Formation of Medium-Sized Nitrogen Heterocycles from γ-Silyloxy- γ-Lactams

Nicholas M. Leonard and K. A. Woerpel*
Department of Chemistry
University of California, Irvine
Irvine, CA 92697-2025

Supporting Information

Contents:

I.	Synthesis of α-Silyloxy Allylic Silanes	S-1
II.	Synthesis of Enantioenriched α-Silyloxy Allylic Silane (-)-14 by Asymmetric Reduction	S-3
III.	$[3+2]$ Cycloaddition of α-Silyloxy Allylic Silanes and Chlorosulfonyl Isocyanate	S-4
IV.	Nucleophilic Substitution of γ-Siloxy- γ-Lactams	S-5
V.	Stereochemistry and Structural Proofs	S-8
VI.	HPLC Data for Enantioenriched α-Silyloxy Allylic Silane (-)-14	S-12
VII.	X-Ray Crystallography	S-14
VIII.	References	S-39
IX.	Spectral Data	S-40

General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature at 500 and 125 MHz , respectively. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on δ scale, multiplicity ($\mathrm{br}=\mathrm{broad}, \mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), and integration. High resolution mass spectra were acquired by peak matching. Analytical gas-liquid chromatography (GLC) was performed on a gas chromatograph equipped with an auto sampler and a flame ionization detector. A fused silica, wall-coated capillary column ($30 \mathrm{~m} \times 0.32 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) was used with helium as the carrier gas. Melting points were obtained using a melting point apparatus and were reported uncorrected. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on 60 (230-400) mesh silica gel (SiO_{2}). All reactions, unless specified, were performed under an atmosphere of nitrogen in glassware that had been flame-dried under vacuum. Unless otherwise noted, all reagents were commercially obtained, and where appropriate, purified prior to use. Toluene, THF, $\mathrm{Et}_{2} \mathrm{O}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by filtration through alumina according to the procedure of Grubbs. ${ }^{1} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was distilled from $\mathrm{Et}_{2} \mathrm{O}$ and stored in a sealed tube. Alkyllithium reagents were purchased and titrated prior to use with N-benzylbenzamide. ${ }^{2}$ Silyllithium reagents were prepared and titrated according to the procedure of Fleming. ${ }^{3,4}$

I. Synthesis of α-Silyloxy Allylic Silanes

1
$\boldsymbol{\alpha}$-Siloxy Allylic Silane 1. To a solution of $\mathrm{Phi}-\mathrm{Pr}_{2} \mathrm{SiCl}^{5}(8.43 \mathrm{~g}, 37.0 \mathrm{mmol})$ in THF $(75 \mathrm{~mL})$ was added lithium wire ($1.30 \mathrm{~g}, 185$ mmol). The suspension was stirred at $24^{\circ} \mathrm{C}$ for 18 h . The resultant red solution was transferred to a dry flask and cooled to $-78^{\circ} \mathrm{C}$ as a solution of trans-2-methyl-2-butenal ($3.00 \mathrm{~mL}, 31.0 \mathrm{mmol}$) in THF (50 mL) was added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(100$ mL). The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford a yellow oil. The oil was dissolved in DMF (10 mL) and TBDMSCl ($9.35 \mathrm{~g}, 62.0 \mathrm{mmol}$) and imidazole ($3.17 \mathrm{~g}, 46.5 \mathrm{mmol}$) were added. The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and hexanes $(50 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with hexanes $(3 \times 75 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(75 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified 1 as a colorless oil. Purification by flash chromatography (hexanes) provided 1 as a colorless oil ($8.82 \mathrm{~g}, 73 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 5.35(\mathrm{q}, J=6.7,1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $6.8,3 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=7.5,3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 138.1,135.9,135.5,128.8,127.3,119.4,72.7,26.2,18.9,18.7,18.6,18.5,18.4,14.6,13.4,11.7,11.0,-3.8,-$
5.2; IR (thin film) 2929, 2865, 1465, $1254 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{OSi}_{2}(\mathrm{M}+\mathrm{H})^{+} 391.2852$, found 391.2845. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{OSi}_{2}$: C, 70.70; H, 10.83. Found: C, 70.98; H, 10.99.

S1

Allylic Silylether S1. To a solution of allylic alcohol ($1.70 \mathrm{~mL}, 25.0 \mathrm{mmol}$), $\mathrm{Phi}^{-} \mathrm{Pr}_{2} \mathrm{SiCl}^{5}(6.24 \mathrm{~g}, 27.5 \mathrm{mmol})$, and DMAP (0.611 g , 5.00 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added a solution of triethylamine ($4.20 \mathrm{~mL}, 30.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and concentrated in vacuo. Hexanes (30 mL) was added, and the layers were separated. The aqueous layer was extracted with hexanes ($3 \times 20 \mathrm{~mL}$), and the combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1}$ as a yellow oil. Purification by flash chromatography (hexanes to $10: 90 \mathrm{EtOAc} /$ hexanes $)$ provided $\mathbf{S} 1$ as a clear oil ($5.38 \mathrm{~g}, 87 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 6.03-$ 5.93 (ddt, $J=17.1,10.5,4.4,1 \mathrm{H}$), 5.39 (ddd, $J=17.1,2.0,2.0,1 \mathrm{H}$), 5,14 (ddd, $J=10.5,1.8,1.8,1 \mathrm{H}$), 4.32 (ddd, $J=4.4,1.9,1.9$, $2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=7.4,6 \mathrm{H}), 1.02(\mathrm{~d}, J=7.5,6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.4,134.8,134.3,129.4,127.8$, $114.1,64.8,17.6,17.4,12.3$; IR (thin film) $2944,2867,1465 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 271.1494$, found 271.1503. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{OSi}$: C, 72.52; H, 9.74. Found: C, 72.63; H, 9.84.

Allylic Silane S2. To a cooled solution of $\mathbf{S} 1(4.10 \mathrm{~g}, 16.5 \mathrm{mmol})$ and $\mathrm{LiCl}(2.10 \mathrm{~g}, 49.5 \mathrm{mmol})$ in THF (100 mL) was added s - BuLi $\left(33.0 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ in $92: 8$ cyclohexane $/$ hexanes, 33 mmol). The reaction mixture was warmed to $-42{ }^{\circ} \mathrm{C}$, and stirred for 1 h . The reaction mixture was poured onto a vigorously stirring saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(800 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaCl $(75 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford a yellow oil. The oil was dissolved in DMF (30 mL) and stirred at $24^{\circ} \mathrm{C}$ as $\mathrm{TBDMSCl}(4.97 \mathrm{~g}, 33.0 \mathrm{mmol})$ and imidazole ($1.68 \mathrm{~g}, 24.8 \mathrm{mmol}$) were added. The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100$ mL) and hexanes (50 mL). The layers were separated and aqueous layer was extracted with hexanes ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 2}$ as a colorless oil. Purification by flash chromatography (hexanes) provided $\mathbf{S} 2$ as a colorless oil ($4.66 \mathrm{~g}, 78 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{ddd}, J=17.2,10.5,6.7$, $1 \mathrm{H}), 5.05(\mathrm{dt}, J=17.1,1.8,1 \mathrm{H}), 4.89(\mathrm{dt}, J=10.5,1.8,1 \mathrm{H}), 4.53(\mathrm{dt}, J=6.7,1.7,1 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.09$ $(\mathrm{d}, J=7.5,6 \mathrm{H}), 1.08(\mathrm{~d}, J=7.5,3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H})$.

S3

Alcohol S3. To a cooled ($-42{ }^{\circ} \mathrm{C}$) solution of allyltrimethylsilane ($22.0 \mathrm{~mL}, 139 \mathrm{mmol}$) and $N, N, N^{\prime}, N^{\prime}$-tetramethyl-ethane-1,2diamine ($20.9 \mathrm{~mL}, 139 \mathrm{mmol}$) in THF (300 mL) was added s - $\mathrm{BuLi}(104 \mathrm{~mL}, 1.33 \mathrm{M}$ solution in hexanes, 139 mmol). After 30 min , 3-bromo-1-propanol ($5.00 \mathrm{~mL}, 55.4 \mathrm{mmol}$) was added over 15 min by syringe pump. The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 3}$ as a yellow oil. Purification by flash chromatography (10:90 to 30:70 EtOAc/hexanes) provided $\mathbf{S 3}$ as a colorless oil ($5.76 \mathrm{~g}, 60 \%$). Spectral data was identical to that reported in literature: ${ }^{6}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.63$ (ddd, $J=17.1,10.3$, $9.2,1 \mathrm{H}), 4.91(\mathrm{dd}, J=10.3,2.0,1 \mathrm{H}), 4.85(\mathrm{ddd}, J=17.0,2.0,0.9,1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 140.2,112.3,63.1,34.8,32.7,24.7,-1.0,-3.2$; IR (thin film) $3309,1627,1248 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $\mathrm{m} /$ z calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$195.1181, found 195.1180. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{OSi}: \mathrm{C}, 62.72 ; \mathrm{H}, 11.70$. Found: C, 62.93; H , 11.86.

Allylic Silane 23. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{NaH}(0.059 \mathrm{~g}, 2.3 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added a solution of $\mathbf{S 3}(0.200 \mathrm{~g}$, 1.16 mmol) in THF (2 mL). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and benzylbromide ($0.28 \mathrm{~mL}, 2.3 \mathrm{mmol}$) was added dropwise. The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ and stirred for 20 h . The reaction mixture was diluted with EtOAc (10 mL) and saturated aqueous $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{2 3}$ as a colorless oil. Purification by flash chromatography ($2: 1$ to $1: 1$ hexanes/toluene) provided 23 as a colorless oil ($0.285 \mathrm{~g}, 94 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 5.60$ (ddd, $J=17.1,10.3,9.3,1 \mathrm{H}), 4.88(\mathrm{dd}, J=10.3,1.9,1 \mathrm{H}), 4.80(\mathrm{ddd}, J=17.1,2.0,0.9,1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.4,2 \mathrm{H}), 1.79$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.35(\mathrm{~m}, 4 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 140.2,138.8,128.5,127.8,127.6,112.2,72.9,70.3,34.8$, 29.5, 25.0, -3.2; IR (thin film) 1428, $1102 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 285.1651$ found 285.1655 . Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{OSi}: \mathrm{C}, 73.22 ; \mathrm{H}, 9.98$. Found: C, $73.29 ; \mathrm{H}, 10.11$.

II. Synthesis of Enantioenriched α-Silyloxy Allylic Silane (-)-14 by Asymmetric Reduction

$$
\mathrm{HO} \quad \mathrm{PhMe}_{2} \mathrm{SiO}^{\sim}
$$

S4

Allylic Silylether S4. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of allylic alcohol ($1.00 \mathrm{~mL}, 14.7 \mathrm{mmol}$), $\mathrm{PhMe}_{2} \mathrm{SiCl}(3.70 \mathrm{~mL}, 22.1 \mathrm{mmol})$, and DMAP ($0.900 \mathrm{~g}, 7.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added triethylamine ($3.83 \mathrm{~mL}, 29.4 \mathrm{mmol}$). The reaction mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was diluted $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo. The resulting slurry was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and hexanes $(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with hexanes $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(25 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 4}$ as a pink oil. Purification by flash chromatography (hexanes to $15: 85 \mathrm{EtOAc} /$ hexanes) provided $\mathbf{S 4}$ as a colorless oil ($2.44 \mathrm{~g}, 86 \%$). Spectral data were identical to those reported in literature: ${ }^{71} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 5.96-5.86(\mathrm{ddt}, J=17.1,10.3,4.9,1 \mathrm{H}), 5.26$ (ddd, $J=17.1,3.6,1.8,1 \mathrm{H}), 5.09(\mathrm{ddd}, J=10.4,3.3,1.6,1 \mathrm{H}), 4.15(\mathrm{ddd}, J=4.9,1.6,1.6,2 \mathrm{H}), 0.40(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 125$ MHz) $\delta 137.9,137.2,133.7,129.9,128.1,114.9,64.3,-1.48$; IR (thin film) $3070,2960,1428,1252 \mathrm{~cm}^{-1}$.

Acyl Silane S6. To a cooled ($-78^{\circ} \mathrm{C}$) solution of $\mathbf{S 4}(8.00 \mathrm{~g}, 41.6 \mathrm{mmol})$, and $\mathrm{LiCl}(5.30 \mathrm{~g}, 125 \mathrm{mmol})$ in THF (200 mL) was added s-BuLi ($93.8 \mathrm{~mL}, 1.30 \mathrm{M}$ in $92: 8$ cyclohexane/hexanes, 125 mmol). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was poured onto a vigorously stirring saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1200 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(150 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford α hydroxy allylic silane $\mathbf{S 5}$ as a yellow oil. Spectral data were identical to those reported in literature: ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.57(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{ddd}, J=17.1,10.7,5.3,1 \mathrm{H}), 5.06(\mathrm{ddd}, J=17.2,1.7,1.7,1 \mathrm{H}), 5.00(\mathrm{ddd}, J=10.7,1.7,1.7,1 \mathrm{H})$, $4.22(\mathrm{ddd}, J=5.3,2.0,2.0,1 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 139.5,136.2,134.3,129.6,128.0,110.2$, 68.6, $-5.6,-5.9$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$215.0868, found 215.0870.

