Supplementary Information For:

Structure and Dynamics of Monomer-Template Complexation: An Explanation for Molecularly Imprinted Polymer Recognition Site Heterogeneity

Björn C. G. Karlsson,^a John O'Mahony,^a Jesper G. Karlsson,^a Helen Bengtsson,^a Leif A. Eriksson, ^b Ian A. Nicholls^{a*}

^a Bioorganic and Biophysical Chemistry Laboratory, School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden. ^b School of Chemistry, National University of Ireland – Galway, Galway, Ireland

Page

Correspondence to: Ian A. Nicholls E-mail: <u>ian.nicholls@hik.se</u> Tel: +46-480 446258 Fax: +46-480 446244

Table of Contents

¹ H NMR Spectroscopy			
MAA-Bupivaca	ine Titration		
	Bupivacaine Protons	Figure S1	S2
	MAA Protons	Figure S2	S2
MAA-Bupivaca	ine Continuous Variation Study		
	Bupivacaine Protons	Figure S3	S 3
	MAA Protons	Figure S4	S 3
Acetic acid-d ₄ -E	EDMA-Bupivacaine Titration		
	Bupivacaine Protons	Figure S5	S4
EDMA-Bupivac	caine Titration Study		
	Bupivacaine Protons	Figure S6	S4
Polymer Gelatio	on	Figure S7	S 5
MD – Equilibration and Product		0	
	on Mixtures SP and P		
	System Design and Methodology	Table S1	S6
	Thermodynamic Properties	Table S2	S6
	Hydrogen Bond Analysis	Table S3	S7
MD - Potentials of Mean Force (
	Thermodynamics	Table S4	S8-9
	Histograms	Figure S8	S9
	Potentials of Mean Force and Complexes	Figure S9	S10
MD – RDF Analysis	-	0	
Template-Cross	linker	Figure S10	S11
Template-Initia	tor	Figure S11	S12
Template-Temp	late	Figure S12	S12
Monomer-Mono	omer	Figure S13	S13
Template-Porog	gen	Figure S14	S14
Atomic Densitie	8	Table S5	S15
MD - Grid Density Analysis			
Simplified Prep	olymerization Mixture (SP):		
	Template-Monomer	Figure S15	S16
	Template-Porogen	Figure S16	S17
Prepolymerizati	on Mixture (P):	0	
	Template-Porogen	Figure S17	S18
	Template-Initiator	Figure S18	S19
Polymer-Template Rebinding St	tudy	U	
Polymer Titratio		Figure S19	S20
	unctional Monomer-Template Binding	5	
	on Experimental Info and Titration Data	Figure S20	S21
	Setup and Analyzed Grid Density Data	Figure S21	S22
	1	0	

¹H NMR Spectroscopy **MAA-Bupivacaine Titration**

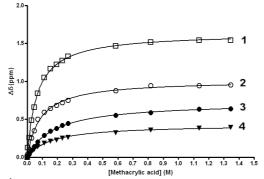


Figure S1. MAA-bupivacaine ¹H NMR titration experiment in CDCl₃ at 293 K. Analysis of the bupivacaine protons studied (see Chart 2) using a non-linear one-site binding model yielded:

 $R^2 > 0.99$ and $K_D = 0.065 \pm 0.001 M (K_A = 15.4 \pm 0.1 M^{-1})$ for 1 (\Box), $R^2 > 0.99$ and $K_D = 0.086 \pm 0.005 M$ (K_A= 11.7 ± 0.4 M_1^{-1}) for 2 (\circ), $R^2 > 0.99$ and $K_D = 0.154 \pm 0.009 M (K_A = 6.5 \pm 0.2 M^{-1})$ for **3**(•), $R^2 > 0.99$ and $K_D = 0.176 \pm 0.005 M (K_A = 5.7 \pm 0.1 M^{-1})$ for 4 (∇).

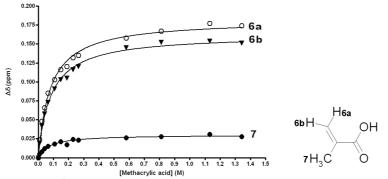
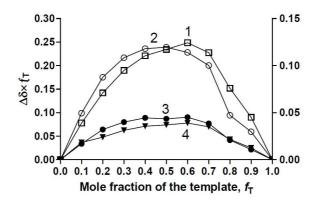
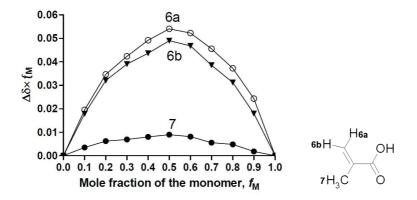



Figure S2. MAA-bupivacaine ¹H NMR titration experiment in CDCl₃ at 293 K. Analysis of the MAA protons studied using a non-linear one-site binding model yielded:


 $R^2 > 0.99$ and $K_D = 0.080 \pm 0.005 M (K_A = 12.5 \pm 0.5 M^{-1})$ for proton **6a** (\circ),

 $R^2 > 0.99$ and $K_D = 0.082 \pm 0.005 M (K_A = 12.2 \pm 0.4 M^{-1})$ for proton **6b** (∇), $R^2 = 0.97$ and $K_D = 0.071 \pm 0.011$ M ($K_A = 14.3 \pm 1.3 M^{-1}$) for proton **7** (\bullet).

