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Methods 

The DNA encoding the mRFP1, fruit fluorescent proteins2 (generous gifts from Roger 

Tsien, UC San Diego), and tagRFP3 were positioned in the pRSET plasmid (Invitrogen, 

Carlsbad CA) such that a fusion protein is produced with an N-terminal 6xHis tag. 

Transformed E. Coli (T7 express pLysY, New England Biolabs) were grown at 370C to 

an optical density of 0.5 at 600 nm, followed by IPTG induction and growth for eight 

hours at room temperature. Cells were lysed (Bugbuster, Novagen) and affinity purified 

with Ni-NTA His Bind resin (Novagen). The proteins were eluted with 250 mM 

imidazole (pH 8). All samples were studied at pH 8, while mCherry was studied at both 

pH 8 and pH 11.2. 

The methods of measurement of chromophore concentration, extinction, 2PA 

spectra, and cross sections are described in detail in (1). Briefly, to measure 

chromophore extinction in solution we use the Strickler–Berg (S-B) equation (1). This 

approach makes it possible to find the peak extinction coefficient εmax(S-B) of only 
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mature chromophore in properly folded protein. The chromophore concentration was 

then obtained using Lambert-Beer law. 

Two-photon absorption measurements were carried out by using a relative 

fluorescence method with femtosecond excitation (1,2). Rhodamine B in methanol was 

used as a standard (2). 

Evaluation of ∆µ was based on the formula relating 2PA cross section of the 

lowest S0→S1 0 - 0 transition, σ2(0 - 0), with ∆µ and maximum 1PA extinction 

coefficient ε(0-0) (3). If all intermediate electronic states are lying much higher in 

energy than S1, and also have small transition dipole moments connecting them to S0, 

one can restrict the sum-over-states description of two-photon tensor to only two 

intermediate states, ground 0 and final two-photon excited state 1 (3-11). This two-level 

approximation will result in the appearance of the change of permanent dipole moments 

between S1 and S0, ∆µµµµ� = µµµµ1 – µµµµ0, in the expression for σ2 (in cm4 s) (3,7-11): 
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Here h is the Planck’s constant, c is the speed of light, NA is the Avogadro number, n is 

the refractive index of the medium (n = 1.33). Equation (1) implies linear polarization 

of two laser photons of the same frequency ν (in Hz) and takes into account the space-

averaging of 2PA tensor. In (1), µµµµ� is the transition dipole moment (in vacuum) between 

states S0,0 and S1,0, (i.e. electronic transition dipole moment times the square root of the 

Franck-Condon factor of the 0-0 transition), γ is the angle between vectors ∆µ µ µ µ  and µµµµ,  

fopt is the local field factor at optical frequency, g(2ν) is the 2PA line shape function in 
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(Hz-1), normalized such that ∫
∞

∞−

= 1)2()2( νν dg . The integration in the last formula is 

carried over the 0-0, S0 → S1, transition. Function g(2ν) describes the line broadening, 

which we assume to be the same for one- and two-photon absorption. 

To obtain µ∆ , we can re-write (1) in terms of the maximum 2PA cross section 

in the 0-0 peak σ2(0-0), maximum 1PA extinction coefficient (0 0)ε − , and the central 

frequency of this transition 00−ν  (in cm-1). By using a straightforward relation between 

2µ and (0 0)ε − , which takes into account the local field correction (see e.g. (12)): 
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substituting (2) into (1), and solving (1) with respect to µ∆  we obtain (cf. (3)): 
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Fig 1S (a). One-photon fluorescence excitation profiles with multi-Gaussian fits 

for mCherry, mTangerine, and mStrawberry. 
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Fig 1S (b). One-photon fluorescence excitation profiles with multi-Gaussian fits for 

mCherry at pH11.2, mRFP, and mPlum. 
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Fig 1S (c). One-photon fluorescence excitation profiles with multi-Gaussian fits 

for mBanana, tdTomato, and DsRed2. 
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Figs 1S (a)-(c) show the corrected (to the spectral intensity distribution of 

excitation monochromator) and calibrated (to the spectral position of excitation 

monochromator) fluorescence excitation spectra. To obtain the 00−ν  and (0 0)ε − values, 

these spectra were fitted to a sum of 5-7 Gaussians. The attempts to fit the spectra with 