In a separate flask, to a solution of trifluoroacetic anhydride ($8.70 \mathrm{~mL}, 62.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ as a solution of DMSO $(5.90 \mathrm{~mL}, 83.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added dropwise. After stirring for 30 minutes at $-78{ }^{\circ} \mathrm{C}$, a solution of α-hydroxy allylic silane $\mathbf{S 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added over 30 min . After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, triethylamine (17.4 $\mathrm{mL}, 125 \mathrm{mmol}$) was added dropwise. The solution was stirred at $-7{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(150$ mL) and warmed to $24^{\circ} \mathrm{C}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(200 \mathrm{~mL})$. The resultant organic phase was dried over MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified S6 as a yellow oil. Purification by flash chromatography (5:95 to 10:90 EtOAc/hexanes) provided $\mathbf{S 6}$ as a vibrant yellow oil ($7.00 \mathrm{~g}, 89 \%$). Spectral data were identical to those reported in literature: ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 6.41(\mathrm{dd}, J=17.9,10.8,1 \mathrm{H}), 5.98(\mathrm{~d}, J=17.9,1 \mathrm{H}), 5.87(\mathrm{~d}, J=10.8,1 \mathrm{H})$, $0.53(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 236.0141 .3,135.3,134.1,130.0,129.7,128.4,-3.6$; IR (thin film) 2962, 1638, 1598, $1430,1250 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$213.0712, found 213.0708.

Allylic Silane (-)-14. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $(+$)-diisopinocampheylchloroborane ($11.33 \mathrm{~g}, 35.31 \mathrm{mmol})$ in THF (30 mL) was added a solution of $\mathbf{S 6}(5.60 \mathrm{~g}, 29.4 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$. The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ and stirred for 60 h . Acetaldehyde ($3.30 \mathrm{~mL}, 58.8 \mathrm{mmol}$) was added, and the reaction was stirred at $24{ }^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was concentrated in vacuo, and the residual pinene was removed under reduced pressure (~ 0.1 Torr). The resulting slurry was dissolved in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and diethanolamine ($11.3 \mathrm{~mL}, 118 \mathrm{mmol}$) was added. The reaction mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 20 h . The resulting suspension was filtered through Celite ${ }^{\circledR}$, and the solids were washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated in vacuo to afford α-hydroxy allylic silane (-)-S5 as a clear oil. α-Hydroxy allylic silane (-)-S5 was isolated in 93% ee by chiral HPLC (Chiralcel OD-H column, 99.5:0.5 hexanes $/ \mathrm{IPA}, 1 \mathrm{~mL} / \mathrm{min}, 220 / 254 \mathrm{~nm}$), $[\alpha]^{23}{ }_{\mathrm{D}}-10.5$ (c 0.50, CHCl_{3}). Spectral data for (-)-S5 were identical to those reported in literature. ${ }^{8}$ - α-Hydroxy allylic silane (- - $\mathbf{S 5}$ was dissolved in DMF (60 mL) and stirred at $24^{\circ} \mathrm{C}$ as $\mathrm{TBDMSCl}(8.87$ $\mathrm{g}, 58.8 \mathrm{mmol}$) and imidazole ($3.00 \mathrm{~g}, 44.1 \mathrm{mmol}$) were added. The reaction mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and hexanes $(50 \mathrm{~mL})$. The layers were separated and aqueous layer was extracted with hexanes $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified (-)-14 as a colorless oil. Purification by flash chromatography (hexanes) provided (-) $\mathbf{- 1 4}$ as a colorless oil ($8.34 \mathrm{~g}, 93 \%$). Spectral data were identical to those reported in literature: ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{ddd}, J=17.1,10.6,5.3,1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.0$, $1 \mathrm{H}), 4.89(J=10.6,1 \mathrm{H}), 4.12(\mathrm{~d}, J=5.2,1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 125 MHz) $\delta 139.4,137.2,134.5,129.3,127.7,110.4,68.9,26.0,18.4,-4.4,-5.2,-5.7,-5.8$; IR (thin film) $2958,2858,1252 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}_{2}$: C, $66.60 ; \mathrm{H}, 9.86$. Found: C, $66.70 ; \mathrm{H}, 10.01 .[\alpha]_{\mathrm{D}}^{23}-7.0\left(c 0.35, \mathrm{CHCl}_{3}\right)$.

III. [3+2] Cycloaddition of α-Silyloxy Allylic Silanes and Chlorosulfonyl Isocyanate

γ-Lactam 5. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of α-siloxy allylic silane $\mathbf{S} 2(0.750 \mathrm{~g}, 2.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added chlorosulfonyl isocyanate ($0.27 \mathrm{~mL}, 3.1 \mathrm{mmol}$). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ removed in vacuo. The resultant aqueous layer was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 5$ $\mathrm{mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(15 \mathrm{~mL})$. The resultant organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford the N-chlorosulfonyl γ-lactam as a clear oil. The N chlorosulfonyl γ-lactam was dissolved in toluene $(30 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$ Red- $\mathrm{Al}^{\mathbb{}}(0.95 \mathrm{~mL}, 65 \% \mathrm{w} / \mathrm{w}$ solution in toluene, 3.1 mmol) was added dropwise. After 1 h , the reaction mixture was diluted with water (0.62 mL), and stirred at $24^{\circ} \mathrm{C}$ for 1 h . The resultant slurry was filtered, and the solids washed with toluene (10 mL). The filtrate was concentrated in vacuo, to afford unpurified 5 as a white slurry. Purification by flash chromatography ($30: 70 \mathrm{EtOAc} /$ hexanes) provided 5 as a white solid ($0.465 \mathrm{~g}, 55 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $131-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(3 \mathrm{H})$, $6.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=17.6,11.0,1 \mathrm{H}), 2.26(\mathrm{dd}, J=17.6,4.6,1 \mathrm{H}), 2.16(\mathrm{ddd}, J=11.0,4.6,2.0,1 \mathrm{H}), 1.34-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.08(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 178.5,135.1,132.9,129.5,128.1$, $82.0,31.0,28.5,25.8,18.4,18.3,17.8,10.9,10.8,-4.0,-4.6$; IR (thin film) $3199,1702 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NNaO}_{2} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+} 428.2417$, found 428.2404. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{Si}_{2}: \mathrm{C}, 65.13 ; \mathrm{H}, 9.69$. Found: C, 65.19; $\mathrm{H}, 9.81$.

IV. Nucleophilic Substitution of $\boldsymbol{\gamma}$-Siloxy- $\boldsymbol{\gamma}$-Lactams

Lactam S7. To a cooled ($-78^{\circ} \mathrm{C}$) solution of lactam $2(2.00 \mathrm{~g}, 4.61 \mathrm{mmol})$ in THF (20 mL) was added vinylmagnesium bromide $\left(23.0 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in THF, 23 mmol). The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ over 1.5 h . The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added dropwise. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S} 7$ as a yellow oil. Purification by flash chromatography (20:80 to 50:50 EtOAc/hexanes) provided $\mathbf{S 7}$ as a white solid ($1.19 \mathrm{~g}, 78 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $114-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.4,1 \mathrm{H}), 4.26(\mathrm{~d}, J=7.0,1 \mathrm{H}), 2.71(\mathrm{q}, J=$ $7.4,1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=5.7,3 \mathrm{H}), 1.30(\mathrm{~d}, J=5.7,3 \mathrm{H}) 1.18(\mathrm{~d}, J=7.6,3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.6,3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04$ $(\mathrm{d}, \mathrm{J}=7.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.3,136.4,135.8,134.4,129.2,127.9,117.36,60.7,43.1,33.3,20.6,19.8,19.7$, 14.9, 12.3, 11.8, 11.7; IR (thin film) $1696 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NOSi}(\mathrm{M}+\mathrm{H})^{+} 330.2253$, found 330.2249. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NOSi}$: C, 72.89 ; H, 9.48. Found: C, 73.08; H, 9.56.

Abstract

Alkene 6. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $5(0.413 \mathrm{~g}, 1.02 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added vinyl magnesium bromide (3.1 mL , 1.0 M solution in THF, 3.1 mmol). The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ over 12 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ added dropwise. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{6}$ as a yellow oil. Purification by flash chromatography ($50: 50 \mathrm{EtOAc} /$ hexanes to EtOAc) provided 6 as a white foam $(0.217 \mathrm{~g}, 71 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{ddd}, J=17.0,10.0,7.5,1 \mathrm{H}), 5.55(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.0,1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1,1 \mathrm{H}), 4.11(\mathrm{dd}, J=7.3,7.3,1 \mathrm{H}), 2.54(\mathrm{dd}, J=17.2,10.5,1 \mathrm{H}), 2.33(\mathrm{dd}, J=17.2,9.3$, $1 \mathrm{H}), 1.95$ (ddd, $J=10.3,9.4,7.2,1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 178.2,139.7,135.3$, $132.9,129.5,128.1,116.3,58.9,32.7,24.7,18.7,18.6,18.5,18.4,11.2,11.1$; IR (thin film) $3199,1694 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NNaOSi}(\mathrm{M}+\mathrm{Na})^{+} 324.1760$, found 324.1764. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NOSi}$: C, 71.71; H, 9.03. Found: C, 71.48; $\mathrm{H}, 9.00$.

Lactam 7. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of lactam $2(0.100 \mathrm{~g}, 0.231 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added allylmagnesium chloride $(0.35$ $\mathrm{mL}, 0.69 \mathrm{mmol}$). The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ over 2 h . After stirring for 3 h at $24^{\circ} \mathrm{C}$, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added dropwise. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(15 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified 7 as a colorless oil. Purification by flash chromatography ($20: 80$ to $40: 60 \mathrm{EtOAc} /$ hexanes) provided 7 as a white solid $(0.065 \mathrm{~g}, 82 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $131-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 5.68-5.55$ (dddd, $J=16.9,10.2,9.0,5.1,1 \mathrm{H}), 5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=10.0,1.0,1 \mathrm{H}), 5.01(\mathrm{dd}, J=16.9,1.0,1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.0,2.2$, $1 \mathrm{H}), 2.79(\mathrm{q}, J=7.3,1 \mathrm{H}), 1.96(\mathrm{ddd}, J=13.8,5.0,1.9,1 \mathrm{H}), 1.84(\mathrm{ddd}, J=13.8,11.0,9.0,1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, J=7.4$, $6 \mathrm{H}), 1.19(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 179.2,135.8,135.6$, $134.6,129.2,127.9,118.0,57.0,43.4,36.6,32.9,20.6,20.5,19.8,19.7,13.7,11.8,11.7,11.6$; IR (thin film) $3199,1696 \mathrm{~cm}^{-1}$; HRMS
(ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NOSi}(\mathrm{M}+\mathrm{H})^{+} 344.2410$, found 344.2407. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NOSi}$: C, 73.41; $\mathrm{H}, 9.68$. Found: C, 73.16; H, 9.69.

Lactam 9. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\operatorname{lactam} \mathbf{8}^{9}(1.00 \mathrm{~g}, 2.65 \mathrm{mmol})$ in toluene (150 mL) was added allylmagnesium chloride $(2.92 \mathrm{~mL}, 5.83 \mathrm{mmol})$. The reaction mixture was warmed to $24^{\circ} \mathrm{C}$ over 12 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$ was added. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified 9 as an $85: 15$ mixture of diastereomers. Purification by flash chromatography ($50: 50 \mathrm{EtOAc} /$ hexanes to EtOAc) provided 9 as a clear oil ($0.635 \mathrm{~g}, 83 \%, 85: 15$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 2 \mathrm{H}), 3.57$ $(\mathrm{dd}, J=10.5 .2 .7,1 \mathrm{H}), 2.57(\mathrm{q}, J=7.3,1 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=7.3,3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 179.0,136.3,135.5,134.4,129.8,128.2,118.0,56.5,43.4,36.0,32.3,11.3,10.6,-4.5,-4.7$; IR (thin film) 3205 , 1698, 1428, $1252 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NNaOSi}(\mathrm{M}+\mathrm{Na})^{+} 310.1603$, found 310.1601.

Nitrile 10. To a solution of $2(2.00 \mathrm{~g}, 4.61 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{AlCN}(23.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in toluene, 23 mmol$)$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a 1 N solution of aqueous $\mathrm{HCl}(20$ mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(25 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{1 0}$ as a viscous oil. Purification by flash chromatography (30:70 to 50:50 EtOAc/hexanes) provided 10 as a white foam ($1.26 \mathrm{~g}, 84 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{q}, J=7.4,1 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~d}, J=7.4,3 \mathrm{H}), 1.32(\mathrm{~d}, J=7.4,3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.6,3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 180.2,135.6,132.7,130.0,128.5,117.4,50.8,42.0,32.5,20.4,19.6,19.5,16.8,11.7,11.5,11.4$; IR (thin film) 3207,1706 cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+} 329.2049$, found 329.2044.

Alkynylamide S9. A suspension of tert-butyl- N-methylcarbamate ${ }^{10}(4.00 \mathrm{~g}, 15.2 \mathrm{mmol}), \mathbf{S 8}^{11}(2.00 \mathrm{~g}, 15.3 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(0.373 \mathrm{~g}, 1.53 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(6.47 \mathrm{~g}, 30.5 \mathrm{mmol})$ and 1,10-phenanthroline ($0.550 \mathrm{~g}, 3.05 \mathrm{mmol}$) in toluene (15 mL) was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 60 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and the solids were washed the hexanes. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 9}$ as a brown oil. Purification by flash chromatography (5:95 to 15:85 EtOAc/hexanes) provided $\mathbf{S 9}$ as a colorless oil ($3.10 \mathrm{~g}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.11(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $154.7,99.3,66.5,37.4,28.3,18.8,11.6$; IR (thin film) 2943, 2865, $1725,1465 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NNaO}_{2} \mathrm{Si}(\mathrm{M}$ $+\mathrm{Na})^{+} 334.2178$, found 334.2177. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$: C, $65.54 ; \mathrm{H}, 10.68$. Found: C, $65.64 ; \mathrm{H}, 10.72$.