MAA-Bupivacaine Continuous Variation Study

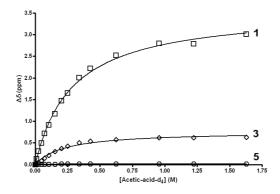
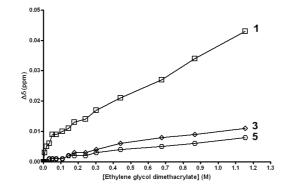
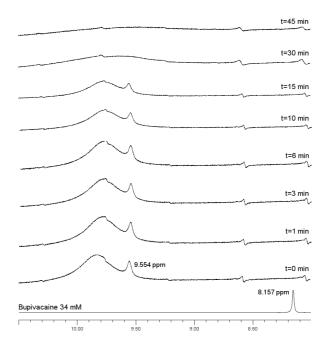


Figure S3. MAA-bupivacaine ¹H NMR continuous variation experiment in CDCl₃ at 293 K. Bupivacaine protons studied (see Chart 2) and the different optimal molar fractions of the template observed in the experiment were 0.6 for proton 1 (\Box), 0.4 for proton 2 (\circ), 0.5 for proton 3 (\bullet) and finally 0.6 for proton 4 (∇). Protons 3 and 4 have due to smaller chemical shifts, been clarified by the addition of an extra y-axis on the right-hand side. The title on this axis is the same as on the left-hand side.


Figure S4. MAA-bupivacaine ¹H NMR continuous variation experiment in CDCl₃ at 293 K. MAA Protons studied and the different optimal molar fractions of bupivacaine observed in the experiment were 0.5 for proton **6a** (\Diamond), 0.5 for proton **6b** (Δ) and 0.5 for proton 7 (∇).

Acetic acid-d₄-EDMA-Bupivacaine Titration


Figure S5. Acetic acid-d₄-EDMA-bupivacaine ¹H NMR titration experiment in CDCl₃ at 293 K. Analysis of the bupivacaine protons (see Chart 2) studied using a non-linear one-site binding model yielded: $R^2 > 0.99$ and $K_D = 0.284 \pm 0.013 M (K_A = 3.5 \pm 0.1 M^{-1})$ for proton **1** (\Box), $R^2 = 0.98$ and $K_D = 0.225 \pm 0.026 M (K_A = 4.5 \pm 0.3 M^{-1})$ for proton **3** (\diamondsuit), $R^2 = 0.98$ and $K_D = 0.091 \pm 0.012 M (K_A = 11.1 \pm 0.9 M^{-1})$ for proton **5** (\circ).

EDMA-Bupivacaine Titration

Figure S6. EDMA-bupivacaine ¹H NMR titration experiment in CDCl₃ at 293 K showing the bupivacaine protons studied (see Chart 2) $\mathbf{1}$ (\Box), $\mathbf{3}$ (\diamondsuit) and $\mathbf{5}$ (\circ) upon addition of the crosslinker EDMA.

Polymer Gelation

Figure S7. Fate of the bupivacaine complexation during the radical polymerization as studied by ¹H NMR spectroscopy following the bupivacaine amide proton (proton **1** in Chart 2) during the polymerization process in $CDCl_3$ at 293 K.

MD - Equilibration and Production Run Data

Prepolymerization Mixtures

System Design and Methodology

TABLE S1: System Design and Molecular Dynamics Methodology Applied.

System ^{<i>a</i>}	Bupivacaine	MAA	EDMA	CHCl ₃	AIBN	Eq. $(ps)^b$	Prod. (ns)
SP	7	79	-	270	-	20+200	5
Р	7	75	368	741	8	200+600	5

^aThe simplified prepolymerization (**SP**) and the prepolymerization (**P**) mixtures in chloroform. ^bThe equilibration phase was divided into two parts in which the first part involved a process slowly heating the system from 0 to 293 K (NVT) followed by a longer equilibration step at NPT (293 K, 1 bar) to assure a stable value in density of the system (see Table S2).

Thermodynamic Properties

TABLE S2: Thermodynamic Properties for the Different Systems Studied.

