Supplemental materials for:

Total Synthesis of Alkaloid (\pm)-G. B. 13 Using a Rh(I)-Catalyzed Ketone Hydroarylation and Late-Stage Pyridine Reduction

Kimberly K. Larson and Richmond Sarpong*
Department of Chemistry, University of California, Berkeley, California 94720

Email: rsarpong@berkeley.edu

Table of contents:

Materials and Methods S2
Experimental Procedures and Spectral Data S3-S17
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra $\quad \mathrm{S} 18-\mathrm{S} 45$
$\begin{array}{ll}\text { Additional References } & \text { S46 }\end{array}$

Materials and Methods. Unless stated otherwise, reactions were performed in flame-dried glassware sealed with rubber septa under a nitrogen atmosphere and were stirred with Tefloncoated magnetic stir bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were distilled over sodium/benzophenone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, toluene, methanol (MeOH), and benzene were distilled over calcium hydride. Potassium acetate (KOAc) was dried at $130{ }^{\circ} \mathrm{C}$ under vacuum overnight prior to use. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above $23{ }^{\circ} \mathrm{C}$ refer to oil bath or heating block temperatures, which were controlled by an IKAmag ${ }^{\circledR}$ temperature modulator. Thin layer chromatography was performed using SiliCycle silica gel 60 F - 254 precoated plates (0.25 mm) and visualized by UV irradiation and anisaldehyde stain or CAM stain. Sorbent silica gel (particle size 40-63 $\mu \mathrm{m}$) was used for flash chromatography. ${ }^{1} \mathrm{H}$ NMR were recorded on a Bruker AV-600 (at 600 MHz) spectrometer, and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker AV-600 spectrometer (at 150 MHz). ${ }^{19} \mathrm{~F}$ NMR were recorded on a Bruker AVQ-400 spectrometer (at 376 $\mathrm{MHz}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are reported relative to the residual solvent signal, CHCl_{3} ($\delta=7.26$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.16$ for ${ }^{13} \mathrm{C}$ NMR) or $\mathrm{C}_{6} \mathrm{H}_{6}\left(\delta 7.16\right.$ for ${ }^{1} \mathrm{H}$ and $\delta 128.06$ for ${ }^{13} \mathrm{C}$). ${ }^{19} \mathrm{~F}$ chemical shifts are reported relative to CFCl_{3} at 0 ppm . Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), ddd (doublet of doublet of doublet), m (multiplet), br (broad). IR spectra were recorded on a Nicolet MAGNA-IR 850 spectrometer and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectral data were obtained from the University of California, Berkeley Mass Spectral Facility.

Experimental Procedures.

Diels-Alder Adduct 9. Diene $7^{1}\left(8.21 \mathrm{~g}, 34.3 \mathrm{mmol}, 1\right.$ equiv), enone $\mathbf{8}^{2}(5.01 \mathrm{~g}, 34.3 \mathrm{mmol}, 1$ equiv), and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)-ytterbium (III) (Yb(tmhd) $)_{3}$ (1.24 g , $1.72 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ were placed in a 50 mL Schlenk flask. The flask was evacuated and backfilled with nitrogen, sealed with a Teflon screw cap, and the reaction mixture was then stirred at $110{ }^{\circ} \mathrm{C}$ in an oil bath for 65 h . The crude reaction mixture was loaded on to a silica column and purified by flash chromatography (hexanes to 29:1 hexanes/EtOAc) to give 9 (11.2 $\mathrm{g}, 85 \%)$ as a slightly yellow oil. $\mathbf{R}_{\mathbf{f}} 0.59\left(2: 1\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.20(\mathrm{dd}, J=5.5,2.8 \mathrm{MHz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=5.5,3.0 \mathrm{MHz}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.94$ (br, 1H), 2.86-2.80 (m, 1H), 2.66-2.61 (m, 1H), 2.32-2.26 (m, 2H), 2.21-2.13 (m, 1H), 2.05-1.99 $(\mathrm{m}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.03$ $(\mathrm{m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.71-0.62(\mathrm{~m}, 1 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 214.4,140.9,137.1,135.7,119.2,60.0,55.3,52.9,45.4,44.5,42.9,39.4,38.2,36.0$, 33.8, 26.7, 26.3, 26.0, 25.8, 18.3, -3.6, -4.1; IR (film) 2954, 2928, 2855, 1738, 1252, 1198, 836 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z 385.2557\right.$, found 385.2548.