Alkynylamide S10. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S 9}(3.00 \mathrm{~g}, 9.63 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ was added t-Bu $\mathrm{NF}_{4} \mathrm{NF}(10.60 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 11 mmol). The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with pentane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with
saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1 0}$ as an orange oil. Purification by flash chromatography ($2: 98$ to $7: 93 \mathrm{Et}_{2} \mathrm{O} /$ pentane) provided $\mathbf{S 1 0}$ as a colorless oil ($0.914 \mathrm{~g}, 61 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 154.6, 82.7, 78.6, 57.2, 37.0, 28.1; HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 178.0844$, found 178.0840. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 61.91; H, 8.44. Found: C, 61.70; H, 8.65.

γ-Lactam 11. To a cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S 1 0}(0.575 \mathrm{~g}, 3.71 \mathrm{mmol})$ in toluene $(8 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(1.57 \mathrm{~mL}, 2.48 \mathrm{M}$ in hexanes, 3.89 mmol). After $15 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{AlCl}(3.70 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 3.7 mmol) was added, and the reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After 15 min , a solution of $\mathbf{8}^{9}(0.350 \mathrm{~g}, 0.926 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added. The reaction mixture was heated to $50{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with saturated aqueous sodium potassium tartrate (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{1 1}$ as a red oil. Purification by flash chromatography ($20: 80$ to 50:50 EtOAc/hexanes) provided $\mathbf{1 1}$ as a white solid ($0.371 \mathrm{~g}, 62 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $118-120^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 400$ $\mathrm{MHz}) \delta 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{q}, J=7.2,1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}$, $J=7.2,3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 178.7,154.4,135.8,134.6,129.7,128.1,82.8,81.9,65.5,50.3$, $42.3,37.2,34.4,28.3,13.1,10.8,-4.65,-4.74$; IR (thin film) $3197,2265,1698 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}$ $+\mathrm{Na})^{+} 423.2080$, found 423.2074. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: C, 65.96; H, 8.05. Found: C, 65.79; H, 8.24.

γ-Lactam 12. To a cooled $\left(-42^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S 1 1}{ }^{12}(0.271 \mathrm{~g}, 1.15 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $n-\operatorname{BuLi}(0.430 \mathrm{~mL}, 2.80 \mathrm{M}$ in hexanes, 1.21 mmol$)$. After $15 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{AlCl}(1.15 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 1.2 mmol$)$ was added, and the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$. After 15 min , a solution of $2(0.100 \mathrm{~g}, 0.230 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added, and the resulting solution was heated to $50^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with saturated aqueous sodium potassium tartrate (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{1 2}$ as a yellow oil. Purification by flash chromatography ($30: 70 \mathrm{EtOAc} / \mathrm{hexanes}$) provided $\mathbf{1 2}$ as a colorless oil $\left(0.095 \mathrm{~g}, 77 \%,>95: 5\right.$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.29(\mathrm{~m}, 11 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.28(\mathrm{~d}, J=1.5,2 \mathrm{H}), 2.58(\mathrm{q}, J=7.3,1 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.38(\mathrm{~d}, J=7.0,3 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2,3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.6,3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.5,3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 179.1,138.9,135.8,134.0,129.3,129.0,128.5,128.0,127.3,82.4,82.2,57.8,51.0,42.6,41.6,34.4,20.6,20.5$, $19.9,19.8,16.1,11.9,11.8,11.4$; IR (thin film) $3245,1692 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+} 559.3121$, found 559.3115; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{OSi}$: C, 78.31; H, 8.26. Found: C, 78.12; H, 8.25.

Alkyne S13. To a suspension of $\mathbf{S 1 2}{ }^{13}(7.30 \mathrm{~g}, 32.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.75 \mathrm{~g}, 48.8 \mathrm{mmol})$ in DMF (15 mL) was added dibenzylamine ($9.40 \mathrm{~mL}, 48.8 \mathrm{mmol}$). The resulting suspension was heated at $50^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was cooled to 24 ${ }^{\circ} \mathrm{C}$ and diluted with saturated aqueous ammonium chloride (50 mL). The resulting heterogeneous mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(40 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1 3}$ as a yellow oil. Purification by flash
chromatography ($10: 90 \mathrm{EtOAc} /$ hexanes) provided $\mathbf{S 1 3}$ as a colorless oil ($5.63 \mathrm{~g}, 69 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=7.2,2 \mathrm{H}), 2.35(\mathrm{dt}, J=7.2,2.6,2 \mathrm{H}), 1.93(\mathrm{t}, J=2.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100$ MHz) $\delta 139.6,128.8,128.4,127.1,83.2,69.2,58.2,52.2,17.2$; IR (thin film) $3299 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+$ $H)^{+} 250.1596$, found 250.1592. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}: \mathrm{C}, 86.70 ; \mathrm{H}, 7.68$. Found: C, 86.48; H, 7.68.

S13

2

13
γ-Lactam 13. To a cooled $\left(-42^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S 1 3}(0.576 \mathrm{~g}, 2.31 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added n - $\mathrm{BuLi}(0.93 \mathrm{~mL}, 2.60 \mathrm{M}$ in hexanes, 2.42 mmol). After $15 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{AlCl}(2.31 \mathrm{~mL} 1.0 \mathrm{M}$ in hexanes, 2.3 mmol$)$ was added, and the reaction mixture was warmed to $0^{\circ} \mathrm{C}$. After 15 min , a solution of $2(0.200 \mathrm{~g}, 0.460 \mathrm{mmol})$ in toluene $(6 \mathrm{~mL})$ was added, and the resulting solution was heated to $50^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was cooled to $24^{\circ} \mathrm{C}$ and diluted with saturated aqueous sodium potassium tartrate (20 $\mathrm{mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified 13 as a yellow oil. Purification by flash chromatography ($20: 80$ to $40: 60 \mathrm{EtOAc} / \mathrm{hexanes}$) provided 13 as a white solid ($0.229 \mathrm{~g}, 90 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $147-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 11 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=7.3$, $2 \mathrm{H}), 2.49(\mathrm{q}, J=7.2,1 \mathrm{H}), 2.35(\mathrm{dt}, J=7.3,1.8,2 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=6.4,3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.2,3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.16$ $(\mathrm{d}, J=7.6,3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.5,3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 178.9,139.5,135.8,134.2,129.2,128.8$, $128.4,128.0,127.1,85.8,77.7,58.3,52.2,50.7,42.7,34.9,20.6,19.8,19.7,17.5,15.4,11.9,11.8,11.2$; IR (thin film) 3205,1698 cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+} 551.3458$, found 551.3445. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{OSi}$: C, 78.49; H, 8.42. Found: C, 78.24; H, 8.42.

V. Stereochemistry and Structural Proofs

A. Stereoselectivity of \mathbf{N}, \mathbf{O}-acetal substitution

Piperidine 22.
nOe experiment was performed for $\mathbf{2 2}$ using a pure sample.
$\mathbf{H}^{\mathbf{A}}$ irradiated: $\mathrm{H}^{\mathrm{B}}(1.6 \%), \mathrm{H}^{\mathrm{C}}(0 \%)$
Note: The observation on nOe between H^{A} and H^{B} and the absence of nOe between H^{A} and H^{C} suggests a 1,3 trans conformation.

B. Proof of Translactamization versus Acyl-transfer

δ-Lactam S17 was formed by reduction and translactamization of azide S16. γ-Lactam S19 was formed by the reduction of γ-lactam S18 (translactamization does not occur when the lactam nitrogen is not activated). The amine of lactam S19 was protected as the toluenesulfonate amide (S21), and its structure confirmed by X-ray crystallography (See Section XII for crystallographic data). The amine of lactam S19 was protected as the tert-butyl carbamate ($\mathbf{S 2 2}$), which would be the product of acyl-transfer upon reduction of azide S16. The spectral data of the isolated δ-lactam (S17) and γ-lactam S22 do not match, thus confirming translactamization as the major reaction pathway.

Abstract

Alkene S14. To a solution of $\mathbf{6}(0.215 \mathrm{~g}, 0.713 \mathrm{mmol})$ and DMAP $(0.105 \mathrm{~g}, 0.856 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ at $24{ }^{\circ} \mathrm{C}$ was added di-tert-butyl dicarbonate $(0.33 \mathrm{~mL}, 1.4 \mathrm{mmol})$. The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(40 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1 4}$ as a yellow oil. Purification by flash chromatography (10:90 to $50: 50 \mathrm{EtOAc} /$ hexanes $)$ provided $\mathbf{S 1 4}$ as a white solid $\left(0.268 \mathrm{~g}, 94 \%,>95: 5\right.$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $80-82^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 5.86(\mathrm{ddd}, J=16.8,10.3,7.0,1 \mathrm{H}), 5.14(\mathrm{~d}, J$ $=10.3,1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.8,1 \mathrm{H}), 4.56(\mathrm{dd}, J=7.0,3.0,1 \mathrm{H}), 2.87(\mathrm{dd}, J=18.1,11.3,1 \mathrm{H}), 2.46(\mathrm{dd}, J=18.1,4.0,1 \mathrm{H}), 1.80(\mathrm{ddd}, J$ $=11.2,3.9,3.1,1 H), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 174.3,149.6,138.1,135.0$, $132.3,129.7,128.2,115.3,82.8,61.4,33.5,28.0,19.8,18.4,18.3,18.2,18.1,10.6,10.5$; IR (thin film) $1785,1750,1719 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NNaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 424.2284$, found 424.2293. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$: C, 68.78; H, 8.78. Found: C, 68.88; H, 8.83 .

Alcohol S15. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S 1 4}(0.300 \mathrm{~g}, 0.747 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$ was bubbled ozone. When the solution became bright blue, oxygen was bubbled through the solution until it became clear. Sodium borohydride ($0.085 \mathrm{~g}, 2.2 \mathrm{mmol}$) was added, and the reaction mixture warmed to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 10$ $\mathrm{mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1 5}$ as a white solid. Purification by flash chromatography ($30: 70$ to 70:30 EtOAc/hexanes) provided $\mathbf{S 1 5}$ as a white solid ($0.300 \mathrm{~g}, 99 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): $\mathrm{mp} 128-131^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, \mathrm{J}=$ $11.6,5.5,3.4,1 \mathrm{H}), 3.65(\mathrm{ddd}, J=11.6,6.7,3.9,1 \mathrm{H}), 3.03(\mathrm{dd}, J=18.3,11.8,1 \mathrm{H}), 2.80(\mathrm{dd}, J=3.9,3.4,1 \mathrm{H}), 2.41(\mathrm{dd}, J=18.3,3.3$, $1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~m}, 12 \mathrm{H}){ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.4,150.2,134.9,132.5,129.6$, $128.2,83.1,65.7,61.3,34.7,28.1,18.4,18.3,18.2,18.1,15.6,10.5,10.4$; IR (thin film) $3450,1775,1719 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NNaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 428.2233$, found 428.2229. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}$: C, 65.15 ; H, 8.70. Found: C, 65.14; H, 8.73.

Azide S16. To a solution of $\mathbf{S 1 5}(1.46 \mathrm{~g}, 3.60 \mathrm{mmol})$, toluenesulfonyl chloride ($0.824 \mathrm{~g}, 4.32 \mathrm{mmol}$), and DMAP ($0.484 \mathrm{~g}, 3.96$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $24^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.00 \mathrm{~mL}, 7.20 \mathrm{mmol})$. The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was concentrated in vacuo, and diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford a white solid. A suspension of the white solid and sodium azide ($1.17 \mathrm{~g}, 18.0 \mathrm{mmol}$) in DMF (10 mL) was heated to $50{ }^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and $\mathrm{EtOAc}(30 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaCl $(30 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1 6}$ as a yellow oil. Purification by flash chromatography (15:85 to 50:50 EtOAc/hexanes) provided $\mathbf{S 1 6}$ as a white solid (1.31 g , 85%, $>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): mp $82-84{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.38(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=12.3,5.4,1 \mathrm{H}), 3.46(\mathrm{dd}, J=12.3,2.8,1 \mathrm{H}), 2.99(\mathrm{dd}, J=18.3,11.7,1 \mathrm{H}), 2.45(\mathrm{dd}, J=18.3$, $3.1,1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.7,149.8,134.8$,
$132.1,129.8,128.3,83.5,58.3,54.9,33.9,28.1,18.4,18.3,18.2,18.1,16.6,10.5,10.3$; IR (thin film) $2113,1789,1752,1713 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 453.2298$, found 453.2303. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}$: C, 61.36; H, 7.96. Found: C, 61.69; H, 7.79.

$\boldsymbol{\delta}$-Lactam S17. A suspension of $\mathbf{S 1 6}(0.475 \mathrm{~g}, 1.17 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.117 \mathrm{~g})$ in $\mathrm{MeOH}(23 \mathrm{~mL})$ at $24^{\circ} \mathrm{C}$ was stirred under an atmosphere of H_{2} for 18 hr . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated in vacuo to afford a colorless oil. The oil was dissolved in toluene (60 mL) and acetic acid $(0.03 \mathrm{~mL}, 0.6 \mathrm{mmol})$ was added. The reaction mixture was heated at reflux for 24 h . The reaction mixture was concentrated in vacuo to afford unpurified $\mathbf{S 1 7}$ as an orange oil. Purification by flash chromatography (EtOAc) provided $\mathbf{S 1 7}$ as a white foam ($0.346 \mathrm{~g}, 73 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, \mathrm{J}=17.5$, $11.1,1 \mathrm{H}), 2.36(\mathrm{dd}, J=17.5,7.5,1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~m}, 12 \mathrm{H})$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 405.2574$, found 405.2577 .