			I	Energies (kcal/mo	l)	
System ^a	Temp. (K)	ρ (g/cm ³)	E _{POT}	E_{KIN}	E _{TOT}	Volume ($Å^3$)
SP	293.2 ± 4.9	1.35	-3815.5 ± 37.0	2112.3 ± 35.0	-1703.3 ± 50.3	37.0×37.0×36.8
Р	293.1 ± 2.0	1.25	-4905.2 ± 90.6	11775.8 ± 82.3	6870.6 ± 120.4	61.1×61.0×61.0
9						

^aThe simplified prepolymerization (**SP**) and the prepolymerization (**P**) mixtures in chloroform.

MD - Hydrogen Bond Analysis

Aton	n Pair	Occup	ied $(\%)^a$	Distar	ice (Å)	Angle	e (°) ^b	e	lifetime,
		r				8		τ (ps)
Acc.	Don.	SP	Р	SP	Р	SP	Р	SP	Р
CO	MH	47.8	34.1	1.77 ± 0.04	1.79 ± 0.06	25.2 ± 9.2	24.0 ± 6.9	13.2 ± 7.1	11.9 ± 7.5
AN	MH	27.4	n.d.	1.85 ± 0.03	n.d.	22.1 ± 5.5	n.d.	5.7 ± 2.4	n.d.
MO	AH	17.9	0.3	1.89 ± 0.03	1.92 ± 0.02	33.9 ± 14.2	45.4 ± 5.1	1.8 ± 0.8	1.1 ± 0.1
MO1	AH	0.3	n.d.	1.92 ± 0.02	n.d.	33.9 ± 15.2	n.d.	1.2 ± 0.2	n.d.
EO	AH		0.7		1.91 ± 0.02		41.7 ± 1.9		1.2 ± 0.2
EO1	AH		n.d.		n.d.		n.d.		n.d.
EO2	AH		n.d.		n.d.		n.d.		n.d.
EO3	AH		0.7		1.92 ± 0.04		42.4 ± 2.9		1.1 ± 0.1
CO	AH	n.d.	6.4	n.d.	2.88 ± 0.02	n.d.	35.1 ± 9.8	n.d.	0.5 ± 0.1
AN	AH	0.5	0.7	2.86 ± 0.01	2.86 ± 0.00	58.1 ± 0.1	58.1 ± 0.2	0.2 ± 0.0	0.2 ± 0.0

TABLE S3: Hydrogen Bonding Observed in the Prepolymerization Solutions Studied by MD. Values are Presented as Mean ± Standard deviation.

^aThe hydrogen-bonded state with respect to the total simulation time in average per template molecule present in the mixture. ^bDefines as the angle between three atoms whereas the hydrogen donating group includes two atoms such as *e.g.* MO1-MH and the hydrogen bond accepting atom includes a single atom such as e.g. atom *CO*. n.d. means not detected.

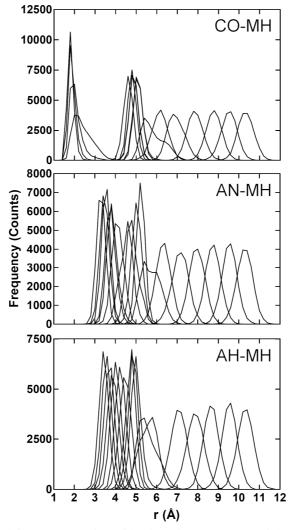
MD- Potentials of Mean Force (PMFs) Calculations

Thermodynamics

TABLE S4: Thermodynamic Data Obtained From the Umbrella Sampling Simulations in Chloroform at 293 K Using Different Starting Coordinates.

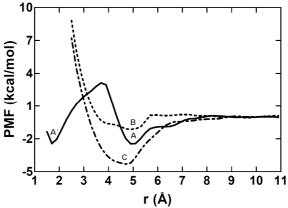
Series 1: CO-MH

d_0			Energies (kcal/mol)		_
e 0	d _{mean}	E _{pot}	E _{kin}	E_{tot}	Temp.
1.9	1.8	-991.8 ± 21.7	846.1 ± 21.9	-145.7 ± 30.2	293.0 ± 7.6
2.3	1.9	-990.0 ± 22.4	847.7 ± 22.2	-142.3 ± 31.7	293.6 ± 7.7
2.7	2.1	-986.5 ± 21.7	849.2 ± 22.3	-137.4 ± 31.0	294.1 ± 7.7
3.1	2.4	-989.4 ± 21.7	845.7 ± 21.5	-143.7 ± 29.8	292.9 ± 7.5
3.5	4.6	-988.4 ± 21.4	847.4 ± 21.6	-141.0 ± 29.5	293.5 ± 7.5
3.9	4.8	-991.0 ± 21.8	847.0 ± 21.8	-144.0 ± 30.5	293.3 ± 7.5
4.3	4.9	-991.7 ± 21.3	846.6 ± 21.8	-145.1 ± 30.0	293.2 ± 7.5
4.7	4.9	-992.8 ± 21.2	845.8 ± 21.9	-147.0 ± 30.0	292.9 ± 7.6
5.1	5.1	-993.4 ± 21.9	846.2 ± 22.7	-147.2 ± 30.4	293.1 ± 7.6
5.5	5.1	-991.5 ± 21.8	846.9 ± 22.7	-144.5 ± 31.4	293.3 ± 7.9
5.9	6.1	-984.1 ± 22.3	847.7 ± 22.2	-136.4 ± 31.7	293.6 ± 7.7
6.3	5.8	-989.2 ± 21.5	846.8 ± 22.0	-142.4 ± 30.1	293.3 ± 7.6
7.1	6.9	-987.6 ± 22.1	845.7 ± 21.9	-141.9 ± 31.2	292.9 ± 7.6
7.9	7.9	-985.3 ± 22.1	845.9 ± 22.5	-139.4 ± 31.8	293.0 ± 7.8
8.7	8.8	-989.2 ± 21.8	844.6 ± 21.9	-144.6 ± 30.6	292.5 ± 7.6
9.5	9.5	-986.8 ± 21.8	846.8 ± 22.0	-140.1 ± 30.9	293.3 ± 7.6
10.3	10.3	-986.9 ± 22.5	847.3 ± 22.1	-139.6 ± 31.7	293.4 ± 7.7