4 Gaussians gave unsatisfactory results (with large systematic deviations). In each case, 

we first tried to fit the spectrum with 5 Gaussians. This was done by fixing the Gaussian 

widths wi (i = 1, 2, ..5) of all components equal to one particular value w. Then the w 

value was systematically varied to get the minimum χ2 of the total multi-Gaussian fit. If 

after this procedure the systematic deviations of the fit (especially in the high-frequency 

region) still remained, the number of Gaussians was increased subsequently to 6 or 7 

and the routine was repeated to obtain the minimum χ2. The final multi-Gaussian fits 

(where all wi = w) are shown in Figs. S1 (a)-(c) with the red line. Note that in most cases 

the obtained distribution of peaks (shown with green lines) corresponds well to two 

Franck-Condon progressions, built on two main characteristic modes with similar (for 

all proteins) Franck-Condon factors and similar frequencies. Also note that the 0-0 

(lowest-frequency) transition is the dominant transition in all cases and therefore its 

frequency and amplitude are well defined. The assignment of this transition to 0-0 (in 

terms of vibronic excitation) is further supported by hole burning spectroscopy of 

DsRed presented in (13). In other proteins, this assignment also holds because of their 

spectra are quite similar in shape. We estimate an error in position of 00−ν  to be ± 50 

cm-1 (~ 2 nm). The (0 0)ε − value was obtained from the above fits by comparing the 

amplitude of the lowest frequency Gaussian peak with the known value εmax at the 
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spectral maximum. In all cases (0 0)ε −  constitutes 0.89 – 0.96 of εmax. The main error 

of measurement of (0 0)ε − comes from determination of εmax and constitutes ~15%. 

Note, however, that the measurement of ∆µ is not sensitive to the errors in εmax because 

the experimentally determined σ2(0-0) depends linearly on the measured (0 0)ε − , but 

the formula (1) for ∆µ involves the fraction σ2(0-0)/ (0 0)ε − . Also note that ∆µ is 

calculated as square root of a combination of measured parameters, including σ2(0-0), 

see (1). Out of these parameters, the largest error is contributed by σ2(0-0), which is ~ 

20%. Therefore our estimation of experimental error in ∆µ, due to a random error of 

σ2(0-0) is of the order of 10%. 

 The choice of local field factor and refractive index inside the protein particle, 

entering (3), is a little bit arbitrary. We select n2 = 1.8 (n = 1.33), giving for the Lorentz 

local field factor fopt = (n2+2)/3 = 1.27. (Simple analysis of function fopt 
2/n shows that 

the systematic error in 10µ∆ , which can arise as a result of error in n is less than 3% 

when n is allowed to vary in a maximum reasonable range, i.e. between 1.33 and 1.5). 

The angle γ between ∆µ and the S0→S1 transition dipole moment µ was obtained 

by measuring the 2PA isotropic polarization ratio Ω = σ2,cir/σ2,lin, where σ2,�lin is the 2PA 

cross section measured with linear (vertical) polarization of excitation and fluorescence 

analyser set 54.70 with respect to the polarization of the excitation light; σ2, cir is the 2PA 

cross section obtained with circular polarization of excitation and fluorescence analyser 

set 35.30 with respect to the polarization plane of the excitation light (14). In the two-

level approximation employed here, Ω � and γ are related through the following equation 

(15): 
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For all the proteins we obtained γ ≈ 00. If experimental errors were considered, the 

maximum possible γ could be ~ 200, which contributed less than 10% to the final ∆µ 

value. These estimations are in good agreement with the small angle γ = 130 obtained 

for wt-DsRed using Stark effect spectroscopy (16). 

An additional, systematic, error in determining σ2(0-0), and, consequently, ∆µ, can 

emerge from selecting a particular method of fitting the 2PA spectrum. We have 

attempted several models (methods of fitting) to describe the 2PA spectra. In all these 

methods the frequency of the 0-0 transition was not allowed to vary and was fixed equal 

to the 00−ν  value obtained from 1PA data (see above). 

Method 1 (Fig. 1 of the main text). The main part of the 2PA spectrum was fitted 

with two Gaussians with fixed 00−ν  and all other parameters free. In the case of 

mCherry at pH11.2, an ambiguity in the σ2(0-0) value was rather large because σ2(0-0) 

depended strongly on how to select the upper frequency limit in the fitting procedure. In 

this case, we have chosen an average σ2(0-0), obtained from a set of values, emerging 

from a variation of the upper frequency limit. The resulting spread in σ2(0-0) values was 

not larger than 30%, translating into 15% variation in ∆µ. 

