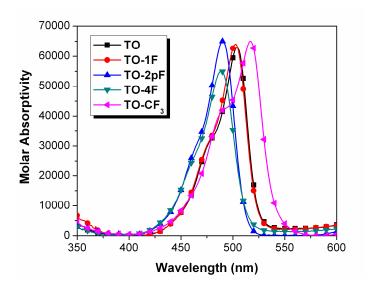

SUPPORTING INFORMATION


Enhanced Photostability of Genetically Encodable Fluoromodules Based on Fluorogenic Cyanine Dyes and a Promiscuous Protein Partner

Nathaniel I. Shank¹, Kimberly J. Zanotti¹, Frederick Lanni^{2,3}, Peter B. Berget^{2,3}, Bruce A. Armitage^{1,3*}

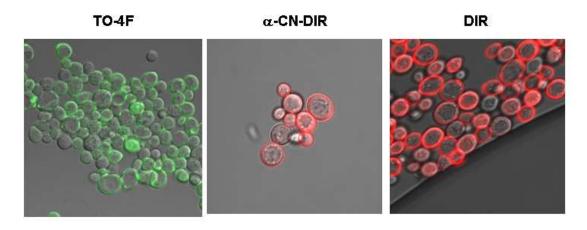

Departments of Chemistry¹ and Biological Sciences² and Molecular Biosensor and Imaging Center³, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213

Figure S1. Fluorescence titration of α -CN-DIR into yeast surface-displayed K7. Line is fit to a 1:1 binding model. Dye was titrated into yeast expressing K7 (squares), yeast not expressing K7 (circles), and buffer (triangles). Samples were excited at 534 nm.

Figure S2. UV-vis absorbance spectra recorded for TO dyes in the presence of K7 protein. [Dye] = 300 nM, [K7] = 600 nM. The spectra show a blue shift when electron-withdrawing fluorine atoms are placed on the benzothiazole ring, but a red shift when a trifluoromethyl group is placed on the quinoline ring.

Figure S3. Merged fluorescence and differential interference contrast micrographs of yeast-displayed scFv K7 stained with 300 nM TO-4F (left), 200 nM α -CN-DIR (middle) and 100 nM DIR (red).