Series 2: AN-MH

			Energies (kcal/mol)		_
d_0	d _{mean}	E _{pot}	E _{kin}	E _{tot}	Temp.
1.9	3.3	-984.0 ± 21.8	846.7 ± 22.4	-137.3 ± 30.9	293.3 ± 7.8
2.3	3.5	-984.9 ± 21.7	847.5 ± 21.6	-137.3 ± 30.1	293.5 ± 7.5
2.7	3.5	-989.9 ± 21.1	845.7 ± 21.9	-144.2 ± 29.7	292.9 ± 7.6
3.1	3.8	-988.5 ± 21.9	847.4 ± 22.1	-141.2 ± 30.9	293.5 ± 7.7
3.5	3.8	-989.3 ± 21.8	846.0 ± 22.1	-143.4 ± 30.9	293.0 ± 7.7
3.9	4.1	-990.4 ± 21.9	847.3 ± 22.4	-143.1 ± 31.3	293.5 ± 7.8
4.3	4.5	-988.9 ± 22.1	846.4 ± 22.1	-142.1 ± 31.4	293.1 ± 7.7
4.7	4.8	-992.8 ± 21.1	846.2 ± 21.6	-146.6 ± 29.4	293.1 ± 7.5
5.1	5.0	-992.2 ± 21.4	846.1 ± 21.7	-143.1 ± 29.4	293.0 ± 7.5
5.5	5.2	-993.4 ± 21.5	845.6 ± 21.9	-147.9 ± 30.2	292.9 ± 7.6
5.9	5.7	-987.7 ± 22.5	847.0 ± 22.5	-140.7 ± 32.5	293.3 ± 7.8
6.3	6.3	-984.4 ± 22.2	847.0 ± 22.1	-137.4 ± 31.5	293.3 ± 7.7
7.1	7.2	-985.6 ± 21.6	847.0 ± 21.9	-138.6 ± 30.5	293.3 ± 7.6
7.9	8.0	-986.3 ± 21.5	846.9 ± 21.8	-139.4 ± 29.7	293.3 ± 7.6
8.7	8.7	-985.5 ± 21.9	846.9 ± 21.8	-138.1 ± 31.4	293.5 ± 7.8
9.5	9.5	-986.2 ± 23.2	846.7 ± 22.8	-139.5 ± 33.7	293.3 ± 7.9
10.3	10.3	-987.0 ± 22.0	846.9 ± 22.1	-140.1 ± 31.7	293.3 ± 7.7

Karlsson et al. - Structure and Dynamics of Template-Monomer Complexation: An Explanation for Molecularly Imprinted Polymer Recognition Site Heterogeneity