[^0]

Enone 6. Diels-Alder adduct $9(4.02 \mathrm{~g}, 10.5 \mathrm{mmol})$ in benzene ($10.5 \mathrm{~mL}, 1.0 \mathrm{M}$) was injected into a quartz tube ($\sim 2 \mathrm{~cm}$ in diameter) inside a tube furnace (12 in) at $600{ }^{\circ} \mathrm{C}$ under vacuum (~ 0.02 torr) (see Figure S 1). The solution was injected into the system through a 20 -guage needle from a gas-tight syringe (fitted with a valve) in small aliquots ($\sim 0.3 \mathrm{~mL}$ every $30-45 \mathrm{~s}$). The product was collected in a liquid nitrogen-cooled trap. The crude product was purified via flash chromatography (29:1 hexanes/EtOAc) to give 6 ($2.85 \mathrm{~g}, 86 \%$ yield) as a colorless oily solid. $\mathbf{R}_{\mathbf{f}} 0.59\left(2: 1\right.$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.09 (dd, $J=5.8,2.5 \mathrm{~Hz}), 2.95-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{dd}, J=$ $10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 1 \mathrm{H})$, $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.14-0.13(\mathrm{~m}, 6 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.9,159.8$, $141.5,134.5,121.5,57.3,42.9,36.9,35.6,33.5,26.6,26.5,26.0,25.6,18.4,-3.6,-4.0$; IR (film) 2928, 2855, 1716, 1256, 1191, 1152, 839, $778 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}^{+}\right.$ $(\mathrm{M}+\mathrm{H})^{+}: m / z 319.2088$, found 319.2083.

Figure S1

Tertiary allylic alcohol 10. Lithium diisopropyl amide was generated by the addition of n-BuLi (10.7 mL of a 2.5 M soln. in hexanes, $27 \mathrm{mmol}, 2.3$ equiv) to a solution of diisopropyl amine ($3.9 \mathrm{~mL}, 28 \mathrm{mmol}, 2.4$ equiv) in 50 mL of THF at $-78^{\circ} \mathrm{C}$. The solution of LDA was stirred for 1 h at this temperature. Picoline $5^{3}\left(2.34 \mathrm{~g}, 11.6 \mathrm{mmol}, 1\right.$ equiv) in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ was then added to the LDA solution via cannula. The resulting apple-red solution was stirred 30 min at $-78{ }^{\circ} \mathrm{C}$. At this time, enone $\mathbf{6}\left(3.87 \mathrm{~g}, 12.1 \mathrm{mmol}, 1.04\right.$ equiv) in THF $(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was transferred to the reaction flask via cannula, and the color of the solution turned to orange. After stirring for 25 min , the reaction mixture was quenched at $-78{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$ and then allowed to come to rt . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$, and the organic layers were combined, washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The majority of impurities in the crude product could be removed by flash chromatography ($29: 1$ hexanes/EtOAc). This material was of suitable purity and taken on to the next step. $\mathbf{R}_{\mathbf{f}} 0.60\left(2: 1\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=$ 5.7, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H})$, 2.33-2.24 (m, 3H), 2.15-2.08 (m, 1H), 1.76-1.70 (m, 2H), 1.65-1.55 (m, 2H), 1.34-1.24 (m, 1H), 1.23-1.13(m, 1H), 1.09-1.00(m, 1H), $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.2,155.1,143.3,141.7,139.5,133.7,120.4,112.9,110.9,84.5,60.0,54.0,43.4,38.3,37.3$,

[^1]36.5, 34.0, 26.7, 26.5, 26.0, 18.4, -3.6, -4.0; IR (film) 3425, 2928, 2854, 1579, 1463, 1293, 854, $839 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{NBrSi}^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}\right.$ 520.1877, found 520.1885. $12 \mathrm{~N} \mathrm{HCl}(0.06 \mathrm{~mL}, 0.72 \mathrm{mmol})$ was added to the chromatographed silyl enol ether in THF (25 $\mathrm{mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at this temperature for 2 h . $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~g}, 14.5 \mathrm{mmol})$ was then added (to epimerize to the trans-decalin isomer), and the reaction mixture was allowed to come to rt and was stirred for 1 h before a second portion of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 9.4 \mathrm{mmol})$ was added. After an additional 2.5 h of stirring, the solution was diluted sequentially with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (using a gradient of $5: 1$ to $4: 1$ hexanes/EtOAc) to give tertiary allylic alcohol 11 as a slightly yellow oily solid ($2.72 \mathrm{~g}, 58 \%$ yield over two steps, $>95: 5$ trans/cis decalin isomers). $\mathbf{R}_{\mathbf{f}} 0.32\left(2: 1\right.$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=5.8,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=12.6,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.16(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl3) $\delta 210.7,162.2,154.5$, $143.3,140.3,132.9,112.8,111.1,83.8,61.6,55.8,54.0,47.1,46.4,42.8,37.3,32.2,25.8,25.7$, 25.5; IR (film) 3408, 2928, 2852, 1709, 1580, 1463, 1413, $1294 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{NBr}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z$ 406.1012, found 406.1007.

