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 Simulation details 

All MD simulations were performed using the Gromacs 4.0.4 package1 with the 

Gromos96 43a2 force field.2 The particle-mesh Ewald scheme was used to treat the 

nonbonded electrostatic interactions, where a Fourier grid spacing of 0.135 nm was used. The 

cut-off scheme was used to treat the nonbonded vdW interactions. The long-range cut-off 

lengths were set as 1.0 and 1.4 nm for the electrostatic and vdW interactions, respectively. 

The list of nonbonded interactions was truncated at 1 nm. The modeled systems were energy 

minimized using the steepest descent method with no constraints. Starting with the 

energy-minimized structures, position-restrained MD simulations were carried out for a 

period of 200 ps using the linear constraint solver (LINCS) algorithm, where lengths of all 

bonds in the systems were constrained. After position-restrained simulations, MD simulations 

with no constraints were conducted. All simulations were performed in the NpT ensemble, 

where constant temperature was maintained at 300 K using the Berendsen-type 

temperature-coupling scheme with a time constant of τT = 0.1 ps, and constant pressure was 

maintained at 1 atm using the Berendsen-type pressure-coupling scheme with a time constant 

of τp = 0.5 ps. The isotropic compressibility was set to a value of 4.5 × 10−5 bar−1. Initial 

velocities were obtained randomly from a Maxwellian distribution at 300 K. An integration 

time step of 2 fs was used for all MD simulations. Protein and its complex were placed in a 

truncated octahedron box, where the minimal distance between protein and box walls was set 

as 1.0 nm, and periodic boundary conditions were used. The SPC/E water model3 and 

Smith’s urea model4 were employed to describe the solvents. Appropriate counterions (Na+ 

or Cl−) were added. The urea-driven denaturing simulation of the monomeric PrP was 

performed in an aqueous urea solution with 5229 water molecules and 935 urea molecules, 
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corresponding to a urea mole fraction of 0.15 and a concentration of 5.88 M. The urea-driven 

denaturing simulation of PrP−GN8 was performed in an aqueous urea solution with 5498 

water molecules and 990 urea molecules, corresponding to a urea mole fraction of 0.15 and a 

concentration of 5.91 M. During these simulations, configurations were saved every 1 ps. 

 GN8, N,N'-(methylenedi-4,1-phenylene)bis[2-(1-pyrrolidinyl)acetamide],5 is a typical 

alkaloid with a pyrrolidine ring, which is protonated and positively charged at physiological 

pH. Thus, in our calculation, a doubly protonated cationic form corresponding to a chemical 

structure of (C25H34N4O2)2+ was used. We employed the Gromos96 topology data generated 

by the Dundee PRODRG 2.5 Server.6 Partial charges were determined by fitting the 

electrostatic potential derived from a quantum chemistry calculation performed at the 

DFT-B3LYP/cc-pVDZ level using the Gaussian 03 (revision D.01) program,7 according to 

the Merz–Singh–Kollman scheme.8,9 
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