$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} E_{kin} \\ 845.4 \pm 22.1 \\ 846.7 \pm 22.2 \\ 846.6 \pm 23.2 \\ 846.2 \pm 21.4 \\ 845.3 \pm 22.2 \end{array}$	$\frac{E_{tot}}{-140.5 \pm 30.5} \\ -140.5 \pm 31.2 \\ -141.5 \pm 32.9 \\ -144.8 \pm 29.3$	Temp. 292.8 ± 7.7 293.2 ± 7.7 293.2 ± 8.0 202.1 ± 7.4
1.9 3.4 -985.9 ± 21.3 2.3 3.6 -987.2 ± 21.9 2.7 3.7 -988.1 ± 22.4 3.1 3.9 -991.0 ± 21.4	846.7 ± 22.2 846.6 ± 23.2 846.2 ± 21.4	-140.5 ± 31.2 -141.5 ± 32.9	293.2 ± 7.7 293.2 ± 8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	846.6 ± 23.2 846.2 ± 21.4	-141.5 ± 32.9	293.2 ± 8.0
3.1 3.9 -991.0 ± 21.4	846.2 ± 21.4		
	0.000	-144.8 ± 29.3	202.1 + 7.4
$3.5 4.0 -991.9 \pm 22.4$	845.3 ± 22.2		293.1 ± 7.4
		-146.6 ± 32.1	292.8 ± 7.7
$3.9 4.3 -992.2 \pm 21.1$	845.0 ± 22.8	-147.2 ± 32.1	292.6 ± 7.9
4.3 4.5 -990.9 ± 22.1	846.8 ± 22.3	-144.1 ± 31.7	293.3 ± 7.7
4.7 4.7 -992.9 ± 21.5	846.5 ± 22.3	-146.4 ± 30.7	293.2 ± 7.7
5.1 4.9 -990.7 ± 22.2	846.3 ± 22.3	-144.4 ± 31.8	293.1 ± 7.7
5.5 5.0 -988.7 ± 21.0	848.8 ± 21.5	-139.9 ± 28.5	294.0 ± 7.5
5.9 5.6 -989.2 ± 22.5	846.0 ± 22.5	-143.2 ± 32.5	293.0 ± 7.8
6.3 5.6 -988.8 ± 21.5	845.2 ± 21.7	-143.6 ± 29.8	292.7 ± 7.5
7.1 7.1 -984.8 ± 20.9	847.9 ± 21.1	-136.9 ± 28.2	293.7 ± 7.3
7.9 7.9 -984.3 ± 21.5	848.6 ± 22.0	-135.7 ± 30.5	293.9 ± 7.6
8.7 8.7 -989.8 ± 22.4	844.7 ± 22.4	-145.1 ± 31.9	293.6 ± 7.8
9.5 9.5 -987.2 ± 22.1	848.0 ± 22.0	-139.1 ± 31.1	293.7 ± 7.6
10.3 10.3 -988.6 ± 21.1	847.1 ± 21.7	-141.5 ± 29.2	293.4 ± 7.5

Histograms

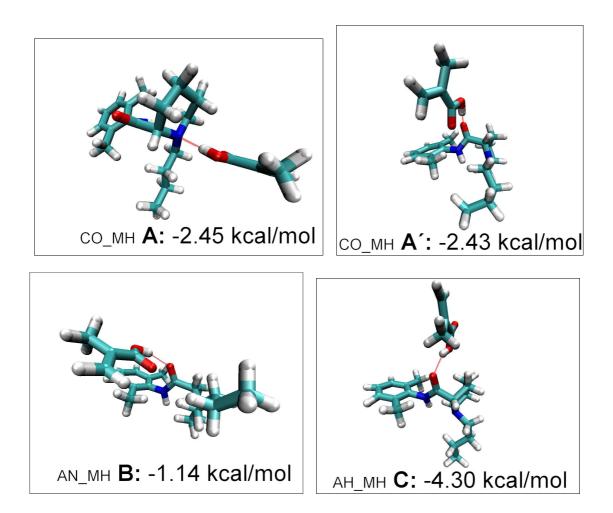


Figure S8. Histograms used for the generation of bupivacaine-MAA potentials of mean force in chloroform at 293 K.

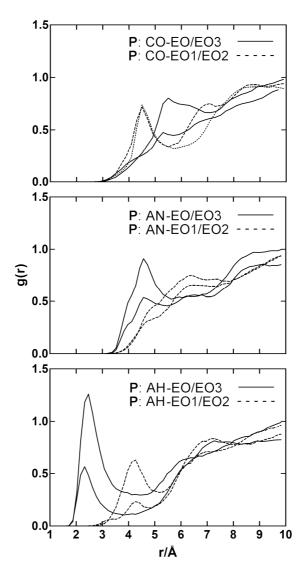
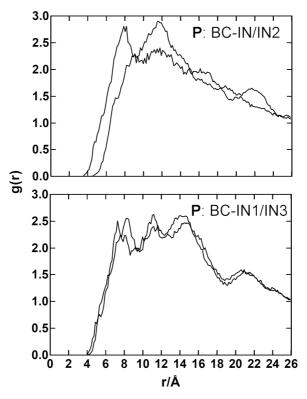
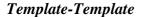
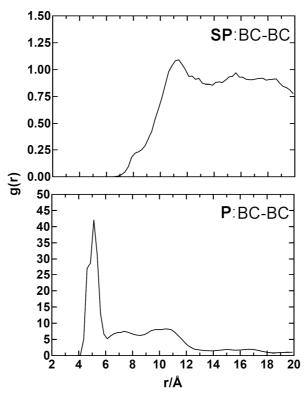

Potentials of Mean Force and Complexes

Figure S9. Bupivacaine-MAA potentials of mean force in chloroform at 293 K: starting coordinates 1 (*CO-MH*, ——), 2 (*AN-MH*, ••••••) and 3 (*AH-MH*, ••••••).