Secondary allylic alcohol 11. Pyridine ($1.2 \mathrm{~mL}, 15 \mathrm{mmol}, 30$ equiv) was added to $\mathrm{SO}_{3} \bullet$ pyridine ($396 \mathrm{mg}, 2.49 \mathrm{mmol}, 5$ equiv) in DMSO ($1.8 \mathrm{~mL}, 25 \mathrm{mmol}, 50$ equiv) at rt , and the solution was stirred for $15 \mathrm{~min} .^{4}$ Tertiary allylic alcohol $\mathbf{1 1}\left(202 \mathrm{mg}, 0.497 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was then added, and the reaction mixture was stirred at rt for 6 h . At this time, 5 mL of Fisher ${ }^{\circledR}$ $\mathrm{pH} 7.00 \mathrm{KH}_{2} \mathrm{PO}_{4}-\mathrm{NaOH}$ buffer solution concentrate was added, and the biphasic mixture was stirred vigorously at $60{ }^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was then allowed to cool to rt , the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered through a fritted funnel, and concentrated under reduced pressure. The crude product was purified by flash chromatography (using a gradient of $4: 1$ to $1: 1$ hexanes/EtOAc) to afford 111 mg (55% yield) of secondary allylic acetate $\mathbf{1 2}$ as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.13(2: 1 \mathrm{hex} / \mathrm{EtOAc}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J$ $=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.11(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $211.6,162.8,154.9,150.4,142.7,131.4,112.2,110.4,73.9,55.8,53.9,52.4,51.7,46.6,42.6$, 40.2, 32.6, 25.8, 25.7, 25.6; IR (film) 3400, 2924, 2855, 1705, 1575, 1460, $1416 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{NBr}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 406.1012, found 406.1024.

[^2]Secondary alcohol 12. $\mathrm{Na}_{2} \mathrm{CO}_{3}(227 \mathrm{mg}, 2.14 \mathrm{mmol}, 5$ equiv $)$ and $\mathrm{PtO}_{2}(9.5 \mathrm{mg}, 0.042 \mathrm{mmol}$, $10 \mathrm{~mol} \%)$ were added to a solution of $\mathbf{1 2}(174 \mathrm{mg}, 0.428,1$ equiv) in EtOAc ($3.6 \mathrm{~mL}, 0.12 \mathrm{M}$) at $0{ }^{\circ} \mathrm{C}$. The flask was evacuated and backfilled with H_{2} (x 3), and the mixture (held at a temperature between 0 and $8{ }^{\circ} \mathrm{C}$) was stirred under a balloon of H_{2} for 5 h . The reaction mixture was then filtered through a plug of silica, which was rinsed with additional EtOAc. The filtrate was then concentrated under reduced pressure to provide $162 \mathrm{mg}(93 \%)$ of $\mathbf{1 3}$ as a colorless oily solid (95:5 diastereomeric ratio). This product was $>95 \%$ pure and used in the ensuing reaction without further purification. $\mathbf{R}_{\mathbf{f}} 0.17$ (2:1 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) $\delta 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.27(\mathrm{dd}, J=15.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=15.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.51-$ $2.46(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.84-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.15(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.9,162.5,156.6,142.4,112.2,109.4,73.5,54.2,53.8,52.0,50.8,48.1,44.4,42.9$, 42.0, $38.7,32.8,25.9,25.6,25.4$. IR (film) $3446,2929,2854,1702,1574,1459,1417,1293 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{NBr}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z 408.1169$, found 408.1177.