Method 2. The whole 2PA band, corresponding to the S0 → S1 transition was 

fitted with 3 Gaussians. Only 00−ν  was fixed. The results are shown in Fig. 2S. 

Method 3. The main part of the 2PA spectrum was fitted with two Gaussians with 

both 00−ν  and transition width w1 fixed and equal to the numbers obtained from 1PA 

fits. Other parameters were free. 
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Method 4. The whole 2PA band, corresponding to the S0 → S1 transition was 

fitted with 3 Gaussians. Both 00−ν  and w1 were fixed (as in Method 3). Other parameters 

were free. 

Method 5. The whole 2PA band, corresponding to the S0 → S1 transition was 

fitted to 3-7 Gaussians, all with the same widths, wi, fixed, and equal to the width w 

obtained from 1PA spectra. 00−ν  was also fixed as in methods 1 - 4. 
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Fig. 2S. 3-Gaussian fits to the 2PA spectra with fixed position of the 0-0 transition 

(lowest-frequency peak), corresponding to Method 2.  

 

Using methods 1 - 5, the σ2(0-0) values were extracted and ∆µ values calculated, 

according to (1). Finally, the plots, similar to Fig. 2 were produced and presented in Fig 

3S. The second order polynomial fits are shown for each method. 
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Fig. 3S. The dependence of the 0-0 transition energy (obtained from 1PA spectra) 

on ∆µ (obtained from 2PA cross sections in the 0-0 transition maximum). Different 

symbols correspond to different methods of fitting 2PA spectra. The proteins with 

crystallographically solved structures are highlighted in red circles. All of the Fruits 

proteins with the same chromophore structure are well described by the model, while 

mOrange, whose chromophore structure is different (17), is not. 

As one can see, in all cases the data points for 9 proteins group around the parabola 

obtained with method 1 (black line) and discussed in the main text. The largest 

deviations from the fits are observed for tdTomato when using Methods 2 and 4 (i.e. 3-

Gaussians fits). Table 1S presents the parameters of the second order polynomial fits for 

all 5 methods with the corresponding statistical analysis. The results of the fits, obtained 
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with methods 2 and 4, but excluding tdTomato (total number of points = 8), are also 

presented and provide an improvement of correlation coefficients, compared to the fits 

which use all 9 points. As one can seen from the Table, the estimated correlation 

coefficient of the parabolic dependence is always larger than 0.8 and P-value smaller 

than 4% and, in most cases, P < 1%. For each protein, the different fitting methods 

produce ∆µ values that vary by less than 30%. 

 

Table S1. Statistical analysis of the data obtained with second-order polynomial 

fits of the 00−ν  versus ∆µ dependences, shown in Fig. 3S.  

Method 
# 

Number 
of points 

R       SD P A 
= ν0 
(cm-1) 

B C ∆µ0 

(D) 
∆α0 
(Å3) 

1 9 0.998 32.9 <0.0001 19383 
± 77 

-2287 
± 69 

524 
± 14 

4.36 
± 
0.18 

-19 
± 0.5 

2 9 0.894 272 0.0080 19107 
± 667 

-1891 
±572 

422 
±110 

4.5 
± 1.8 

-24 
± 6 

2 8 0.983 115 0.0002 19789 
± 308 

-2626 
± 277 

590 
± 56 

4.45 
± 
0.63 

-17 
±1.6 

3 9 0.949 193 0.0010 19311 
± 496 

-2217 
± 457 

511 
± 92 

4.3 
± 1.2 

-19.6 
± 3.5 

4 9 0.810 357 0.0405 18648 
± 904 

-1484 
± 794 

348 
± 
154 

4 
 ± 3 

-29 
± 13 

4 8 0.945 208 0.0038 19882 
± 630 

-2783 
± 589 

639 
±121 

4.4 
± 1.2 

-16 
±3 

5 9 0.900 265 0.0069 18840 
± 623 

-1379 
± 444 

265 
± 71 

5 
± 2 

-38 
± 10 

5 8 0.975 141 0.0005 19331 
±352 

-1832 
±261 

355 
±44 

5 
±1 

-28 
±3.5 

R is the correlation coefficient, P is the P-value showing the probability of the absence 
of correlation with the given correlation coefficient, SD – standard deviation, A, B, and 
C are the coefficients of parabola, ν0, ∆µ0 and ∆α0 are the chromophore parameters 
defined in the text. 
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