Nitrile S18. To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $5(1.10 \mathrm{~g}, 2.71 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiCN}(1.10 \mathrm{~mL}, 8.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.68 \mathrm{~mL}, 5.4 \mathrm{mmol})$. The reaction was warmed to $24^{\circ} \mathrm{C}$ over 6 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ removed in vacuo. The resultant aqueous layer was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(35 \mathrm{~mL})$. The resultant organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 1 8}$ as a brown oil. Purification by flash chromatography ($20: 80$ to $30: 70 \mathrm{EtOAc} /$ hexanes $)$ provided $\mathbf{S 1 8}$ as a white solid $\left(0.681 \mathrm{~g}, 84 \%,>95: 5\right.$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=6.8,1 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}=17.0$, $10.6,1 \mathrm{H}), 2.51(\mathrm{ddd}, J=10.6,7.8,6.5,1 \mathrm{H}), 2.34(\mathrm{dd}, J=17.0,7.8,1 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.5$, $3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.4,3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.5,135.0,131.2,130.3,128.7,119.3,45.2,31.3$, $23.4,18.7,18.6,18.5,18.4,11.1,11.0$; IR (thin film) $3218,1702 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONaSi}(\mathrm{M}+\mathrm{Na})^{+}$ 323.1555 , found 323.1557 .

Amine S19 and Bis-lactam S20. To a suspension of $\mathbf{S 1 8}(0.100 \mathrm{~g}, 0.333 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ was stirred at $24^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated in vacuo to provide the unpurified mixture of $\mathbf{S 1 9}$ and $\mathbf{S 2 0}$ as a colorless oil. Purification by flash chromatography (EtOAc to $50: 50 \mathrm{MeOH} / \mathrm{EtOAc}$) provided $\mathbf{S 1 9}$ as a white foam $(0.040 \mathrm{~g}, 40 \%)$ and $\mathbf{S 2 0}$ as a white foam $(0.030 \mathrm{~g}, 30 \%)$. Spectral data for $\mathbf{S 1 9 :}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}$, $3 \mathrm{H}), 6.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=12.8,3.2,1 \mathrm{H}), 2.61(\mathrm{dd}, J=17.4,11.0,1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.8,7.9,1 \mathrm{H}), 2.38(\mathrm{dd}, J=$ $17.5,7.8,1 \mathrm{H}), 1.86(\mathrm{ddd}, J=11.1,7.7,6.0,1 \mathrm{H}), 1.85-1.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.5,3 \mathrm{H})$, $1.10(\mathrm{~d}, J=7.5,3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 178.7,135.1,133.1,129.5,128.1,58.5,48.1,33.1,20.3$, $18.61,18.58,18.45,11.2,10.9$; IR (thin film) $3240,1692 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+} 305.2049$, found 305.2055. Spectral data for S20: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.47(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.30$ $(\mathrm{m}, 4 \mathrm{H}$ and $\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 178.7$, $135.1,133.4,129.4,128.1,56.4,55.7,33.5,21.3,18.7,18.6,18.5,11.4,11.0$; IR (thin film) $3238,1681,1686 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{NaO}_{2} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+} 614.3574$, found 614.3553 .

N-Toluenesulfonamide S21. To a solution of $\mathbf{S 1 9}(0.080 \mathrm{~g}, 0.26 \mathrm{mmol})$ and toluenesulfonyl chloride $(0.065 \mathrm{~g}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(8 \mathrm{~mL})$ at $24{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.050 \mathrm{~mL}, 0.34 \mathrm{mmol})$. The reaction mixture was stirred at $24{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was concentrated in vacuo, and diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaCl $(20 \mathrm{~mL})$. The resultant organic phase was dried with MgSO_{4} and filtered. The filtrate was concentrated in vacuo to provide $\mathbf{S} 21$ as a yellow oil. Purification by flash chromatography ($80: 20$ to EtOAc) provided $\mathbf{S 2 1}$ as a white crystalline solid ($0.075 \mathrm{~g}, 62 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.64(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.38(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1,2 \mathrm{H}), 6.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~m}$, $1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.8,11.4,1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{dd}, J=17.8,7.2,1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.24$ $(\mathrm{m}, 1 \mathrm{H}), 1.10-0.98(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 179.3,143.3,137.6,135.1,132.7,129.8,129.5,128.2,127.0,56.5,49.0$, $32.8,21.6,19.8,18.6,18.5,18.4,18.3,11.0,10.7$; IR (thin film) $3193,1675,1404,1140 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{SSi}(\mathrm{M}+\mathrm{Na})^{+}$481.1957, found 481.1962. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}, 62.84$; H , 7.47. Found: C, 62.92; H , 7.58.

Lactam S22. To a solution of $\mathbf{S} 19(0.010 \mathrm{~g}, 0.033 \mathrm{mmol})$ and DMAP $(0.004 \mathrm{~g}, 0.04 \mathrm{mmol})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ at $24^{\circ} \mathrm{C}$ was added di-tert-butyl dicarbonate ($0.01 \mathrm{~mL}, 0.05 \mathrm{mmol}$). The reaction mixture was stirred at $24^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The resultant organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was concentrated in vacuo to afford unpurified $\mathbf{S 2 2}$ as a colorless oil. Purification by flash chromatography (EtOAc) provided $\mathbf{S} 22$ as a white solid ($0.003 \mathrm{~g}, 22 \%,>95: 5$ diastereomer ratio as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.44(\mathrm{~m}, 5 \mathrm{H}), 4.26(\mathrm{ddd}, J=10.6,9.7,7.9,1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.5,7.9,1 \mathrm{H}), 3.39(\mathrm{dd}, J=10.5,9.7,1 \mathrm{H}), 2.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.94(\mathrm{ddd}, J=12.5,10.7,9.4,1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.7,150.5$, $135.1,132.0,130.2,128.7,83.9,55.3,50.2,38.5,28.2,27.9,19.0,18.9,18.8,18.7,11.8,11.1$; IR (thin film) $2946,2867,1818,1713$ cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 405.2574$, found 405.2571.

VI. HPLC Data for Enantioenriched α-Silyloxy Allylic Silane (-)-14

UV Detector Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height \%
38.317	2265429	49.97	44068	54.91
40.833	302	0.01	38	0.05
42.442	2268093	50.03	36150	45.04
Totals				
	4533824	100.00	80256	100.00

UV Detector Ch2-220nm Results Retention Time
38.317
42.442

(-)-S5
Page 1 of 1

Area \% Report

$\begin{array}{ll}\text { Data File: } & \text { C: } \backslash E Z S t a r t \backslash D a t a l N M L 6091-2-e n r i c h e d O H-210-26-2007 ~ 11-02-12 ~ P M . d a t ~ \\ \text { Method: } & \text { C: }: \text { EZStart }\end{array}$ equilibration-special report NML.met
$\begin{array}{ll}\text { Acquired: } & 10 / 26 / 2007 \text { 11:03:02 PM } \\ \text { Printed: } & 10 / 27 / 200711: 02: 43 \mathrm{AM}\end{array}$

UV Detector
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
37.925	2237434	96.26	34754	95.12
43.292	86951	3.74	1784	4.88

Totals	2324385	100.00	36538	100.00

UV Detector
Ch2-220nm
Results

Retention Time	Area	Area \%	Height	Height \%
37.925	44152251	96.48	685341	95.38
43.292	1613012	3.52	33210	4.62

Totals	45765263	100.00	718551	100.00

VII. X-Ray Crystallography

X-ray Data Collection, Structure Solution and Refinement for Nitrile (-)-16.

A colorless crystal of approximate dimensions $0.09 \times 0.26 \times 0.28 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection (40 $\mathrm{sec} /$ frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS ${ }^{3}$ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was $2 / m$ and the systematic absences were consistent with the centrosymmetric monoclinic space group $P 2_{1} / C$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined $\left(\mathrm{x}, \mathrm{y}, \mathrm{z}\right.$ and $\left.\mathrm{U}_{\text {iso }}\right)$. At convergence, $\mathrm{wR} 2=0.1023$ and Goof $=1.049$ for 218 variables refined against 3197 data $(0.75 \AA), \mathrm{R} 1=0.0361$ for those 2530 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

References.

1. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
2. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
3. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
4. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer AcademicPublishers.

Definitions:

$$
\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{1 / 2}
$$

$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for nitrile (-)-16.

Identification code	kaw117 (Nick Leonard)	
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \mathrm{Si}$	
Formula weight	244.37	
Temperature	$155(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$P 2_{1} / \mathrm{c}$	$=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=15.1467(16) \AA$	$=90.948(2)^{\circ}$.
	$\mathrm{b}=6.6838(7) \AA$	$=90^{\circ}$.
Volume	$\mathrm{c}=12.8779(13) \AA$	
Z	$1303.5(2) \AA^{3}$	
Density (calculated)	4	

Absorption coefficient	$0.166 \mathrm{~mm}^{-1}$
$F(000)$	520
Crystal color	colorless
Crystal size	$0.28 \times 0.26 \times 0.09 \mathrm{~mm}^{3}$
Theta range for data collection	2.69 to 28.29°.
Index ranges	$-20 \leq h \leq 20,-8 \leq k \leq 8,-17 \leq l \leq 14$
Reflections collected	8489
Independent reflections	$3197[\mathrm{R}(\mathrm{int})=0.0284]$
Completeness to theta $=28.29^{\circ}$	98.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9852 and 0.9550
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3197 / 0 / 218
Goodness-of-fit on F^{2}	1.049
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=2530$ data $]$	$\mathrm{R} 1=0.0361, \mathrm{wR} 2=0.0918$
R indices (all data, 0.75A)	$\mathrm{R} 1=0.0519, \mathrm{wR} 2=0.1023$
Largest diff. peak and hole	0.541 and -0.259 e. \AA^{-3}

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for nitrile (-)-16. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
Si(1)	2489(1)	1373(1)	9013(1)	13(1)
$\mathrm{O}(1)$	990(1)	-4720(2)	10892(1)	20(1)
N(1)	622(1)	-2952(2)	9419(1)	17(1)
$\mathrm{N}(2)$	-285(1)	799(2)	7933(1)	22(1)
C(1)	980(1)	-1335(2)	8791(1)	14(1)
C(2)	1550(1)	-114(2)	9583(1)	14(1)
C(3)	1819(1)	-1735(2)	10377(1)	16(1)
C(4)	1102(1)	-3313(2)	10291(1)	16(1)
C(5)	266(1)	-135(2)	8311(1)	16(1)
C(6)	2974(1)	2934(2)	10078(1)	22(1)
C(7)	2067(1)	2965(2)	7930(1)	23(1)
C(8)	3322(1)	-478(2)	8534(1)	16(1)
C(9)	3235(1)	-1354(2)	7551(1)	22(1)
C(10)	3813(1)	-2824(3)	7222(1)	30(1)
C(11)	4494(1)	-3474(3)	7869(2)	30(1)

$\mathrm{C}(12)$	$4598(1)$	$-2635(3)$	$8846(1)$	$28(1)$
$\mathrm{C}(13)$	$4025(1)$	$-1149(2)$	$9169(1)$	$21(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for nitrile $(-) \mathbf{- 1 6}$.

$\mathrm{Si}(1)-\mathrm{C}(7)$	1.8597(15)
$\mathrm{Si}(1)-\mathrm{C}(6)$	$1.8644(15)$
$\mathrm{Si}(1)-\mathrm{C}(8)$	1.8784(14)
$\mathrm{Si}(1)-\mathrm{C}(2)$	1.8932(14)
$\mathrm{O}(1)-\mathrm{C}(4)$	1.2320(17)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.3489(18)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.4596(18)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.1435(18)$
$\mathrm{C}(1)-\mathrm{C}(5)$	1.4747(19)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.5570(18)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.5397(18)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.5169(19)
C(8)-C(9)	1.399(2)
$\mathrm{C}(8)-\mathrm{C}(13)$	1.405(2)
C(9)-C(10)	1.387(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.385(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.384(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.388(2)
C(7)-Si(1)-C(6)	110.99(8)
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(8)$	110.80(7)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(8)$	110.58(7)
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(2)$	109.89(7)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(2)$	107.31(7)
$\mathrm{C}(8)-\mathrm{Si}(1)-\mathrm{C}(2)$	107.13(6)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	113.16(12)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	111.02(11)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	103.46(10)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	112.68(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	101.75(10)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Si}(1)$	115.80(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	115.68(9)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	105.05(11)

$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(1)$	$125.58(13)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.19(13)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$108.19(12)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(1)$	$179.56(16)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$116.90(13)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Si}(1)$	$121.27(11)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{Si}(1)$	$121.70(11)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$121.49(15)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$120.42(16)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$119.46(15)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.02(15)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$121.70(14)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for nitrile (-)-16. The anisotropic displacement factor exponent takes the form: $-2{ }^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
					$-1(1)$	
$\mathrm{O}(1)$	$14(1)$	$12(1)$	$14(1)$	$1(1)$	$-1(1)$	$-2(1)$
$\mathrm{N}(1)$	$21(1)$	$19(1)$	$22(1)$	$7(1)$	$-2(1)$	$-5(1)$
$\mathrm{N}(2)$	$22(1)$	$21(1)$	$21(1)$	$17(1)$	$-4(1)$	$1(1)$
$\mathrm{C}(1)$	$15(1)$	$14(1)$	$13(1)$	$1(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(2)$	$14(1)$	$14(1)$	$12(1)$	$0(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(3)$	$16(1)$	$18(1)$	$14(1)$	$4(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(4)$	$15(1)$	$15(1)$	$17(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(5)$	$17(1)$	$16(1)$	$13(1)$	$-1(1)$	$0(1)$	$-4(1)$
$\mathrm{C}(6)$	$20(1)$	$20(1)$	$25(1)$	$-6(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(7)$	$23(1)$	$21(1)$	$25(1)$	$8(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(8)$	$15(1)$	$15(1)$	$16(1)$	$1(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(9)$	$22(1)$	$24(1)$	$21(1)$	$-4(1)$	$-3(1)$	$-1(1)$
$\mathrm{C}(10)$	$31(1)$	$30(1)$	$29(1)$	$-13(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(11)$	$24(1)$	$21(1)$	$47(1)$	$-5(1)$	$10(1)$	$3(1)$
$\mathrm{C}(12)$	$19(1)$	$28(1)$	$37(1)$	$7(1)$	$-1(1)$	$5(1)$
$\mathrm{C}(13)$	$19(1)$	$26(1)$	$19(1)$	$2(1)$	$-1(1)$	$0(1)$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for nitrile (-)-16.