12
13

Boronic ester 13. DMF (3 mL) was added to $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(37 \mathrm{mg}, 0.036 \mathrm{mmol}, 4.5 \mathrm{~mol} \%)$ and $\mathrm{PCy}_{3} \mathrm{HBF}_{4}(62 \mathrm{mg}, 0.18 \mathrm{mmol}, 21 \mathrm{~mol} \%)$ in a 25 mL Schlenk flask under N_{2}. The solution was stirred at rt for 10 min . Bis(pinacolato)diboron ($1.01 \mathrm{~g}, 3.98 \mathrm{mmol}, 5$ equiv), KOAc (391
$\mathrm{mg}, 3.98 \mathrm{mmol}$, 5 equiv), and a solution aryl bromide $\mathbf{1 2}(325 \mathrm{mg}, 0.796 \mathrm{mmol}, 1$ equiv) in DMF (5 mL) were added sequentially to the reaction mixture. The Schlenk flask was evacuated and backfilled with N_{2}, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 37 h . At this time, the reaction mixture was allowed to cool to rt and then diluted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The combined ethereal layers were washed with 15% aqueous $\mathrm{NH}_{4} \mathrm{OH}(2 \times 25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 25$ mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude reaction mixture was purified by flash chromatography (3:1 hexanes/EtOAc). The chromatographed product was then washed with 15% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ (to remove coeluting pinacol boronic acid) and dried over anhydrous MgSO_{4} to give 13 ($236 \mathrm{mg}, 65 \%$ yield) as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.19 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 1 \mathrm{H})$, 2.71-2.65 (m, 1H), 2.50 (dd, $J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 2 \mathrm{H})$, 2.04-1.91 (m, 3H), 1.89-1.76 (m, 3H), 1.66-1.59 (m, 2H), 1.45-1.37 (m, 1H), $1.35(\mathrm{~s}, 12 \mathrm{H}), 1.27-$ $1.18(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.2,166.4,165.3,146.8,107.0,84.2,73.7,54.6$, $53.5,52.6,51.6,48.1,45.3,43.2,40.1,39.8,32.7,26.1,25.6,25.6,25.2,24.7$; IR (film) 3502, 2977, 2929, 2855, 1705, 1587, 1345, 1301; HRMS (ESI $\left.{ }^{+}\right)$calc'd for $\left[\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{NB}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$: $m / z 456.2916$, found 456.2919.

13

14

Dione 14. NaHCO_{3} ($77 \mathrm{mg}, 0.92 \mathrm{mmol}, 2.5$ equiv) and Dess-Martin periodinane (DMP) (391 $\mathrm{mg}, 0.92 \mathrm{mmol}, 2.5$ equiv) were added to a solution of alcohol $\mathbf{1 3}(168 \mathrm{mg}, 0.369 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL}, 0.1 \mathrm{M})$. The reaction mixture was stirred at rt for 11 h . Saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(25 \mathrm{~mL})$ were then added, and the resulting heterogeneous mixture was stirred until the layers became colorless. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was then added and the layers were separated. The aqueous layer was then extracted with additional $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography ($4: 1$ hexanes EtOAc) to provide 141 mg (84% yield) of the trans [6-5] ringfused ketone as a colorless oily solid. $\mathbf{R}_{\mathbf{f}} 0.47$ (2:1 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=12.9,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=12.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}$, $1 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}) .1 .38-1.29(\mathrm{~m}, 13 \mathrm{H}), 1.28-2.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $214.7,210.1,165.4,165.0,147.0,107.5,83.8,55.7,54.4,53.5,52.4,48.8,44.7,43.2,41.1,39.8$, 32.4, 26.0, 25.7, 25.3, 25.1, 25.0; IR (film) 2978, 2928, 2848, 1743, 1710, 1588, 1346, $1297 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{NB}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z 454.2759$, found 454.2768.
Triethylamine ($0.060 \mathrm{~mL}, 0.43 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{SiO}_{2}(131 \mathrm{mg})$ were added to the trans [65] ring-fused ketone ($131 \mathrm{mg}, 0.289 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2.9 \mathrm{~mL}, 0.1 \mathrm{M}$). The heterogeneous mixture was stirred at rt for 4 h at which time it was filtered through cotton wool with a short pad of silica. The silica was rinsed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was concentrated under reduced pressure. The crude product was purified by flash chromatography
(using a gradient of $6: 1$ to $4: 1$ hexanes/EtOAc) to give 122 mg (93% yield) of a colorless oily solid. $\mathbf{R}_{\mathbf{f}} 0.43$ (2:1 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=12.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (dd, $J=12.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.03$ $(\mathrm{m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H}), 1.16-1.03(\mathrm{~m}, 4 \mathrm{H}), 0.86-0.78(\mathrm{~m}$, 1H) ${ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.2,210.2,165.2,165.1,146.7,107.7,83.9,53.4,52.4$, 48.0, 46.0, 43.4, 41.9, 40.0, 36.9, 35.9, 32.3, 25.6, 25.4, 25.2, 25.1, 24.9; IR (film) 2977, 2930, 2855, 1742, 1713, 1589, 1341, 1305; HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{NB}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z$ 454.2759, found 454.2772.