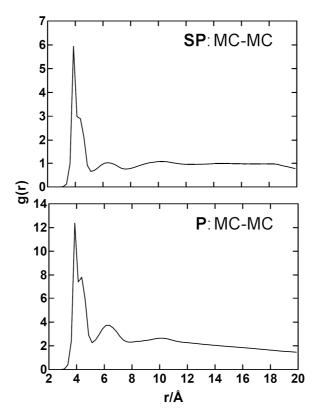


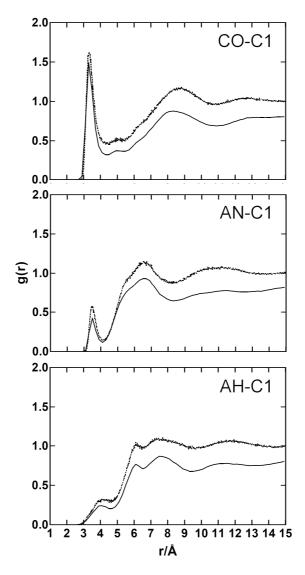
MD – RDF Analysis Template-Crosslinker




Figure S10. RDFs for the distribution of the EDMA oxygen atoms at the bupivacaine functional groups studied in the full-scale prepolymerization mixture, \mathbf{P} (see Chart 1 for a description of the atoms analyzed).

Template-Initiator


Figure S11. Atomic Distributions of AIBN at the *BC* atom of bupivacaine in the **P** mixture (see Chart 1 for a description of the atoms analyzed).

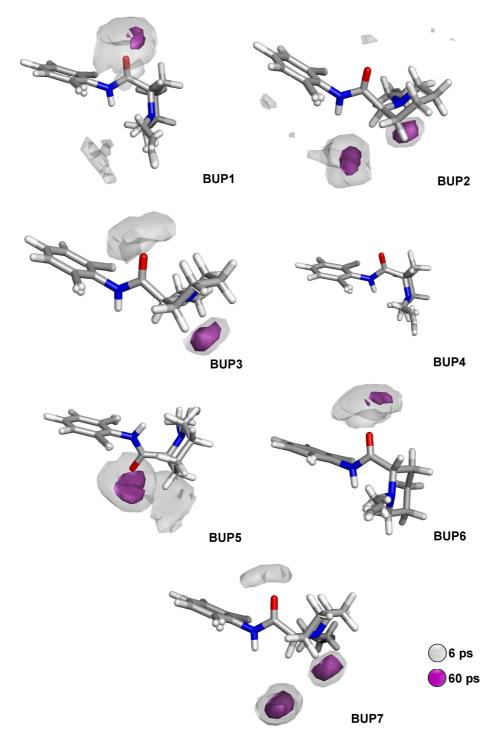

Figure S12. Template-Template distributions for the different prepolymerization mixtures studied (see Chart 1 for a description of the atoms analyzed).

Monomer-Monomer

Figure S13. MAA-MAA Distributions for the different prepolymerization mixtures studied (see Chart 1 for a description of the atoms analyzed).

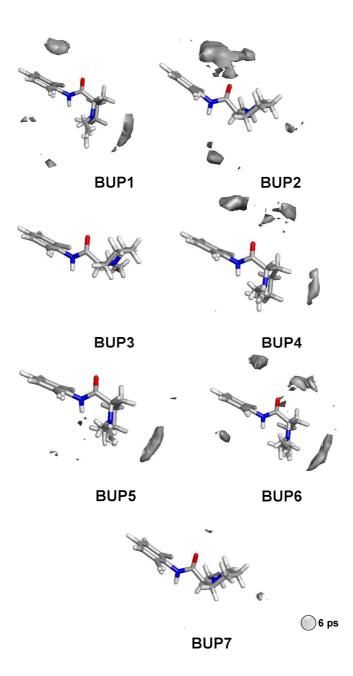
Template-Porogen

Figure S14. RDFs for the distribution of the central carbon atom (C1) of chloroform at the bupivacaine functional groups studied in the **SP** (solid lines) or in the **P** (dashed lines) mixtures (see Chart 1 for a description of the atoms analyzed).


