Improving the Description of the Optical Properties of Carotenoids by Tuning the Long-Range Corrected Functionals

Igo T. Lima,^{1,2} Andriele da S. Prado,¹ João B. L. Martins,³ Pedro H. de Oliveira Neto,¹ Artemis M. Ceschin,⁴ Wiliam F. da Cunha¹ and Demétrio A. da Silva Filho.^{1,*}

¹ Institute of Physics, University of Brasilia, 70919-970, Brasilia, Brazil.

² Federal University of Maranhão, 65800-000, Balsas, Maranhão, Brazil.

³ Institute of Chemistry, University of Brasilia, 70919-970, Brasilia, Brazil.

⁴ Electrical Engineering Department, University of Brasilia, 70919-970, Brasilia, Brazil.

List of Figures & Tables.

Figure S1. Tuning of the range separation parameter (ω) for the ionization potential, electron affinity and gap of the phytofluene.

Figure S2. Illustration of frontier molecular orbitals HOMO (left) and LUMO (right) determined at tuned LC-BLYP/6-31G(d,p) level of theory.

Figure S3. Illustration of frontier molecular orbitals HOMO (left) and LUMO (right) determined at tuned $\omega B97/6-31G(d,p)$ level of theory.

Figure S4. Absorption spectra for the five molecules computed at tuned ω B97/6-31G(d,p) level of theory.

Table S1. $S_0 \rightarrow S_1$ vertical transition energies (E₀₁), oscillator strengths (*f*), transition dipole moments (μ_{01}), and electronic configurations of carotenoids as determined with TDDFT at the tuned- ω B97/6-31G(d,p) level of theory.

Figure S1. Tuning of the range separation parameter (ω) for the ionization potential, electron affinity and gap of the phytofluene.

Figure S2. Illustration of frontier molecular orbitals HOMO (left) and LUMO (right) determined at tuned LC-BLYP/6-31G(d,p) level of theory.

Figure S3. Illustration of frontier molecular orbitals HOMO (left) and LUMO (right) determined at tuned ω B97/6-31G(d,p) level of theory.

Figure S4. Absorption spectra for the five molecules computed at tuned ω B97/6-31G(d,p) level of theory.

Table S1. $S_0 \rightarrow S_1$ vertical transition energies (E₀₁), oscillator strengths (*f*), transition dipole moments (μ_{01}), and electronic configurations of carotenoids as determined with TDDFT at the tuned- ω B97/6-31G(d,p) level of theory.

Molecule	E ₀₁	f	μ ₀₁ (Debye)				Electronic
	(eV)		Х	У	Z	Total	Configuration(%)
13- <i>cis</i> -β-carotene	2.44	2.83	17.47	-0.36	-0.14	17.48	HOMO→LUMO(94)
9- <i>cis</i> -β-carotene	2.45	3.65	19.76	1.37	-0.17	19.81	HOMO→LUMO(94)
phytofluene	3.42	2.50	13.27	3.96	0.45	13.86	HOMO→LUMO (98)
<i>trans</i> -β-carotene	2.43	3.92	20.62	0.87	-0.09	20.63	HOMO→LUMO(94)
zeaxanthin	2.37	4.10	21.15	2.69	0.13	21.33	HOMO→LUMO(94)