Tertiary alcohol 15. $25 \mathrm{~mol} \%$ Catalyst loading procedure: In a glovebox, a solution of ketone 14 ($19 \mathrm{mg}, 0.042 \mathrm{mmol}, 1$ equiv) in toluene $(0.5 \mathrm{~mL}, 0.09 \mathrm{M}$) was added to a vial containing $[\mathrm{Rh}(\operatorname{cod})(\mathrm{MeCN})]^{+} \mathrm{BF}_{4}^{-}(4.1 \mathrm{mg}, 0.011 \mathrm{mmol}, 25 \mathrm{~mol} \%)$, and a stir bar. $\mathrm{Et}_{3} \mathrm{~N}(12 \mu \mathrm{~L}, 0.084$ mmol, 2 equiv) was then added to the vial. The vial was sealed with a Teflon cap, brought outside of the glovebox, and heated in a metal heating block (tall enough to cover $\sim 90 \%$ of the vial) at $80{ }^{\circ} \mathrm{C}$ for 6.5 h . The reaction mixture was then diluted with EtOAc (15 mL) and $\mathrm{H}_{2} \mathrm{O}(8$ $\mathrm{mL})$. The layers were separated and the aqueous layer was extracted with EtOAc (10 mL). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (using a gradient of $5: 1$ to $4: 1$ hexanes/EtOAc) to give 15 as a yellow oil (0.032 mmol , based on ${ }^{1} \mathrm{H}$ NMR integration using 1,2-dichloroethane as an internal standard, 77% yield), contaminated with pinacol boronic
acid. This material was used without further purification in the subsequent reaction. $8 \mathrm{~mol} \%$ Catalyst loading procedure: In a glovebox, a solution of ketone 14 ($22 \mathrm{mg}, 0.049 \mathrm{mmol}, 1$ equiv) in toluene $(0.49 \mathrm{~mL}, 1.0 \mathrm{M})$ was added to a vial containing $[\mathrm{Rh}(\operatorname{cod})(\mathrm{MeCN})]^{+} \mathrm{BF}_{4}{ }^{-}(1.5 \mathrm{mg}$, $0.0039 \mathrm{mmol}, 8 \mathrm{~mol} \%)$, and a stir bar. $\mathrm{Et}_{3} \mathrm{~N}(14 \mu \mathrm{~L}, 0.098 \mathrm{mmol}, 2$ equiv) was then added to the vial. The vial was sealed with a Teflon cap, brought outside of the glovebox, and heated in a metal heating block (tall enough to cover $\sim 90 \%$ of the vial) at $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then diluted with $\mathrm{EtOAc}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc (10 mL). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to give $\mathbf{1 5}$ as a yellow oil (0.035 mmol, based on ${ }^{1} \mathrm{H}$ NMR integration using 1,2-dichloroethane as an internal standard, 71% yield), contaminated with pinacol boronic acid. This material was used without further purification in the subsequent reaction. The majority of the contaminating pinacol boronic acid could be removed to provide an analytically pure sample as follows: The chromatographed material was dissolved in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and washed with 15% aqueous $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. The combined organic layers were then washed with 15% aqueous $\mathrm{NH}_{4} \mathrm{OH}(2 \times 5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to give pure $\mathbf{1 5}$. $\mathbf{R}_{\mathbf{f}}$ 0.20 (2:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=17.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.45$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.09-0.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.3,163.3,152.0,134.8,133.9,108.2,79.2,53.6,51.1,49.1,47.3,42.9$,
41.4, 38.4, 37.9, 36.7, 33.1, 27.5, 26.0, 25.9; IR (film) 3446, 2925, 2854, 1706, 1474, 1307;

HRMS $\left(\mathrm{ESI}^{+}\right)$calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~N}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z$ 328.1907, found 328.1902.