	x	y	z	U(eq)
H(1)	198(12)	-3700(30)	9229(14)	28(5)
H(1A)	1328(10)	-1850(20)	8245(12)	12(4)
H(2A)	1150(11)	780(20)	9919(13)	19(4)
H(3A)	2379(11)	-2350(30)	10204(13)	21(4)
H(3B)	1831(11)	-1220(30)	11080(14)	21(4)
H(6A)	2522(14)	3720(30)	10364(15)	37(5)
H(6B)	3271(13)	2150(30)	10632(15)	38(5)
H(6C)	3409(15)	3850(30)	9830(16)	45(6)
H(7A)	1823(13)	2170(30)	7368(15)	35(5)
H(7B)	2528(14)	3780(30)	7685(15)	38(6)
H(7C)	1618(15)	3840(30)	8148(16)	46(6)
H(9A)	2765(12)	-930(30)	7116(14)	30(5)
H(10A)	3746(13)	-3380(30)	6565(16)	39(6)
H(11A)	4889(13)	-4470(30)	7646(15)	36(5)
H(12A)	5058(13)	-3080(30)	9285(14)	31(5)
H(13A)	4106(12)	-510(30)	9840(15)	31(5)

Table 6. Torsion angles [${ }^{\circ}$] for nitrile (-)-16.

$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-143.18(12)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-22.07(15)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$28.11(13)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$148.08(11)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	$154.50(9)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	$-85.53(13)$
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$171.13(10)$
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-68.09(12)$
$\mathrm{C}(8)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$50.68(11)$
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$52.22(12)$
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$172.99(10)$
$\mathrm{C}(8)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-68.23(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-25.33(13)$
$\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-151.64(9)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{O}(1)$	$-172.31(13)$

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$5.65(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$-168.56(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	$13.50(15)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(2)$	$-154(100)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(2)$	$90(24)$
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$-35.57(14)$
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$-159.07(12)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$84.30(13)$
$\mathrm{C}(7)-\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$148.84(12)$
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$25.34(14)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$-91.29(13)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$0.4(2)$
$\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-175.41(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.3(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-0.4(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-0.3(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$1.0(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$-1.1(2)$
$\mathrm{Si}(1)-\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$174.71(12)$

X-ray Data Collection, Structure Solution and Refinement for Tosylate S25.
Note: Compound S25 is an intermediate in the formation of δ-lactam $\mathbf{4}$ (Scheme 1.)

S25

A colorless crystal of approximate dimensions $0.21 \times 0.26 \times 0.34 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection (25 $\mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS^{3} to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups Pna2 2_{1} and Pnma. It was later determined that the noncentrosymmetric space group Pna_{1} was correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined $\left(\mathrm{x}, \mathrm{y}, \mathrm{z}\right.$ and $\left.\mathrm{U}_{\text {iso }}\right)$. At convergence, $\mathrm{wR} 2=0.0720$ and $\mathrm{GOF}=1.056$ for 541 variables refined against 7744 data $(0.75 \AA), \mathrm{R} 1=0.0301$ for those 6796 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. The absolute structure was assigned by refinement of the Flack ${ }^{6}$ parameter.

References

1. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
2. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
3. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
4. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
6. Flack, H. D. Acta. Cryst., A39, 876-881, 1983.

Definitions:
$\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$
$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total
number of parameters refined.
The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for tosylate S25.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal color
Crystal size
Theta range for data collection
Index ranges
kaw103 (Nick Leonard)
$\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N} \mathrm{O}_{6} \mathrm{~S} \mathrm{Si}$
587.83

158(2) K
$0.71073 \AA$
Orthorhombic
Pna2 ${ }_{1}$
$a=19.3855(16) \AA \quad=90^{\circ}$.
$\mathrm{b}=9.3470(8) \AA \quad=90^{\circ}$.
$\mathrm{c}=17.3356(14) \AA \quad=90^{\circ}$.
3141.1(5) \AA^{3}

4
$1.243 \mathrm{Mg} / \mathrm{m}^{3}$
$0.184 \mathrm{~mm}^{-1}$
1264
colorless
$0.34 \times 0.26 \times 0.21 \mathrm{~mm}^{3}$
2.10 to 28.33°
$-25 \leq h \leq 25,-12 \leq k \leq 12,-23 \leq l \leq 23$

Reflections collected	33302
Independent reflections	$7744[\mathrm{R}(\mathrm{int})=0.0405]$
Completeness to theta $=28.3^{\circ}$	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9625 and 0.9402
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$7744 / 1 / 541$
Goodness-of-fit on F^{2}	1.056
Final R indices [I>2sigma(I) $=6796$ data]	$\mathrm{R} 1=0.0301, \mathrm{wR} 2=0.0666$
R indices (all data, 0.75 $\AA)$	$\mathrm{R} 1=0.0416, \mathrm{wR} 2=0.0720$
Absolute structure parameter	$-0.04(5)$
Largest diff. peak and hole	0.293 and -0.228 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for tosylate $\mathbf{S 2 5}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
S(1)	11895(1)	7187(1)	6771(1)	26(1)
Si(1)	9298(1)	3047(1)	6355(1)	16(1)
$\mathrm{O}(1)$	9964(1)	7048(1)	4887(1)	29(1)
$\mathrm{O}(2)$	11293(1)	3512(1)	4857(1)	20(1)
$\mathrm{O}(3)$	10897(1)	5322(1)	4099(1)	23(1)
$\mathrm{O}(4)$	11212(1)	6304(1)	6632(1)	22(1)
O(5)	11648(1)	8571(2)	6983(1)	38(1)
$\mathrm{O}(6)$	12335(1)	6409(2)	7283(1)	36(1)
N(1)	10535(1)	5047(1)	5355(1)	16(1)
C(1)	10604(1)	4303(2)	6096(1)	16(1)
C(2)	9915(1)	4636(2)	6528(1)	15(1)
C(3)	9643(1)	6016(2)	6124(1)	16(1)
C(4)	10049(1)	6140(2)	5374(1)	18(1)
C(5)	10918(1)	4681(2)	4693(1)	17(1)
C(6)	11725(1)	2829(2)	4246(1)	22(1)
C(7)	11986(1)	1501(2)	4654(1)	33(1)
C(8)	11279(1)	2420(2)	3568(1)	26(1)
C(9)	12310(1)	3830(2)	4040(1)	27(1)
C(10)	11270(1)	4772(2)	6492(1)	19(1)
C(11)	12273(1)	7253(2)	5849(1)	22(1)

$\mathrm{C}(12)$	$12970(1)$	$6942(2)$	$5773(1)$	$27(1)$
$\mathrm{C}(13)$	$13279(1)$	$7076(2)$	$5057(1)$	$33(1)$
$\mathrm{C}(14)$	$12898(1)$	$7490(2)$	$4415(1)$	$31(1)$
$\mathrm{C}(15)$	$12196(1)$	$7765(2)$	$4505(1)$	$32(1)$
$\mathrm{C}(16)$	$11884(1)$	$7662(2)$	$5217(1)$	$28(1)$
$\mathrm{C}(17)$	$13239(2)$	$7619(3)$	$3634(2)$	$51(1)$
$\mathrm{C}(18)$	$10014(1)$	$4798(2)$	$7404(1)$	$19(1)$
$\mathrm{C}(19)$	$9680(1)$	$7436(2)$	$6564(1)$	$21(1)$
$\mathrm{C}(20)$	$9545(1)$	$1438(2)$	$6969(1)$	$24(1)$
$\mathrm{C}(21)$	$9289(1)$	$1475(2)$	$7810(1)$	$33(1)$
$\mathrm{C}(22)$	$10313(1)$	$1037(2)$	$6954(1)$	$31(1)$
$\mathrm{C}(23)$	$8362(1)$	$3574(2)$	$6511(1)$	$21(1)$
$\mathrm{C}(24)$	$7895(1)$	$2235(2)$	$6482(1)$	$31(1)$
$\mathrm{C}(25)$	$8193(1)$	$4477(2)$	$7223(1)$	$25(1)$
$\mathrm{C}(26)$	$9327(1)$	$2497(2)$	$5303(1)$	$19(1)$
$\mathrm{C}(27)$	$9557(1)$	$1151(2)$	$5060(1)$	$26(1)$
$\mathrm{C}(28)$	$9521(1)$	$733(2)$	$4293(1)$	$32(1)$
$\mathrm{C}(29)$	$9255(1)$	$1658(2)$	$3744(1)$	$32(1)$
$\mathrm{C}(30)$	$9030(1)$	$3002(2)$	$3965(1)$	$29(1)$
$\mathrm{C}(31)$	$9065(1)$	$3414(2)$	$4733(1)$	$23(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for tosylate $\mathbf{S 2 5}$.

$\mathrm{S}(1)-\mathrm{O}(5)$	$1.4274(14)$
$\mathrm{S}(1)-\mathrm{O}(6)$	$1.4299(14)$
$\mathrm{S}(1)-\mathrm{O}(4)$	$1.5777(11)$
$\mathrm{S}(1)-\mathrm{C}(11)$	$1.7609(17)$
$\mathrm{Si}(1)-\mathrm{C}(26)$	$1.8962(16)$
$\mathrm{Si}(1)-\mathrm{C}(23)$	$1.8991(16)$
$\mathrm{Si}(1)-\mathrm{C}(20)$	$1.9030(16)$
$\mathrm{Si}(1)-\mathrm{C}(2)$	$1.9304(15)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.2081(19)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.3418(18)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.4934(18)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.1927(18)$
$\mathrm{O}(4)-\mathrm{C}(10)$	$1.4574(19)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.3898(19)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.4094(19)$

$\mathrm{N}(1)-\mathrm{C}(1)$	1.4681(19)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.526(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.563(2)
$\mathrm{C}(2)-\mathrm{C}(18)$	1.539(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.559(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.525(2)$
$\mathrm{C}(3)-\mathrm{C}(19)$	1.532(2)
$\mathrm{C}(6)-\mathrm{C}(8)$	1.510(2)
$\mathrm{C}(6)-\mathrm{C}(9)$	1.514(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.515(2)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.384(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.388(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.384(3)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.391(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.394(3)
C(14)-C(17)	1.511(3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.377(3)
$\mathrm{C}(20)-\mathrm{C}(22)$	1.536(3)
C(20)-C(21)	1.541(3)
$\mathrm{C}(23)-\mathrm{C}(25)$	1.530(2)
$\mathrm{C}(23)$-C(24)	1.545(2)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.400(2)
$\mathrm{C}(26)$-C(31)	1.403(2)
$\mathrm{C}(27)$-C(28)	1.387(3)
C(28)-C(29)	$1.386(3)$
C(29)-C(30)	1.384(3)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.387(2)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(6)$	120.13(9)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(4)$	103.43(7)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{O}(4)$	109.23(7)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{C}(11)$	109.99(9)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{C}(11)$	109.37(8)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(11)$	103.24(7)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(23)$	103.66(7)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(20)$	108.42(7)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(20)$	111.46(7)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(2)$	109.80(7)

$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(2)$	111.70(7)
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(2)$	111.46(7)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)$	120.13(12)
$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{S}(1)$	118.38(9)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)$	123.75(13)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	112.95(12)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$	123.30(12)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	109.64(12)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	104.23(11)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	116.81(13)
$\mathrm{C}(18)-\mathrm{C}(2)-\mathrm{C}(3)$	113.82(12)
$\mathrm{C}(18)-\mathrm{C}(2)-\mathrm{C}(1)$	112.63(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	103.82(11)
$\mathrm{C}(18)-\mathrm{C}(2)-\mathrm{Si}(1)$	107.83(10)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Si}(1)$	110.99(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	107.60(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(19)$	109.52(12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	105.77(11)
$\mathrm{C}(19)-\mathrm{C}(3)-\mathrm{C}(2)$	118.53(13)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(1)$	126.30(14)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	125.41(14)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	108.29(12)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	127.61(14)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{N}(1)$	124.26(14)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{N}(1)$	108.13(12)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(8)$	109.83(13)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(9)$	108.86(13)
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(9)$	113.69(15)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	101.98(13)
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(7)$	110.34(16)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)$	111.50(15)
$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(1)$	106.98(12)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	120.93(17)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{S}(1)$	120.09(12)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{S}(1)$	118.94(14)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.15(18)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.87(17)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	118.68(17)