			Peaks: r(Å) [g(r)]	Å) [g(r)]		n(r) [R	$n(r) \left[R_{cut}(\hat{A}) \right]^{b}$
Molecules	Atom Pair		SP		Р	SP	Ъ
BUP-MAA	CO-MH	1.7 [33]	4.9 [1.9] 6.1 [1.2]	1.7 [81]		0.70 [2.5] 1.3 [5.3] 2.1 [6.5]	0.37 [2.6]
BUP-MAA	AN-MH	1.9 [14]	4.7 [2.4]	5.1 [6.0]	8.8 [3.0]	0.33 [2.5] 1.9 [5.6]	1.0 [6.4] 5.7 [12]
BUP-MAA	AH-MO	1.9 [12]	4.1 [2.0] 5.7 [1.4]	2.5 [1.7]	5.6 [3.8]	0.38 [2.7] 1.1 [4.7] 2.5 [6.7]	0.044 [3.4] 0.86 [6.5]
BUP-EDMA	CO-EO			5.5 [0.79]			1.2 [6.9]
BUP-EDMA	CO-EOI			4.4 [0.72]			0.38 [5.5]
BUP-EDMA	CO-E02			4.4 [0.73]			0.46 [5.9]
BUP-EDMA	CO-E03			п.а.			т.а.
BUP-EDMA	AN-EO			4.5 [0.88]			0.62 [5.7]
BUP-EDMA	AN-E01			n.a.			п.а.
BUP-EDMA	AN-E02			п.а.			п.а.
BUP-EDMA	AN-E03			п.а.			п.а.
BUP-EDMA	AH-EO			2.5 [1.2]			0.24 [4.1]
BUP-EDMA	AH-E01			4.2 [1.6]			0.29 [5.1]
BUP-EDMA	AH-E02			п.а.			n.a.
BUP-EDMA	AH-E03			2.3 [0.54]			0.081 [3.9]
BUP-AIBN	BC-IN			8.0 [2.8]			0.25 [9.5]
BUP-AIBN	BC-IN1			8.2 [2.5]			0.24 [9.7]
BUP-AIBN	BC-IN2			11.7 [2.9]			1.2 [16]
BUP-AIBN	BC-IN3			7.2 [2.5]			0.15 [8.7]
BUP-CHCl ₃	CO-C1	3.3 [1.6]	3.3 [1.6] 8.7 [1.2]	33 [1.5]	8.3 [0,87]	0.98 [4.3] 25 [11]	0.48 [4.2] 11 [11]
BUP-CHCl ₃	AN-C1	3.5 [0.60] 6.6 [1.1]	6.6 [1.1]	3.5 [0.43] 6.6 [0.93]	6.6 [0.93]	0.26 [4.1] 10 [8.1]	0.11 [4.0] 4.9 [8.2]
BUP-CHCl ₃	AH-C1	п.а.		п.а.		т.а.	т.а.
BUP-BUP	BC-BC	п.а.		5.1 [41]		т.а.	0.40 [6.1]
MAA-MAA	MC-MC	3.9 [6.0]	4.4 [3.0] 6.3 [1.0]	3.9 [12]	4.4 [7.9] 6.3 [3.8]	0.72 [4.2] 1.4 [5.2] 3.1 [7.5]	0.45 [4.2] 0.82 [5.2] 2.0 [7.5]

Atomic Densities

Karlsson et al. - Structure and Dynamics of Template-Monomer Complexation: An Explanation for Molecularly Imprinted Polymer Recognition Site Heterogeneity


MD - Grid Density Analysis Simplified Prepolymerization Mixture (SP)

Template-Monomer

Figure S15. 3-D grid density representations showing probabilities of finding the acidic proton of MAA (*MH*, Chart 1) around each of the seven studied time-averaged stable structural conformations of bupivacaine that are present in the **SP** system (see Chart 1 for a description of the atoms analyzed).

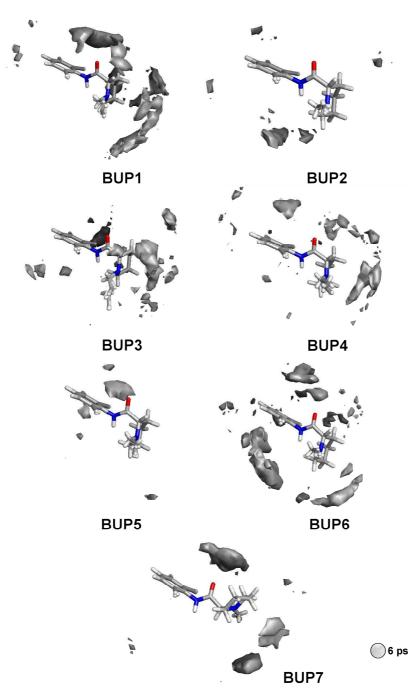
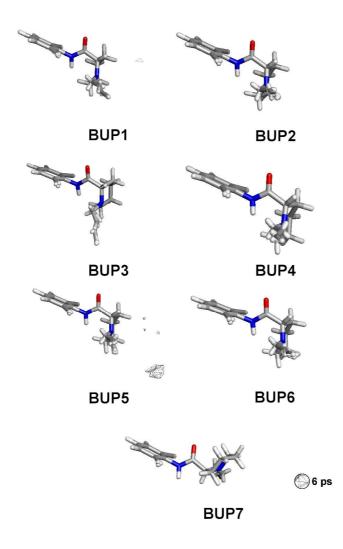
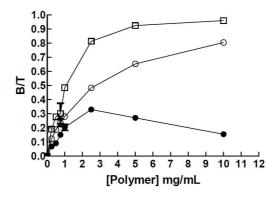

Template-Porogen

Figure S16. 3-D grid density representations showing probabilities of finding the central carbon of chloroform (C1, Chart 1) around each of the seven studied time-averaged stable structural conformations of bupivacaine that are present in the **SP** system (see Chart 1 for a description of the atoms analyzed).