Methylpyridinyl ketone 16. EtSH ($74 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 20$ equiv) was added to a suspension of $\mathrm{NaH}(20 \mathrm{mg}$ of a $60 \% \mathrm{NaH}$ dispersion in mineral oil, $0.50 \mathrm{mmol}, 10$ equiv) in DMF (0.2 mL) under N_{2} in a Schlenk tube. 2-Methoxypyridinyl ketone 15 (0.05 mmol , 1 equiv) in DMF (0.5 mL) was then added. The Schlenk tube was quickly evacuated and backfilled with N_{2} then sealed, and the reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was allowed to cool to rt and then quenched with $\mathrm{H}_{2} \mathrm{O}(0.06 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 12 mL). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure via rotary evaporation and then on a high vacuum line (flask at $30^{\circ} \mathrm{C}$). The crude pyridone (containing a trace amount of DMF) was used in the subsequent step.

The pyridone was dissolved in pyridine $(0.35 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Trifluoromethanesulfonic anhydride ($20 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$, 2.4 equiv) was then added, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was quenched at $0{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NaHCO}_{3}(2$ $\mathrm{mL})$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (using a gradient of $4: 1$ to $3: 1$ hexanes/EtOAc) to give 16.9 mg of the pyridinyl triflate (76% yield over two steps) as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.19$ (2:1 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.20(\mathrm{dd}, J=18.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.30(\mathrm{~m}$, $3 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.12(\mathrm{br}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.09-0.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 213.8,155.1,154.6,143.1,136.3,118.8(\mathrm{q}, J=320 \mathrm{~Hz}), 112.7,79.2,51.0$, $49.0,47.1,42.5,41.2,38.1,37.2,36.3,33.0,27.4,25.9,25.8 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 72.3; IR (film) 3442, 2927, 2856, 1701, 1419, 1219, $1137 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{NF}_{3} \mathrm{~S}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z 446.1244$, found 446.1238.
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.6 \mathrm{mg}, 0.0005 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in THF $(0.1 \mathrm{~mL})$ was added to a solution of the pyridinyl triflate described above ($4.8 \mathrm{mg}, 0.011 \mathrm{mmol}, 1$ equiv) in THF (0.3 mL) in a Schlenk tube under N_{2}. Trimethyl aluminum ($20 \mu \mathrm{~L}$ of a 2.0 M solution in toluene, $0.04 \mathrm{mmol}, 4$ equiv) was then added to this solution. The Schlenk tube was evacuated and backfilled with N_{2}, sealed, and heated in an oil bath at $80^{\circ} \mathrm{C}$ for 12.5 h . The reaction mixture was then allowed to cool to rt ; $\mathrm{MeOH}(0.05 \mathrm{~mL})$ was added and stirring was continued for another $5 \mathrm{~min} . \mathrm{NaHCO}_{3}(75 \mathrm{mg})$ and anhydrous $\mathrm{MgSO}_{4}(300 \mathrm{mg})$ were added, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and then stirred for 10 min . This mixture was filtered through Celite, which was rinsed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by flash chromatography (using a gradient from $0.5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $4 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). 2-Methylpyridinyl ketone 16 ($2.4 \mathrm{mg}, 71 \%$ yield) was thus obtained as a yellow oil. $\mathbf{R}_{\mathbf{f}} 0.3\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=17.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}$, $1 \mathrm{H}), 1.94-1.90(\mathrm{br}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.40(\mathrm{~m}$, $1 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$214.2,157.1,154.0,139.2,131.1,121.2,79.3,51.1,49.0,47.2,43.1,41.4,38.3,37.7,36.7,33.0$, 27.5, 26.0, 25.8, 24.3; IR (film) 3368, 2924, 2853, 1709, 1461, $1101 \mathrm{~cm}^{-1} ; \mathbf{H R M S}^{\left(\mathrm{ESI}^{+}\right) \text {calc'd }}$ for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: m / z$ 312.1958, found 312.1953.

N-Cbz-G. B. 13 (17). $5 \% \mathrm{Rh}$ on alumina ($10 \mathrm{mg}, 0.005 \mathrm{mmol}, 25 \mathrm{~mol} \%$) was added to a solution of methylpyridinyl ketone 16 ($6.1 \mathrm{mg}, 0.020 \mathrm{mmol}, 1$ equiv) in absolute $\mathrm{EtOH}(0.3 \mathrm{~mL}$) in a 4 mL vial. The reaction vessel was placed inside a Parr bomb, which was pressurized to 1000 psi with H_{2}. The reaction mixture was stirred at this pressure for 19.5 h . At this time, the Parr bomb was vented. The mixture was filtered through Celite, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$, and then concentrated under reduced pressure to give the corresponding piperidine as a mixture of ketone and alcohol products. The crude mixture was used immediately without purification.