$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	$120.4(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(17)$	$120.9(2)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$121.07(18)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$119.27(16)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(21)$	$109.49(15)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{Si}(1)$	$115.30(12)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Si}(1)$	$115.47(13)$
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{C}(24)$	$110.37(14)$
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{Si}(1)$	$117.53(11)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Si}(1)$	$110.16(12)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(31)$	$116.86(15)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{Si}(1)$	$122.88(13)$
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{Si}(1)$	$120.10(12)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$121.73(17)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$120.12(18)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	$119.51(16)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$120.16(18)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	$121.62(17)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for tosylate $\mathbf{S 2 5}$. The anisotropic displacement factor exponent takes the form: $-2{ }^{2}\left[h^{2} a^{*} \mathrm{U}^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~S}(1)$	$16(1)$	$33(1)$	$27(1)$	$-11(1)$	$1(1)$	$-6(1)$
$\mathrm{Si}(1)$	$19(1)$	$13(1)$	$15(1)$	$0(1)$	$-1(1)$	$-2(1)$
$\mathrm{O}(1)$	$30(1)$	$27(1)$	$29(1)$	$12(1)$	$9(1)$	$11(1)$
$\mathrm{O}(2)$	$24(1)$	$21(1)$	$17(1)$	$-1(1)$	$3(1)$	$8(1)$
$\mathrm{O}(3)$	$27(1)$	$25(1)$	$18(1)$	$3(1)$	$3(1)$	$6(1)$
$\mathrm{O}(4)$	$16(1)$	$22(1)$	$28(1)$	$-7(1)$	$0(1)$	$-2(1)$
$\mathrm{O}(5)$	$27(1)$	$37(1)$	$51(1)$	$-25(1)$	$10(1)$	$-10(1)$
$\mathrm{O}(6)$	$22(1)$	$60(1)$	$25(1)$	$-5(1)$	$-5(1)$	$-6(1)$
$\mathrm{N}(1)$	$16(1)$	$16(1)$	$15(1)$	$0(1)$	$0(1)$	$2(1)$
$\mathrm{C}(1)$	$17(1)$	$15(1)$	$15(1)$	$1(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(2)$	$15(1)$	$14(1)$	$15(1)$	$-1(1)$	$0(1)$	$0(1)$
$\mathrm{C}(3)$	$14(1)$	$15(1)$	$21(1)$	$0(1)$	$1(1)$	$0(1)$
$\mathrm{C}(4)$	$18(1)$	$16(1)$	$21(1)$	$1(1)$	$-2(1)$	$1(1)$

$\mathrm{C}(5)$	$16(1)$	$18(1)$	$17(1)$	$-3(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(6)$	$22(1)$	$22(1)$	$21(1)$	$-4(1)$	$5(1)$	$6(1)$
$\mathrm{C}(7)$	$39(1)$	$26(1)$	$34(1)$	$-1(1)$	$5(1)$	$13(1)$
$\mathrm{C}(8)$	$27(1)$	$28(1)$	$24(1)$	$-8(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(9)$	$21(1)$	$30(1)$	$31(1)$	$-3(1)$	$2(1)$	$0(1)$
$\mathrm{C}(10)$	$16(1)$	$20(1)$	$19(1)$	$-1(1)$	$-2(1)$	$3(1)$
$\mathrm{C}(11)$	$19(1)$	$20(1)$	$27(1)$	$-5(1)$	$2(1)$	$-5(1)$
$\mathrm{C}(12)$	$19(1)$	$34(1)$	$29(1)$	$-5(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(13)$	$20(1)$	$39(1)$	$39(1)$	$-11(1)$	$6(1)$	$-5(1)$
$\mathrm{C}(14)$	$34(1)$	$27(1)$	$32(1)$	$-3(1)$	$6(1)$	$-13(1)$
$\mathrm{C}(15)$	$35(1)$	$28(1)$	$33(1)$	$4(1)$	$-5(1)$	$-7(1)$
$\mathrm{C}(16)$	$23(1)$	$23(1)$	$38(1)$	$0(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(17)$	$54(2)$	$65(2)$	$35(1)$	$-2(1)$	$12(1)$	$-19(1)$
$\mathrm{C}(18)$	$20(1)$	$19(1)$	$16(1)$	$-3(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(19)$	$21(1)$	$15(1)$	$28(1)$	$-1(1)$	$2(1)$	$2(1)$
$\mathrm{C}(20)$	$34(1)$	$15(1)$	$22(1)$	$3(1)$	$-4(1)$	$-1(1)$
$\mathrm{C}(21)$	$48(1)$	$26(1)$	$23(1)$	$9(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(22)$	$38(1)$	$19(1)$	$34(1)$	$4(1)$	$-8(1)$	$4(1)$
$\mathrm{C}(23)$	$21(1)$	$21(1)$	$21(1)$	$1(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}(24)$	$28(1)$	$31(1)$	$33(1)$	$-1(1)$	$2(1)$	$-14(1)$
$\mathrm{C}(25)$	$21(1)$	$29(1)$	$27(1)$	$-2(1)$	$4(1)$	$2(1)$
$\mathrm{C}(26)$	$20(1)$	$20(1)$	$18(1)$	$-4(1)$	$1(1)$	$-6(1)$
$\mathrm{C}(27)$	$27(1)$	$24(1)$	$26(1)$	$-3(1)$	$4(1)$	$-4(1)$
$\mathrm{C}(28)$	$33(1)$	$32(1)$	$30(1)$	$-13(1)$	$9(1)$	$-7(1)$
$\mathrm{C}(29)$	$31(1)$	$46(1)$	$19(1)$	$-12(1)$	$5(1)$	$-10(1)$
$\mathrm{C}(30)$	$27(1)$	$40(1)$	$18(1)$	$1(1)$	$0(1)$	$-7(1)$
	$26(1)$	$23(1)$	$20(1)$	$-1(1)$	$-1(1)$	$-4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for tosylate $\mathbf{S 2 5}$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	10665(9)	3320(20)	5996(11)	20(4)
H(3A)	9180(9)	5859(19)	5932(10)	16(4)
H(7A)	11626(11)	870(20)	4818(13)	39(6)
H(7B)	12235(13)	1780(30)	5073(15)	45(7)
H(7C)	12278(12)	950(20)	4303(13)	41(6)
H(8A)	10907(11)	1880(20)	3743(12)	26(5)

H(8B)	11524(11)	1830(20)	3212(14)	38(6)
H(8C)	11110(12)	3260(30)	3290(14)	46(6)
H(9A)	12142(10)	4710(20)	3827(11)	24(5)
H(9B)	12582(11)	4060(20)	4500(12)	34(5)
H(9C)	12613(13)	3320(30)	3656(15)	53(7)
H(10A)	11664(9)	4560(19)	6166(11)	21(5)
H(10B)	11357(10)	4320(20)	6982(12)	25(5)
H(12)	13200(10)	6710(20)	6177(12)	29(5)
H(13)	13770(11)	6870(20)	5014(12)	34(6)
H(15)	11924(12)	8060(20)	4056(15)	42(6)
H(16)	11422(12)	7880(20)	5296(12)	34(5)
H(17A)	13184(18)	6710(40)	3370(20)	95(11)
H(17B)	13713(15)	7910(30)	3700(16)	59(8)
H(17C)	12968(17)	8260(40)	3360(20)	83(11)
H(18A)	10303(9)	5620(20)	7518(11)	22(5)
H(18B)	10241(9)	4020(19)	7602(10)	14(4)
H(18C)	9604(10)	4910(19)	7638(11)	19(4)
H(19A)	9539(9)	8212(19)	6232(11)	20(4)
H(19B)	9382(10)	7420(20)	7074(13)	32(5)
H(19C)	10161(10)	7680(20)	6780(12)	29(5)
H(20A)	9291(8)	630(20)	6730(10)	17(4)
H(21A)	8811(12)	1670(20)	7820(12)	30(5)
H(21B)	9481(11)	2190(20)	8091(13)	34(6)
$\mathrm{H}(21 \mathrm{C})$	9354(12)	540(30)	8038(14)	53(7)
H(22A)	10591(10)	1720(20)	7205(12)	26(5)
H(22B)	10506(9)	975(19)	6433(12)	21(4)
H(22C)	10360(11)	160(20)	7241(12)	38(6)
H(23A)	8259(9)	4110(20)	6043(11)	20(4)
H(24A)	7974(11)	1660(20)	6047(13)	35(5)
H(24B)	7395(13)	2610(20)	6492(14)	50(7)
H(24C)	7980(10)	1550(20)	6956(13)	34(5)
H(25A)	8315(10)	4010(20)	7701(12)	22(5)
H(25B)	8431(10)	5370(20)	7193(11)	24(5)
H(25C)	7713(12)	4640(20)	7228(13)	41(6)
H(27)	9725(10)	434(19)	5451(11)	22(5)
H(28)	9665(11)	-160(20)	4139(13)	39(6)
H(29)	9238(10)	1360(20)	3231(13)	32(5)
H(30)	8849(12)	3680(20)	3593(14)	46(6)

$\mathrm{H}(31)$	$8914(9)$	$4310(20)$	$4855(10)$	$17(4)$

Table 6. Torsion angles [${ }^{\circ}$] for tosylate $\mathbf{S 2 5}$.

$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{O}(4)-\mathrm{C}(10)$	-172.85(11)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{O}(4)-\mathrm{C}(10)$	-43.82(13)
$\mathrm{C}(11)-\mathrm{S}(1)-\mathrm{O}(4)-\mathrm{C}(10)$	72.48(12)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	-104.73(14)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	75.69(17)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	21.04(16)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-158.54(12)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	-145.23(12)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	-24.13(18)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-21.65(14)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	99.45(14)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	96.07(11)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	-142.83(11)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	-165.99(10)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	79.59(12)
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	-45.82(12)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	68.71(11)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-45.71(12)
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-171.13(10)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-44.25(11)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	-158.67(9)
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	75.91(11)
$\mathrm{C}(18)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	138.61(13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	15.82(14)
$\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-99.52(11)
$\mathrm{C}(18)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(19)$	15.33(18)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(19)$	-107.47(14)
$\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(19)$	137.20(12)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{O}(1)$	-12.2(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{O}(1)$	168.21(16)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	168.56(13)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	-11.02(16)
$\mathrm{C}(19)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	-54.4(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	176.83(15)
$\mathrm{C}(19)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	124.88(13)

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	-3.93(15)
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{O}(3)$	-2.9(2)
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{N}(1)$	176.75(12)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(3)$	4.8(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(3)$	-175.63(14)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(2)$	-174.87(13)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{O}(2)$	4.67(19)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(8)$	-57.30(18)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(9)$	67.76(17)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-174.31(14)
$\mathrm{S}(1)-\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(1)$	-159.67(10)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{O}(4)$	61.84(15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{O}(4)$	-56.37(17)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	-60.49(16)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	165.55(14)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	49.36(15)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	117.13(15)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	-16.83(17)
$\mathrm{O}(4)-\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	-133.02(14)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	1.4(3)
$\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-176.15(14)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-1.2(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-0.2(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	-179.4(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	1.4(3)
$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-179.4(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	-1.1(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	-0.3(3)
$\mathrm{S}(1)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	177.27(14)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$	$73.32(14)$
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$	-173.20(12)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$	-47.66(15)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	-157.34(13)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	-43.86(16)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	81.68(15)
$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(25)$	-162.64(13)
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(25)$	80.94(14)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(25)$	-44.47(14)

$\mathrm{C}(26)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$69.81(13)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$-46.61(14)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$-172.02(11)$
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	$-123.60(14)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	$-5.06(16)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	$116.93(13)$
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(31)$	$51.62(14)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(31)$	$170.16(12)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(31)$	$-67.85(14)$
$\mathrm{C}(31)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$-0.7(2)$
$\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$174.69(13)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$0.2(3)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$0.4(3)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$-0.5(3)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	$0.0(3)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(30)$	$0.6(2)$
$\mathrm{Si}(1)-\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{C}(30)$	$-174.93(13)$

X-ray Data Collection, Structure Solution and Refinement for N-Toluenesulfonamide S21.

