(6)$	$1665(3)$	$8325(4)$	$1622(2)$	$63(1)$
$\mathrm{C}(7)$	$1720(3)$	$8399(5)$	$2396(2)$	$71(1)$
$\mathrm{C}(8)$	$1217(3)$	$10701(5)$	$694(1)$	$68(1)$

$\mathrm{C}(9)$	$3208(2)$	$10590(3)$	$1654(1)$	$42(1)$
$\mathrm{C}(10)$	$3807(3)$	$12275(4)$	$698(1)$	$57(1)$
$\mathrm{C}(11)$	$5082(2)$	$12222(4)$	$1858(1)$	$50(1)$
$\mathrm{C}(12)$	$3178(3)$	$13790(3)$	$1644(2)$	$52(1)$
$\mathrm{C}(13)$	$7221(3)$	$3577(4)$	$354(2)$	$70(1)$

Table S3. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1}$.

$\mathrm{Cl}(1)-\mathrm{C}(13)$	$1.747(3)$
$\mathrm{Cl}(2)-\mathrm{C}(13)$	$1.741(4)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.483(3)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.498(3)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.499(3)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.523(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.520(4)$
$\mathrm{C}(1)-\mathrm{C}(9)$	$1.537(3)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.540(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.603(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.561(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.470(5)$
$\mathrm{C}(3)-\mathrm{C}(7)$	$1.516(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.303(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.512(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.509(5)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(10)$	$105.94(18)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(11)$	$114.3(2)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(11)$	$112.6(2)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(9)$	$10.1(2)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(9)$	$106.1(2)$
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(9)$	$113.4(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$11.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	105

$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(8)$	$113.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$101.3(2)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(6)$	$103.75(19)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(6)$	$110.2(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$104.2(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	$100.0(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$108.0(3)$
$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(2)$	$99.0(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.8(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$107.0(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$99.4(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$105.9(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	$100.1(3)$
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$94.4(2)$
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(1)$	$121.21(19)$
$\mathrm{Cl}(1)-\mathrm{C}(13)-\mathrm{Cl}(2)$	$113.44(18)$

Table S4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{I}(1)$	$59(1)$	$43(1)$	$44(1)$	$-1(1)$	$17(1)$	$3(1)$
$\mathrm{Cl}(1)$	$72(1)$	$85(1)$	$141(1)$	$10(1)$	$33(1)$	$-6(1)$
$\mathrm{Cl}(2)$	$109(1)$	$73(1)$	$83(1)$	$15(1)$	$48(1)$	$17(1)$
$\mathrm{N}(1)$	$39(1)$	$34(1)$	$37(1)$	$1(1)$	$10(1)$	$-1(1)$
$\mathrm{C}(1)$	$35(1)$	$40(1)$	$43(1)$	$3(1)$	$4(1)$	$1(1)$
$\mathrm{C}(2)$	$48(1)$	$59(2)$	$60(2)$	$1(1)$	$20(1)$	$6(1)$
$\mathrm{C}(3)$	$64(2)$	$71(2)$	$63(2)$	$12(2)$	$25(1)$	$2(2)$
$\mathrm{C}(4)$	$45(1)$	$88(2)$	$85(2)$	$28(2)$	$15(1)$	$-11(2)$
$\mathrm{C}(5)$	$101(3)$	$67(2)$	$77(2)$	$-5(2)$	$-1(2)$	$-42(2)$
$\mathrm{C}(6)$	$54(1)$	$49(2)$	$89(2)$	$-12(2)$	$21(1)$	$-8(1)$

$\mathrm{C}(7)$	$51(2)$	$78(2)$	$80(2)$	$27(2)$	$7(1)$	$-12(2)$
$\mathrm{C}(8)$	$54(2)$	$99(3)$	$45(1)$	$-1(2)$	$0(1)$	$-11(2)$
$\mathrm{C}(9)$	$37(1)$	$37(1)$	$50(1)$	$8(1)$	$7(1)$	$1(1)$
$\mathrm{C}(10)$	$63(2)$	$72(2)$	$37(1)$	$4(1)$	$12(1)$	$2(1)$
$\mathrm{C}(11)$	$39(1)$	$61(2)$	$48(1)$	$5(1)$	$7(1)$	$-9(1)$
$\mathrm{C}(12)$	$63(2)$	$38(1)$	$60(2)$	$-2(1)$	$21(1)$	$4(1)$
$\mathrm{C}(13)$	$63(2)$	$62(2)$	$88(2)$	$2(2)$	$24(2)$	$10(2)$

Table S5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 1.

x	y	z	$U(e q)$

H(2A)	466	11836	1717	65
H(2B)	1682	11814	2311	65
H(3A)	365	9842	2751	77
H(4A)	-1108	8643	1741	87
H(5A)	-31	7270	970	102
H(6A)	2243	7548	1474	76
H(7A)	1582	7300	2590	85
H(7B)	2476	8899	2661	85
H(8A)	359	10432	601	102
H(8B)	1604	10030	397	102
H(8C)	1318	11888	604	102
H(9B)	$3450(20)$	$10540(30)$	$2131(13)$	$40(7)$
H(9A)	$3630(30)$	$9740(40)$	$1484(16)$	$74(10)$
H(10A)	2986	12354	418	86
H(10B)	4186	11254	579	86
H(10C)	4272	13246	611	86
H(11A)	5494	13212	1737	75
H(11B)	5484	11216	1744	75
H(11C)	5108	12234	2349	75

$\mathrm{H}(12 \mathrm{~A})$	3609	14774	1535	79
$\mathrm{H}(12 \mathrm{~B})$	3200	13777	2135	79
$\mathrm{H}(12 \mathrm{C})$	2341	13831	1384	79
$\mathrm{H}(13 \mathrm{~A})$	6598	3588	-79	84
$\mathrm{H}(13 B)$	6974	4380	671	84