To the piperidine mixture described above was added toluene (0.25 mL), saturated aqueous $\mathrm{NaHCO}_{3}(0.25 \mathrm{~mL})$, and benzylchloroformate $(9.1 \mu \mathrm{~L}, 0.064 \mathrm{mmol}, 3$ equiv). The reaction mixture was stirred at rt for 2.5 h at which time it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (2 $\mathrm{mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 7 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluting with $2: 1$ hexanes/EtOAc to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). The fractions containing Cbz-protected piperidine ketone and alcohol products were combined, concentrated under reduced pressure, and used in the next step.
p-Toluenesulfonic acid monohydrate ($15 \mathrm{mg}, 0.079 \mathrm{mmol}, 4$ equiv) and IBX ($84 \mathrm{mg}, 0.30 \mathrm{mmol}$, 15 equiv) were added to a solution of the Cbz-protected piperidine mixture described above in DMSO $(0.20 \mathrm{~mL})$ and benzene $(0.15 \mathrm{~mL})$. The mixture was stirred at $65^{\circ} \mathrm{C}$ for 18.5 h and then diluted with EtOAc (8 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with additional EtOAc (2 x 8 mL). The combined organic layers were then washed sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluting with a gradient of $4: 1$ to $2: 1$ hexanes/EtOAc) to give 5.3 mg (60% yield over three steps) of $\mathrm{N}-\mathrm{Cbz}-\mathrm{G} . \mathrm{B} .13$ (17) as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.45$ (1:2 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.13 (m, 2H), 7.09-7.05 (m, 1H), $5.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.71-4.62(\mathrm{~m}, 1 \mathrm{H})$, 4.45-4.35 (m, 1H), 2.64-2.50 (m, 2H), 1.95-1.88 (m, 1H), 1.72-1.62 (m, 4H), 1.53-1.42 (m, 3H), $1.34-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.84-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.54(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 198.7,172.2,155.5,137.8,119.0,80.8,67.2,56.4,52.3,47.10$, $47.05,45.9,45.0,35.8,35.5,31.4,30.0,29.9,26.6,26.2,25.6,20.0,19.0$; IR (film) 3423,2931 , 2852, 1687, 1665, 1414, $1317 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calc'd for $\left[\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~N}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 450.2639 , found 450.2640 .

G. B. 13 (2). The procedure of Movassaghi, et al., ${ }^{5}$ was followed. Trimethylsilyliodide (1 drop every 25 min for $125 \mathrm{~min}, \sim 0.06 \mathrm{~mL}$ total) was added to a solution of $17(5.3 \mathrm{mg}, 0.012 \mathrm{mmol})$

[^3]in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 125 min , TLC analysis indicated the complete consumption of starting material, and 1.5 mL 1 N HCl was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir with warming to rt and then was further diluted with $1 \mathrm{~N} \mathrm{HCl}(3.5 \mathrm{~mL})$ and hexanes $(10 \mathrm{~mL})$. The layers were separated and the organic phase was extracted with additional $1 \mathrm{~N} \mathrm{HCl}(2 \times 5$ $\mathrm{mL})$. The combined aqueous layers were washed sequentially with hexanes ($2 \times 10 \mathrm{~mL}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), and hexanes (10 mL) and then brought to pH 13 with 15% aqueous $\mathrm{NaOH}(4.5 \mathrm{~mL})$. The basic, aqueous solution was stirred at rt for 1.25 h and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 15$ mL). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give 2.9 mg (79% yield) of a $\sim 1: 2$ mixture of G. B. 13 (2) and its N conjugate addition product, 16 -oxo-himgaline, in $\mathrm{C}_{6} \mathrm{D}_{6}$. Stirring this mixture in 15% aqueous NaOH for an additional two hours followed by extraction into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then provided a $\sim 5: 2$ mixture of G. B. 13 and 16-oxo-himgaline (in $\mathrm{C}_{6} \mathrm{D}_{6}$), consistent with the observations of Evans. ${ }^{6}$ Impurities from solvents could be removed by flash chromatography (eluting with a gradient of $0.1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ G. B. $13: \delta 6.06(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.13 (m, 1H), 1.93-1.89 (m, 1H), 1.85-1.82 (m, 1H), 1.82-1.47 (m, 6H), 1.44-1.40 (ddd, $J=$ $10.7,5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-0.90(\mathrm{~m}, 9 \mathrm{H}), 0.83-0.74(\mathrm{~m}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, C ${ }_{6}$ D $_{6}$) G. B. 13: $\delta 199.1,178.6,118.9,79.4,55.1,53.0,52.8,50.9,47.9,47.3,46.4$, 40.7, 32.8, 31.6, 30.3, 27.0, 26.4, 25.8, 24.7, 23.3; IR (film) 3391, 2927, 2853, 1706, 1647, 1447, 1317, $1147 \mathrm{~cm}^{-1}$; HRMS (ESI $)$ calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~N}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}: \mathrm{m} / \mathrm{z}$ 316.2271, found 316.2273.

