Modular Design of Peptide Fibrillar Nano- to Microstructures

Maxim G. Ryadnov^{*,1}, Angelo Bella¹, Samuel Timson¹ and Derek N. Woolfson^{2,3}

¹Department of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom, ²School of Chemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom, ³Department of Biochemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom

Abbreviations

DIPEA – diisopropylethylamine, EDT – 1,2-ethanedithiol, Fmoc – 9-fluorenylmethoxycarbonyl, HBTU – O-benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate; EPPS – 3-[4-(2-hydroxyethyl)-1-piperazinyl] propanesulfonic acid; RP-HPLC – reversed phase high pressure liquid chromatography; MALDI-ToF – matrix-assisted laser desorption/ionization time of flight; MOPS - (3-(N-morpholino)propanesulfonic acid; TCEP – (tris(2-carboxyethyl)phosphine); TIS – triisopropyl silane; TFA – trifluoroacetic acid.

Design Notes

In Constructs IVa and IVb, D-Val residues were used instead of D-Ile residues. Valine at a positions of the heptad repeat directs the same oligomerization state as isoleucine, but avoids the complicating side-chain chirality. In Construct VI cysteine residues occupy b and c positions which form the exterior or solvent-exposed faces of individual coiled-coil fibrils. The fibrils bundle up through the association of these faces. Similar to alanines, cysteines are sufficiently small to allow close contacts between the coiled-coil exteriors. However, unlike alanines, cysteine residues can react with the formation of disulphide bonds. This leads to the cross-linking or locking of the faces thus limiting the surface area of the fibrils and subsequently their thickening. Peptide sequences of all constructs are given in Table S1.

Experimental Notes

Peptide synthesis. Peptides were synthesized using standard solid phase Fmoc-based protocols. Wang resins pre-loaded with C-terminal amino acids were used. Amino-acid couplings were performed with HBTU/DIPEA. Synthesized peptides were purified by RP-HPLC following deprotection (95% TFA, 2.5% TIS, 2.5% water for modules I-IV and V; and 95% TFA, 5% EDT for module VI) and work up. The identities of the peptides were confirmed by analytical RP-HPLC and MALDI-ToF:

MS $[M+H]^+$: module I -m/z 3068.6 (calc), 3069.3 (found); module II -m/z 3068.6 (calc), 3068.8 (observed); module III -m/z 3495 (calc), 3496 (observed); module IVa -m/z 3040.6 (calc), 3041 (observed); module IVb -m/z 3040.6 (calc), 3041.4 (observed); module V -m/z 1827.4 (calc), 1828.6 (observed); module V (without C₁₈) -m/z 1561.2 (observed); 1560.9 (calc.); module VI -m/z 3196.9 (calc), 3197.5 (observed).

High Performance Liquid Chromatography. Analytical and semi-preparative gradient RP-HPLC was performed on a JASCO HPLC system using Vydac C_{18} analytical (5µm, 4.6 mm i.d. x 250 mm) and semi-preparative (5µm, 10 mm i.d. x 250 mm) columns. Both analytical and semi-prep runs used a 10-60% B gradient over 50 min at 1 mL/min and 4.5 mL/min respectively with detection at 230 and 280 nm. Buffer A – 5% and buffer B – 95% aqueous CH₃CN, 0.1% TFA.

Circular dichroism. Circular dichroism spectroscopy was performed on a JASCO J-715 and J-810 spectropolarimeters fitted with a Peltier temperature controller. All measurements were taken in ellipticities in mdeg and converted to molar ellipticities ([θ], deg cm² dmol res⁻¹) by normalizing for the concentration of peptide bonds. Aqueous peptide solutions (300 µL volume; 100 µM in peptide) were prepared in filtered (0.22 µm) 10 mM MOPS (morpholinepropanesulfonic acid), pH 7.4 and 10 mM EPPS, pH 7.9-9. Stock solutions of all modules were in water, except for module V which was kept in aqueous 1 mM TCEP.

Transmission Electron Microscopy. 200 μ L samples (100 μ M in peptide) were incubated overnight at room temperature in filtered (0.22 μ m) aqueous 10 mM MOPS, pH 7.4 (unless stated otherwise). Following incubations, 8 μ L drops of peptide solutions were applied to carbon-coated copper specimen grids (Agar Scientific) and dried. The grids were stained with 0.5% uranyl acetate (8 μ L) for 10 – 20 s and examined in a JEOL JEM 1200 EX MKI microscope at the accelerating voltage of 100 kV. Images were digitally acquired with a fitted camera (MegaViewII).

Table and Figures

	Construct name	Sequence
		Ĩ
Ι		KIAALKQEIAALEQKIAALKYEIAALEQ
II		KIAALKQKIAALKQEIAALEYEIAALEQ
III		KIAALKQKIAALK(ßA)6EIAALEYEIAALEQ
IVa ^a		KIAALKQKIAALKQevaaleyevaaleq
IVb ^a		kvaalkqkvaalkqEIAALEYEIAALEQ
V		C ₁₈ -KIAALEQKIAALEY
VI		KICCLKQKICCLKQEIAALEYEIAALEQ

Table S1. Peptide sequences

^a – D-amino acids are given in lowercase

Figure S1. Low magnification electron micrographs of fibrillar nanostructures assembled from Constructs I-VI (**a-f**). Images were taken for 100 μM peptide samples in 10 mM MOPS, pH 7.4, 20 °C.

Figure S2. CD spectra of Constructs. (a) I-III. (b) IVa, IVb. (c) V. (d) VI.

Figure S3. Low magnification electron micrographs of Constructs IVa (**a**), IVb (**b**) and V at 20°C (**c**), V without the C₁₈ tail before (20°C, **d**) and after (up to 100°C, **e**) melting. Images were taken for 100 μ M peptide in 10 mM MOPS, pH 7.4.

Figure S4. Low magnification electron micrographs of Construct VI at pH 7.9 (**a**), 8.5 (**b**), 9 (**c**), and Construct II at pH 8 (**d**). Images were taken for 100 μM peptide samples in 10 mM EPPS, incubated at 20 °C overnight.