S21

A colorless crystal of approximate dimensions $0.23 \times 0.35 \times 0.41 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection (25 $\mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS^{3} to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space group Pbca which was later determined to be correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined $\left(\mathrm{x}, \mathrm{y}, \mathrm{z}\right.$ and $\left.\mathrm{U}_{\text {iso }}\right)$. At convergence, $\mathrm{wR} 2=0.0986$ and $\mathrm{GOF}=1.101$ for 416 variables refined against 6055 data $(0.75 \AA), \mathrm{R} 1=0.0370$ for those 5075 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

References

1. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
2. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
3. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
4. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:
$\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$
$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$

Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.
The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for N-toluenesulfonamide S21.
Identification code kaw91 (Nick Leonard)
Empirical formula $\quad \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \mathrm{Si}$
Formula weight 458.68
Temperature $\quad 163(2) \mathrm{K}$
Wavelength $0.71073 \AA$
Crystal system Orthorhombic
Space group Pbca
Unit cell dimensions $\quad a=16.431(3) \AA=90^{\circ}$.

$$
\begin{array}{ll}
\mathrm{b}=7.8966(13) \AA & =90^{\circ} . \\
\mathrm{c}=37.563(6) \AA & =90^{\circ} .
\end{array}
$$

Volume 4873.6(14) \AA^{3}
Z 8
Density (calculated) $\quad 1.250 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient $\quad 0.209 \mathrm{~mm}^{-1}$
F(000) 1968
Crystal color colorless
Crystal size $\quad 0.41 \times 0.35 \times 0.23 \mathrm{~mm}^{3}$
Theta range for data collection $\quad 1.65$ to 28.29°
Index ranges $\quad-21 \leq h \leq 21,-10 \leq k \leq 10,-50 \leq l \leq 49$
Reflections collected 50243
Independent reflections $6055[\mathrm{R}(\mathrm{int})=0.0376]$
Completeness to theta $=28.29^{\circ} \quad 99.9 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9534 and 0.9190
Refinement method Full-matrix least-squares on F^{2}
Data / restraints / parameters 6055 / 0/416
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.101$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=5075$ data $] \quad \mathrm{R} 1=0.0370, \mathrm{wR} 2=0.0914$
R indices (all data, $0.75 \AA$) $\mathrm{R} 1=0.0481, \mathrm{wR} 2=0.0986$

Largest diff. peak and hole 0.518 and -0.378 e. \AA^{-3}
Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for N-toluenesulfonamide $\mathbf{S} 21$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	Z	U(eq)
S(1)	5578(1)	7796(1)	2057(1)	18(1)
Si(1)	5177(1)	14046(1)	838(1)	15(1)
$\mathrm{O}(1)$	7788(1)	12815(1)	1238(1)	21(1)
$\mathrm{O}(2)$	4793(1)	8308(1)	2184(1)	24(1)
$\mathrm{O}(3)$	5741(1)	6037(1)	1994(1)	24(1)
$\mathrm{N}(1)$	6640(1)	11177(2)	1225(1)	16(1)
N(2)	5726(1)	8756(2)	1678(1)	18(1)
C(1)	5764(1)	11292(2)	1296(1)	16(1)
C(2)	5600(1)	13225(2)	1276(1)	15(1)
C(3)	6439(1)	13998(2)	1368(1)	17(1)
C(4)	7038(1)	12634(2)	1270(1)	16(1)
C(5)	5559(1)	10582(2)	1663(1)	19(1)
C(6)	4231(1)	12791(2)	734(1)	19(1)
C(7)	3762(1)	12024(2)	999(1)	27(1)
C(8)	3076(1)	11062(3)	919(1)	34(1)
C(9)	2837(1)	10853(2)	569(1)	32(1)
C(10)	3280(1)	11611(2)	300(1)	30(1)
C(11)	3967(1)	12563(2)	382(1)	24(1)
C(12)	4917(1)	16353(2)	912(1)	18(1)
C(13)	4268(1)	16570(2)	1202(1)	25(1)
C(14)	4646(1)	17248(2)	569(1)	30(1)
C(15)	5887(1)	13842(2)	442(1)	20(1)
C(16)	6112(1)	12019(2)	341(1)	27(1)
C(17)	6656(1)	14950(2)	464(1)	28(1)
C(18)	6321(1)	8573(2)	2354(1)	18(1)
C(19)	6084(1)	9511(2)	2649(1)	23(1)
C(20)	6681(1)	10098(2)	2881(1)	26(1)
C(21)	7502(1)	9782(2)	2819(1)	23(1)
C(22)	7726(1)	8862(2)	2517(1)	23(1)
C(23)	7141(1)	8254(2)	2285(1)	22(1)
C(24)	8143(1)	10423(3)	3071(1)	33(1)

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for N-toluenesulfonamide S21.

$\mathrm{S}(1)-\mathrm{O}(2)$	$1.4336(11)$
$\mathrm{S}(1)-\mathrm{O}(3)$	$1.4346(12)$
$\mathrm{S}(1)-\mathrm{N}(2)$	$1.6335(13)$
$\mathrm{S}(1)-\mathrm{C}(18)$	$1.7639(15)$
$\mathrm{Si}(1)-\mathrm{C}(6)$	$1.8852(15)$
$\mathrm{Si}(1)-\mathrm{C}(12)$	$1.8919(15)$
$\mathrm{Si}(1)-\mathrm{C}(15)$	$1.8971(15)$
$\mathrm{Si}(1)-\mathrm{C}(2)$	$1.8987(15)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.2455(17)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.3342(18)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.4669(17)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.4688(19)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.5257(19)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5515(19)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5460(19)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5053(19)$

C(6)-C(7)	1.399(2)
$\mathrm{C}(6)-\mathrm{C}(11)$	1.403(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.393(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.382(3)
C(9)-C(10)	1.380(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.391(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.532(2)
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.536(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.535(2)$
$\mathrm{C}(15)-\mathrm{C}(17)$	1.540(2)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.388(2)
$\mathrm{C}(18)-\mathrm{C}(23)$	$1.395(2)$
$\mathrm{C}(19)-\mathrm{C}(20)$	1.390(2)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.392(2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.396(2)
$\mathrm{C}(21)-\mathrm{C}(24)$	1.503(2)
$\mathrm{C}(22)$-C(23)	1.384(2)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	119.78(7)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(2)$	107.06(7)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(2)$	106.02(7)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(18)$	108.29(7)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(18)$	108.25(7)
$\mathrm{N}(2)-\mathrm{S}(1)-\mathrm{C}(18)$	106.76(7)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(12)$	110.51(6)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(15)$	107.36(7)
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(15)$	109.63(7)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(2)$	107.67(6)
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(2)$	106.49(6)
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(2)$	115.16(6)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)$	113.86(12)
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(1)$	117.39(10)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	110.97(11)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	102.86(11)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	111.58(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	102.86(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Si}(1)$	112.66(10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	116.22(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	104.25(11)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{N}(1)$	124.89(13)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	126.02(13)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	109.08(12)
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(1)$	110.66(12)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	116.56(14)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Si}(1)$	122.18(12)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{Si}(1)$	121.26(11)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	121.80(16)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.12(17)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.55(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.18(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	121.78(15)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	110.01(13)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{Si}(1)$	111.68(11)
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{Si}(1)$	112.66(11)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)$	110.36(13)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{Si}(1)$	114.98(11)
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{Si}(1)$	114.50(11)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	121.14(14)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{S}(1)$	119.75(11)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{S}(1)$	119.10(11)

$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$118.59(14)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$121.36(15)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.96(14)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(24)$	$120.90(15)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(24)$	$120.14(15)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.60(14)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$119.34(14)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for N-toluenesulfonamide $\mathbf{S 2 1}$. The anisotropic displacement factor exponent takes the form: $-2{ }^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
S(1)	17(1)	16(1)	20(1)	2(1)	3(1)	-1(1)
$\mathrm{Si}(1)$	12(1)	16(1)	16(1)	1(1)	0 (1)	1(1)
$\mathrm{O}(1)$	13(1)	16(1)	33(1)	1(1)	-2(1)	-1(1)
$\mathrm{O}(2)$	17(1)	25(1)	29(1)	3(1)	6(1)	-1(1)
$\mathrm{O}(3)$	29(1)	16(1)	28(1)	1(1)	5(1)	-1(1)
$\mathrm{N}(1)$	13(1)	12(1)	23(1)	1(1)	1(1)	1(1)
N(2)	17(1)	18(1)	20(1)	2(1)	3(1)	0 (1)
C(1)	12(1)	16(1)	20(1)	1(1)	-1(1)	-1(1)
C(2)	12(1)	16(1)	17(1)	1(1)	1(1)	1(1)
C(3)	15(1)	14(1)	22(1)	-1(1)	-3(1)	1(1)
C(4)	15(1)	15(1)	18(1)	1(1)	-3(1)	1(1)
C(5)	19(1)	17(1)	21(1)	2(1)	3(1)	0 (1)
C(6)	14(1)	19(1)	23(1)	-1(1)	-1(1)	2(1)
C(7)	17(1)	36(1)	26(1)	4(1)	-2(1)	-4(1)
C(8)	19(1)	44(1)	39(1)	8(1)	-1(1)	-9(1)
C(9)	18(1)	32(1)	46(1)	-3(1)	-7(1)	-6(1)
C(10)	24(1)	34(1)	32(1)	-8(1)	-9(1)	-1(1)
C(11)	20(1)	27(1)	24(1)	-2(1)	-1(1)	-1(1)
C(12)	17(1)	18(1)	20(1)	0 (1)	-1(1)	3(1)
C(13)	21(1)	26(1)	27(1)	-2(1)	4(1)	6(1)
C(14)	39(1)	25(1)	26(1)	4(1)	0 (1)	11(1)
C(15)	16(1)	24(1)	18(1)	1(1)	3(1)	2(1)
C(16)	28(1)	29(1)	23(1)	-3(1)	3(1)	9(1)
C(17)	19(1)	39(1)	26(1)	2(1)	6(1)	-3(1)
C(18)	19(1)	17(1)	19(1)	2(1)	2(1)	1(1)
C(19)	20(1)	24(1)	24(1)	-1(1)	5(1)	5(1)
C(20)	29(1)	24(1)	23(1)	-4(1)	3(1)	3(1)
C(21)	25(1)	22(1)	24(1)	4(1)	-3(1)	0(1)
C(22)	18(1)	24(1)	28(1)	4(1)	2(1)	3(1)
C(23)	20(1)	23(1)	22(1)	1(1)	5(1)	3(1)
C(24)	32(1)	34(1)	31(1)	0 (1)	-9(1)	1(1)

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for N-toluenesulfonamide $\mathbf{S 2 1}$.

	X	y	z	U(eq)
H(1)	6877(12)	10190(30)	1194(5)	26(5)
H(2)	6150(13)	8490(30)	1590(5)	32(5)
$\mathrm{H}(1 \mathrm{~A})$	5462(10)	10630(20)	1122(4)	14(4)
$\mathrm{H}(2 \mathrm{~A})$	5213(11)	13500(20)	1461(5)	25(5)
H(3A)	6560(11)	15040(20)	1250(4)	19(4)
H(3B)	6486(12)	14190(20)	1619(5)	28(5)

H(5A)	$4975(12)$	$10750(20)$	$1714(5)$	$25(5)$
H(5B)	$5869(11)$	$11220(20)$	$1844(5)$	$23(5)$
H(7A)	$3888(12)$	$12180(30)$	$1249(5)$	$32(5)$
H(8A)	$2757(13)$	$10500(30)$	$1109(6)$	$41(6)$
H(9A)	$2379(13)$	$10150(30)$	$514(5)$	$34(5)$
H(10A)	$3125(12)$	$11490(30)$	$72(5)$	$31(5)$
H(11A)	$4266(12)$	$13080(30)$	$188(5)$	$32(5)$
H(12A)	$5415(12)$	$16920(20)$	$1003(5)$	$27(5)$
H(13A)	$3769(14)$	$16010(30)$	$1136(6)$	$41(6)$
H(13B)	$4141(12)$	$17770(30)$	$1238(5)$	$31(5)$
H(13C)	$4443(12)$	$16090(30)$	$1427(5)$	$30(5)$
H(14A)	$5066(13)$	$17220(30)$	$399(6)$	$36(5)$
H(14B)	$4501(13)$	$18380(30)$	$618(5)$	$37(5)$
H(14C)	$4175(14)$	$16690(30)$	$461(6)$	$39(6)$
H(15A)	$5547(11)$	$14290(20)$	$241(5)$	$27(5)$
H(16A)	$5633(13)$	$11290(30)$	$317(5)$	$35(5)$
H(16B)	$6404(12)$	$11990(30)$	$116(6)$	$35(5)$
H(16C)	$6466(12)$	$11510(30)$	$522(5)$	$31(5)$
H(17A)	$6540(12)$	$16160(30)$	$525(5)$	$32(5)$
H(17B)	$6906(12)$	$15050(30)$	$231(6)$	$35(5)$
H(17C)	$7060(14)$	$14460(30)$	$618(6)$	$41(6)$
H(19A)	$5526(12)$	$9690(30)$	$2696(5)$	$29(5)$
H(20A)	$6518(12)$	$10760(30)$	$3080(5)$	$32(5)$
H(22A)	$8270(12)$	$8640(20)$	$2468(5)$	$29(5)$
H(23A)	$7278(11)$	$7610(20)$	$2083(5)$	$23(5)$
H(24A)	$8285(15)$	$9540(30)$	$3236(7)$	$54(7)$
H(24B)	$7909(15)$	$11350(40)$	$3209(7)$	$58(7)$
H(24C)	$8598(18)$	$10830(40)$	$2948(7)$	$71(9)$

Table 6. Torsion angles [${ }^{\circ}$] for N-toluenesulfonamide $\mathbf{S 2 1}$.