[^4]

($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

Additional References.

Syntheses of Himbacine and other Galbulimima class I alkaloids:
Hart, D. J.; Wu, W. L.; Kozikowski, A. P. J. Am. Chem. Soc. 1995, 117, 9369-9370.
De Baecke, G.; De Clercq, P. J. Tetrahedron Lett. 1995, 36, 7515-7518.
Chackalamannil, S.; Davies, R. J.; Asberom, T.; Doller, D.; Leone, D. J. Am. Chem. Soc. 1996, 118, 9812-9813.

Hart, D. J.; Li, J.; Wu, W. L.; Kozikowski, A. P. J. Org. Chem. 1997, 62, 5023-5033.
Hofman, S.; De Baecke, G.; Kenda, B.; De Clercq, P. J. Synthesis-Stuttgart 1998, 479489.

Chackalamannil, S.; Davies, R. J.; Wang, Y.; Asberom, T.; Doller, D.; Wong, J.; Leone, D.; McPhail, A. T. J. Org. Chem. 1999, 64, 1932-1940.

Takadoi, M.; Katoh, T.; Ishiwata, A.; Terashima, S. Tetrahedron Lett. 1999, 40, 33993402.

Hofman, S.; Gao, L. J.; Van Dingenen, H.; Hosten, N. G. C.; Van Haver, D.; De Clercq, P. J.; Milanesio, M.; Viterbo, D. European Journal Of Organic Chemistry 2001, 28512860.

Wong, L. S. M.; Sherburn, M. S. Org. Lett. 2003, 5, 3603-3606.
Tchabanenko, K.; Chesworth, R.; Parker, J. S.; Anand, N. K.; Russell, A. T.; Adlington, R. M.; Baldwin, J. E. Tetrahedron 2005, 61, 11649-11656.

Tchabanenko, K.; Adlington, R. M.; Cowley, A. R.; Baldwin, J. E. Org. Lett. 2005, 7, 585-588.

[^0]: ${ }^{1}$ Diene 7 was prepared from 1-acetylcyclohexene and TBSCl, according to the procedure of Ohkata et al.: Ohkata, K.; Lee, Y. G.; Utsumi, Y.; Ishimaru, K.; Akiba, K. J. Org. Chem. 1991, 56, 5052-5059.
 ${ }^{2}$ Enone $\mathbf{8}$ was prepared via the Mihelich-Eickhoff photooxygenation of cyclopentadiene dimer, according to the procedure of Borsato et al.: Borsato, G.; De Lucchi, O.; Fabris, F.; Lucchini, V.; Frascella, P.; Zambon, A. Tetrahedron Lett. 2003, 44, 3517-3520. Purification was achieved by flash chromatography eluting with a gradient of hexanes to 29:1 hexanes/EtOAc.

[^1]: ${ }^{3}$ Haudrechy, A.; Chassaing, C.; Riche, C.; Langlois, Y. Tetrahedron 2000, 56, 3181-3187.

[^2]: ${ }^{4}$ Chen, L. J.; Lee, S.; Renner, M.; Tian, Q. P.; Nayyar, N. Org. Process Res. Dev. 2006, 10, 163-164.

[^3]: ${ }^{5}$ Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006, 128, 8126-8127.

[^4]: ${ }^{6}$ Evans, D. A.; Adams, D. J. J. Am. Chem. Soc. 2007, 129, 1048-1049.

