SUPPLEMENTARY INFORMATION

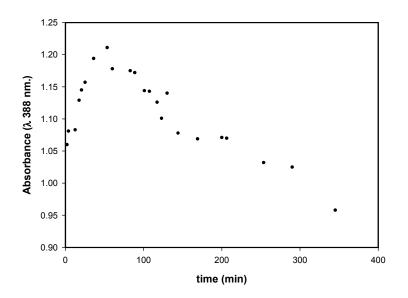
MECHANISM OF THE SELECTIVE SULFIDE OXIDATION PROMOTED BY HNO₃/FeBr₃

Claudio O. Kinen, Laura I. Rossi^{*} and Rita H. de Rossi^{*}

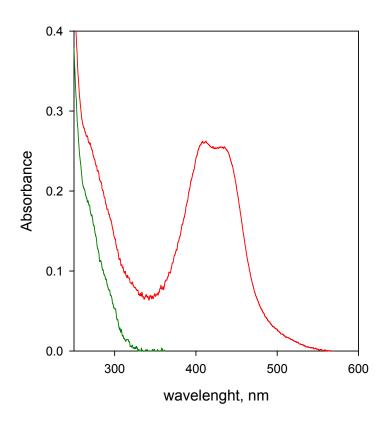
Instituto de Investigaciones en Físico Química de Córdoba (INFIQC), Departamento de

Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba,

Ciudad Universitaria. X5000HUA Córdoba. Argentina


TABLE OF CONTENTS

S2 Absorption vs time at λ =388 nm for the reaction of **1b** with HNO₃ (13 %) and FeBr₃ (5%) at 25 °C.


S3 Spectrum of triphenylbenzylsulfide in acetonitrile after reaction with HNO₃ (13 %) and FeBr₃ (5%) at 25 °C.

S4· Oxidation of 4-(methyltio)-benzaldehide 1b with NO₂(g)

Figure S1: Absorption vs time at λ =388 nm for the reaction of **1b** with HNO₃ (13 %) and FeBr₃ (5%) at 25 °C.

Figure S2: Spectrum of triphenylbenzylsulfide in acetonitrile (green line) and the product formed after 5 minutes of reaction in the presence of 5% FeBr₃ and 13 % HNO₃ (red line)

Oxidation of 4-(methylsulfanyl)benzaldehyde 1b with NO₂(g)

0.8 mmole of **1b** were dissolved in 1.6 mL of acetonitrile and NO₂ was bubbled through the solution with a stream of N_2 . The NO₂ was generated by dropping concentrated HNO₃ on Cu metal. The solution was checked from time to time until all the substrate disappeared. At this time, the solvent was evaporated and the reaction product analyzed by gas chromatography and NMR. The sulfoxide was the only product formed.