$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(2)-\mathrm{C}(5)$	$48.07(12)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(2)-\mathrm{C}(5)$	$177.02(11)$
$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{N}(2)-\mathrm{C}(5)$	$-67.72(12)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$-101.27(14)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$18.17(15)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-25.36(13)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$93.65(13)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	$98.21(11)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Si}(1)$	$-142.78(10)$
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$172.71(9)$
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-68.74(11)$
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$53.00(12)$
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$54.39(11)$
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$172.94(10)$
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-65.32(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$24.49(14)$
$\mathrm{Si}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-101.41(11)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{O}(1)$	$176.95(13)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$-2.31(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$166.02(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	$-14.73(15)$
$\mathrm{S}(1)-\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(1)$	$177.43(9)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(2)$	$-65.41(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(2)$	$-179.47(11)$
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$-90.05(14)$
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$150.43(13)$
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$25.89(15)$

$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	90.78(13)
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	-28.74(14)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	-153.29(12)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$0.9(2)$
$\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-178.26(14)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-0.5(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-0.3(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0.7(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	-0.3(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	-0.5(2)
$\mathrm{Si}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	178.69(13)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	55.20(12)
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	173.34(10)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	-61.46(12)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(12)-\mathrm{C}(14)$	-69.20(13)
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(12)-\mathrm{C}(14)$	48.95(13)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(12)-\mathrm{C}(14)$	174.14(11)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	-56.97(13)
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	-177.05(11)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	62.91(13)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(15)-\mathrm{C}(17)$	173.68(11)
$\mathrm{C}(12)-\mathrm{Si}(1)-\mathrm{C}(15)-\mathrm{C}(17)$	53.59(13)
$\mathrm{C}(2)-\mathrm{Si}(1)-\mathrm{C}(15)-\mathrm{C}(17)$	-66.44(13)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	-0.27(14)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	-131.55(12)
$\mathrm{N}(2)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	114.70(13)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(23)$	-179.21(12)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(23)$	49.51(14)
$\mathrm{N}(2)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(23)$	-64.24(13)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-1.5(2)
$\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	179.53(12)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	0.9(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	0.3(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(24)$	179.98(16)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-0.9(2)
$\mathrm{C}(24)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	179.48(16)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	0.2(2)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	1.0(2)
$\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	179.96(12)

VIII. References

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
(2) Burchat, A. F.; Chong, J. M.; Nielsen, N. J. Organometallics 1997, 542, 281-283.
(3) Fleming, I.; Newton, T. W.; Roessler, F. J. J. Chem. Soc., Perkin Trans. 1 1981, 2527-2532.
(4) Fleming, I.; Roberts, R. S.; Smith, S. C. Tetrahedron Lett. 1996, 37, 9395-9396.
(5) Denmark, S. E.; Hurd, A. R.; Sacha, H. J. J. Org. Chem. 1997, 62, 1668-1674.
(6) Guyot, B.; Pornet, J.; Miginiac, L. J. Organomet. Chem. 1989, 373, 279-288.
(7) Gregg, B. T.; Cutler, A. R. Organometallics 1994, 13, 1039-1043.
(8) Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. M. J. Org. Chem. 1991, 56, 70767083.
(9) Romero, A.; Woerpel, K. A. Org. Lett. 2006, 8, 2127-2130.
(10) Lee, S. J.; Terrazas, M. S.; Pippel, D. J.; Beak, P. J. Am. Chem. Soc. 2003, 125, 7307-7312.
(11) Jiang, M. X. W.; Rawat, M.; Wulff, W. D. J. Am. Chem. Soc. 2004, 126, 5970-5971.
(12) D'Hooghe, M.; Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2004, 69, 2703-2710.
(13) Coogan, M. P.; Stanton, L. S.; Walther, T. J. Organomet. Chem. 2003, 677, 125-132.
IX. Spectral Data

\qquad

1

1

\qquad

 \qquad

```
l}969
M
960.L
```


โร9t'0
T50 $0^{\circ} 0^{-}$

[000 0
————

[^0]

$\tau 6^{\prime} 9 L$
$\varepsilon^{\prime} \angle L$
$9^{\prime} \angle L$
$88^{\prime} 28$

2

\qquad

3

13 C spectrum with 1 H decoupling

\qquad

$3 \operatorname{trc} \varepsilon$
$i 6 \mathcal{L}^{\prime} \varepsilon=$

-

4
13 C spectrum with $1 H$ decoupling (2)

$$
\begin{aligned}
& 50000 \cdot \square= \\
& 26990-0 \square
\end{aligned}
$$

6

$96 \cdot 9$
$91.2 L$
Tb: $2 L$
06. 25
6
13 C spectrum with $1 H$ decoupling

${ }_{720000^{\circ} 0}$

13 C spectrum with 1 H decoupling

$$
\text { To' } 8 \mathrm{IL}-
$$

$$
\begin{aligned}
& 06 \cdot 9 L \\
& 9 T^{2} \angle L \\
& t \cdot L L
\end{aligned}
$$

9
13 C spectrum with 1 H decoupling

$$
\begin{aligned}
& 37000^{\circ} 0= \\
& 902 L 0^{\circ}-1
\end{aligned}
$$

$=$
-

$\varepsilon \varepsilon^{\prime}$ ' $\varepsilon \longrightarrow$
\qquad

\qquad

\qquad 09' 9 ¢


```
    &2'08T
```

 wdd

13 C spectrum with $1 H$ decoupling

GG' ${ }^{\circ}$
LL' $¢ \varepsilon$ _———

5: 82

\qquad

五

3
3 7869 ' $\varepsilon-$

50629%
'zess'9———
$1 H$ spectrum

13 C spectrum with $1 H$ decoupling

$0000^{\circ} 0-$
\qquad
690'0

$6909^{\circ} \varepsilon$ —
\qquad
802'G \qquad

13 C spectrum with $1 H$ decoupling

\qquad

$$
\begin{aligned}
& 5 \varepsilon 90^{\circ} 0-\overline{-} \\
& 20000^{\circ} 0
\end{aligned}
$$

$$
\text { Yyot } 0
$$

$(-)-14$

 itmo'g
$\angle Z Z G . L$
3 Ttq 2
wdd

13 C spectrum with 1 H decoupling

(-)-15

\square

13 C spectrum with $1 H$ decoupling
${ }_{82}^{\$ 2,62 \tau-}$
${ }^{\text {®б }}$ \&६โ-
9198г———

T8 2τ

| $36988^{\circ} 0 —$ |
| :--- | :--- |
| $3918 \nabla^{\circ}$ |
| $3698 \circ$ |

(-)-16

13C spectrum with $1 H$ decoupling

$(-)-16$

2b: Cl
\qquad

โた $\angle 2$
 $66^{\circ} \mathrm{ot}$ ${ }^{689} \mathrm{~b}-\mathrm{O}$
6 "

vozur't-

\section*{

T9885 $\%$ -
$i 965 \%-$

17

$5869 r^{\prime} L$ $1999 z^{\prime} / 2$ $1 \angle 888^{\prime} L$

 SLTG $2 \square$

$$
\begin{aligned}
& 30000^{\circ} 0 \square \\
& 27690^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& 5 \tau \varepsilon L \varepsilon^{\prime} 0 — \\
& \varepsilon \varepsilon 60 \sigma^{\prime} 0
\end{aligned}
$$

$$
\varepsilon \varepsilon 60 \nabla^{\prime} 0 — —
$$

$$
16 \pm \pi 0^{\circ} 2
$$

โย669'2

18

```
92292.L
    75068'L——
```


19

15'85

$8 L^{\circ} 6 \mathrm{~K}$ I
T2.90
L6'99

(-)-20

૬6. ६દ
8t'9\&T
\qquad
そง

$(-)-\mathbf{2 0}$

\qquad

(+)-21

$6 \mathrm{D}^{\prime} 8 \mathrm{Bz}$
2'99
09%.

(+)-21

$50000 \cdot 0$
\qquad
34 T92.0——

$96^{\circ} \%-\square$
$6 \mathrm{~T}^{\circ} \mathrm{F}-$

 Tr'0-
 \begin{tabular}{l}
 $96.2 z$

\hline $0.8 Z$

\end{tabular}

 \(20^{\circ} 6 \varepsilon\)
 $6 \tau^{6} 6 \varepsilon$
$9 \varepsilon^{\prime} 6 \varepsilon$
$29^{6} 6 \varepsilon$
$69^{6} 6 \varepsilon$
$8 L^{\circ} 6 \varepsilon$
$98^{\circ} 6 \varepsilon$
$20^{\circ} 66$

22

\section*{| $\square 6200^{\circ}$ |
| :--- |
| T00 | ?}

$9980^{\circ} 0$
13C spectrum with 1 decoupling

\qquad

$30000^{\circ} 0 \square$

\qquad
つしてもぁ ε

マロロ\＆
รャ\＆t8 ε
¿૬zz8 ${ }^{\circ}$－

24

$18: \pi$
$\stackrel{90}{8 \cdot 96}$ \qquad

$\mathrm{PhMe}_{2} \mathrm{Si}$

(-)-24

13C spectrum with 1 H decoupling

$\varsigma^{\circ} \mathrm{BR} \longrightarrow$

${ }_{60} \mathrm{~T}^{\circ} \mathrm{G}-\longrightarrow$

\qquad
\square
I2.69
(-)-25
\qquad
$9 \tau^{\circ} \angle L \longrightarrow=$
$2 \nabla^{\circ} \angle L \square=$
$0^{\circ} 6 L=\square$

6908

 $50000.0-$

88020 | 0.0 |
| :--- |
| $0^{\circ} 0$ |

\qquad

$(-)-27$
эє9カt't


```
$2
```

$\stackrel{\circ}{\circ}$

$2000 \cdot 0-=$
$\mathrm{Ph}(i \mathrm{Pr})_{2} \mathrm{SiO} \curvearrowright$
S1

1H spectrum

${ }^{92}$ 'zI

$\mathrm{Ph}(i-\mathrm{Pr})_{2} \mathrm{SiO} \curvearrowright$
S1
S. 29
$\xrightarrow{8 \nabla^{\prime} 9 L}$
$60^{\circ} \mathrm{FIT}$
13C spectrum with $1 H$ decoupling
ppm

Note: Compound $\mathbf{S 7}$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

Note: Compound $\mathbf{S 7}$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

${ }^{\text {oxex }}$ ———

$60^{\circ} \varepsilon \%=$
$\varepsilon L^{\circ} 09 \square$

S7
PI Woerpel
C13 CDC13T v nickle 16
(
wdd

\qquad

-

50L0L' 8
S9

$$
\begin{aligned}
& 269 ' \mathrm{Tt}- \\
& 008 \cdot 8 \pi- \\
& 2 \in \varepsilon \cdot \mathrm{sz}-
\end{aligned}
$$

S9

S10

izcot' 8 ——
\square

udd

S10

$$
\begin{aligned}
& \text { T000 } \% \text { - } \\
& 3690 \% \\
& \hline
\end{aligned}
$$

ST'69

S14
$92^{\prime} 9 \mathrm{It}$

$$
\text { 13C spectrum with } 1 \mathrm{H} \text { decoupling }
$$

$$
\begin{aligned}
& 16 \cdot 9 L \\
& 9 T \cdot L L \\
& \angle 8 . \angle L \\
& 2 V^{2 L L} \\
& 10 . c 0
\end{aligned}
$$

I' $\varepsilon 8$

S15

$$
13 \mathrm{C} \text { spectrum with } 1 H \text { decoupling }
$$

$50000^{\circ} 0=$
$39690^{\circ} 0$

-

\qquad

$$
\underset{\substack{z E^{\prime} \text { ot } \\ \text { Tg ot }}}{ }
$$

2T萌

$$
66 \%
$$

$6 L^{\circ} 62 \mathrm{~L}$
60° ¿と

13 C spectrum with 1 H decoupling \qquad

140

S17

${ }^{2662} \cdot=$

92'TE

S17

5

${ }^{2} Z^{\prime} 6 \mathrm{tI}-$

عo' $9 \varepsilon \tau$

$$
\begin{aligned}
& \text { PI Woerpe } \\
& \text { C13 CDCl3T v nickle } 32 \\
& \text { a } \\
& \text { : }
\end{aligned}
$$

S18
682 't
——n

$9 \tau^{\prime} \tau \varepsilon \square$

S18

——A

โ88ヵ $\quad \varepsilon$ \qquad

13C spectrum with $1 H$ decoupling

tLS99' \&

S21
1H spectrum

$-\infty$
$-\quad$.
등

แ'zє
\qquad
20.65

50'95

S22

$278 \cdot 92$

 69t 2
6ST•LLD

Note: Compound $\mathbf{S 2 3}$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

Note: Compound $\mathbf{S} \mathbf{2 3}$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

Note: Compound S24 is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

Note: Compound $\mathbf{S} 24$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

S24

$2 v \mathrm{w}$
\qquad

9ε ¢ 88都

Note: Compound $\mathbf{S 2 5}$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

S25

Note: Compound $\mathbf{S} \mathbf{2 5}$ is an intermediate in the formation of azide $\mathbf{3}$ (Scheme 1.)

Note：Compound S26 is an intermediate in the formation of lactam 18 （Scheme 3．）

$$
\begin{aligned}
& \text { 1000 } \% \text { - } \\
& \text { にLてE' }
\end{aligned}
$$

S26
ЭG22＇\square
${ }^{3 T L 6}$ ．
э七66＇ヶ \square
ごTO＇s
S

$$
\begin{aligned}
& 2989 ' g \\
& \\
& 7009^{\prime}
\end{aligned}
$$

G——m

Note: Compound $\mathbf{S 2 6}$ is an intermediate in the formation of lactam $\mathbf{1 8}$ (Scheme 3.)

$$
\begin{aligned}
& 90^{\circ} 9-\text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
8 \varepsilon^{\prime} 92 \\
80^{\prime} 82 \\
2 \tau^{\prime} 82 \\
\hline
\end{array} \\
& \text { Lย' }\llcorner\varepsilon \square \\
& \text { D6.09 }
\end{aligned}
$$

S26

Note: Compound S27 is an intermediate in the formation of lactam $\mathbf{1 9}$ (Scheme 4.)

Note: Compound S27 is an intermediate in the formation of lactam 19 (Scheme 4.)

PI Woerpel
Cl3 CDCl3T v nickle 15

\%

Note: Compound $\mathbf{S 2 8}$ is an intermediate in the formation of lactam $\mathbf{1 9}$ (Scheme 4.)

Note: Compound S28 is an intermediate in the formation of lactam 19 (Scheme 4.)

Note: Compound (-)-S29 is an intermediate in the formation of N, O-acetal (+)-21 (Scheme 5.)

Note: Compound (-)-S29 is an intermediate in the formation of $N, O-\operatorname{acetal}(+)-21$ (Scheme 5.)

Note: Compound (-)-S30 is an intermediate in the formation of $N, O-$ acetal $(+) \mathbf{- 2 1}$ (Scheme 5.)

Note: Compound (-)-S30 is an intermediate in the formation of $\mathrm{N}, \mathrm{O}-\mathrm{acetal}(+)-\mathbf{2 1}$ (Scheme 5.)

[^0]: 13 CDCl3T v nickle 30