Prepolymerization Mixture (P)

Template-Porogen


Figure S17. 3-D grid density representations showing probabilities of finding the central carbon of chloroform (C1, Chart 1) around each of the seven studied time-averaged stable structural conformations of bupivacaine that are present in the prepolymerization mixture (**P**) (see Chart 1 for a description of the atoms analyzed).

Template-Initiator

Figure S18. 3-D grid density representations showing probabilities of finding the *IN* (see Chart 1) atom of the initiator 2,2'-azo-bis(isobutyronitrile), AIBN, around each of the seven studied time-averaged stable structural conformations of bupivacaine that are present in the **P** mixture (see Chart 1 for a description of the atoms analyzed).

Polymer-Template Rebinding Study *Polymer Titration Data*

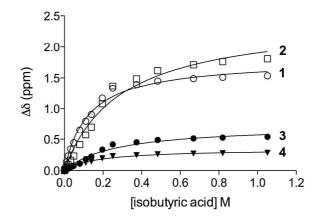
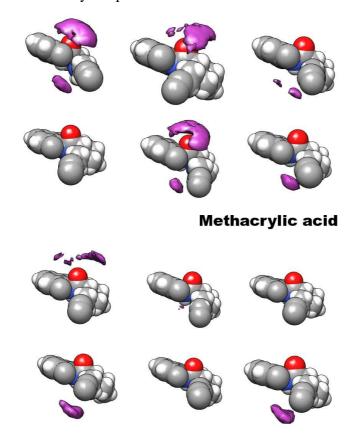


Figure S19. Data from the polymer titration experiment performed in toluene at 298 K. The specific binding of bupivacaine (•) is presented as the difference in the binding to the MIP (\Box) and the binding to the blank reference polymer (\circ). The polymer concentration used to obtain 50% template binding, PC₅₀, was found to be ~2.5 mg/mL for the REF (R²=0.985) and 0.9 mg/mL for the MIP (R²=0.986) (values obtained from a log[Polymer] versus logitB/T plot).

<u>BET analysis</u> of the polymers resulted in a surface area of the REF of $251.78 \pm 1.11 \text{ m}^2/\text{g}$ and MIP of $104.83 \pm 2.60 \text{ m}^2/\text{g}$. The average pore sizes diameters were found to be 5.8 nm for the MIP and 6.1 nm for the REF polymer, respectively.

The Affect on Unsaturation on Functional Monomer-Template Binding ¹H NMR Titration Experimental Info and Titration Data

Aliquots of a stock solution containing 2.31 M isobutyric acid and 34 mM bupivacaine were added to an NMR tube containing 0.7 mL of 34 mM of bupivacaine. Changes in the chemical shifts of selected bupivacaine $\Delta\delta$ (ppm), were determined and plotted as a function of the concentration of isobutyric acid added (3.30 mM – 1.05 M).


Figure S20. Isobutyric acid-bupivacaine ¹H NMR titration experiment in CDCl₃ at 293 K. Analysis of the bupivacaine protons studied (see Chart 2) using a non-linear one-site binding model yielded:

 R^2 >0.99 and K_D = 0.125 ± 0.011 *M* for **1** (□), R^2 >0.99 and K_D = 0.267 ± 0.043 *M* for **2** (○), R^2 >0.99 and K_D = 0.287 ± 0.045 *M* for **3** (●),

 $R^2 > 0.99$ and $K_D = 0.172 \pm 0.016 M$ for 4 (∇).

MD Simulation Setup and Grid Density Data

The simulated methacrylic acid or isobutyric-bupivacaine mixtures (6 bupivacaine, 61 methacrylic acid and 476 chloroform molecules or 6 bupivacaine, 64 isobutyric acid and XXX chloroform molecules) were prepared identically as being described under the *materials and methods section*. After equilibration for 250 ps under conditions of NPT (P=1 bar and T=293 K), to assure stable values in density and energy, grid density data was extracted for the distribution of functional monomer around the six bupivacaine molecules present in each system during a 5 ns production phase at NVT. The non-bonded used in the simulations was 9.0 Å and data was saved every 0.2 ps.

Isobutyric acid

Figure S21. Grid density representation of the distribution of the acidic proton of methacrylic acid (MAA, top) or isobutyric acid (bottom) around the six template molecules present in each **SP** system during a 5 ns production phase at NVT in chloroform. Purple surfaces represent densities of functional monomer of ≥ 6 ps.